@inproceedings{KerstenRodehorst, author = {Kersten, Jens and Rodehorst, Volker}, title = {TOWARDS STEREO VISION- AND LASER SCANNER-BASED UAS POSE ESTIMATION}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2807}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28072}, pages = {7}, abstract = {A central issue for the autonomous navigation of mobile robots is to map unknown environments while simultaneously estimating its position within this map. This chicken-eggproblem is known as simultaneous localization and mapping (SLAM). Asctec's quadrotor Pelican is a powerful and flexible research UAS (unmanned aircraft system) which enables the development of new real-time on-board algorithms for SLAM as well as autonomous navigation. The relative UAS pose estimation for SLAM, usually based on low-cost sensors like inertial measurement units (IMU) and barometers, is known to be affected by high drift rates. In order to significantly reduce these effects, we incorporate additional independent pose estimation techniques using exteroceptive sensors. In this article we present first pose estimation results using a stereo camera setup as well as a laser range finder, individually. Even though these methods fail in few certain configurations we demonstrate their effectiveness and value for the reduction of IMU drift rates and give an outlook for further works towards SLAM.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{KhanCongKarstenetal., author = {Khan, Farhan Manzoor Ahmed and Cong, ZiXiang and Karsten, Menzel and Stack, Paul}, title = {TRACKING OCCUPANTS AND INVENTORY ITEMS IN BUILDINGS USING RADIO FREQUENCY IDENTIFICATION (RFID) TECHNOLOGY}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2856}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28562}, pages = {13}, abstract = {In order to make control decisions, Smart Buildings need to collect data from multiple sources and bring it to a central location, such as the Building Management System (BMS). This needs to be done in a timely and automated fashion. Besides data being gathered from different energy using elements, information of occupant behaviour is also important for a building's requirement analysis. In this paper, the parameter of Occupant Density was considered to help find behaviour of occupants towards a building space. Through this parameter, support for building energy consumption and requirements based on occupant need and demands was provided. The demonstrator presented provides information on the number of people present in a particular building space at any time, giving the space density. Such collections of density data made over a certain period of time represents occupant behaviour towards the building space, giving its usage patterns. Similarly, inventory items were tracked and monitored for moving out or being brought into a particular read zone. For both, people and inventory items, this was achieved using small, low-cost, passive Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) tags. Occupants were given the tags in a form factor of a credit card to be possessed at all times. A central database was built where occupant and inventory information for a particular building space was maintained for monitoring and providing a central data access.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{KhosravianWuttke, author = {Khosravian, Reza and Wuttke, Frank}, title = {QUALITATIVE INVESTIGATION OF THE EFFECT OF SOIL MODELING APPROACH ON DYNAMIC BEHAVIOR OF A SMALL-SCALE 2-DOF STRUCTURE WITH PILE FOUNDATION}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2808}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28080}, pages = {6}, abstract = {Known as a sophisticated phenomenon in civil engineering problems, soil structure interaction has been under deep investigations in the field of Geotechnics. On the other hand, advent of powerful computers has led to development of numerous numerical methods to deal with this phenomenon, resulting in a wide variety of methods trying to simulate the behavior of the soil stratum. This survey studies two common approaches to model the soil's behavior in a system consisting of a structure with two degrees of freedom, representing a two-storey frame structure made of steel, with the column resting on a pile embedded into sand in laboratory scale. The effect of soil simulation technique on the dynamic behavior of the structure is of major interest in the study. Utilized modeling approaches are the so-called Holistic method, and substitution of soil with respective impedance functions.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{KhristichAstapov, author = {Khristich, Dmitrii and Astapov, Yuri}, title = {VARIATIONAL POSITING AND SOLUTION OF COUPLED THERMOMECHANICAL PROBLEMS IN A REFERENCE CONFIGURATION}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2809}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28091}, pages = {6}, abstract = {Variational formulation of a coupled thermomechanical problem of anisotropic solids for the case of non-isothermal finite deformations in a reference configuration is shown. The formulation of the problem includes: a condition of equilibrium flow of a deformation process in the reference configuration; an equation of a coupled heat conductivity in a variational form, in which an influence of deformation characteristics of a process on the temperature field is taken into account; tensor-linear constitutive relations for a hypoelastic material; kinematic and evolutional relations; initial and boundary conditions. Based on this formulation several axisymmetric isothermal and coupled problems of finite deformations of isotropic and anisotropic bodies are solved. The solution of coupled thermomechanical problems for a hollow cylinder in case of finite deformation showed an essential influence of coupling on distribution of temperature, stresses and strains. The obtained solutions show the development of stressstrain state and temperature changing in axisymmetric bodies in the case of finite deformations.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{KinzlerGrabe, author = {Kinzler, Steffen and Grabe, J{\"u}rgen}, title = {APPLICATION OF MULTICRITERIAL NUMERICAL OPTIMISATION IN GEOTECHNICAL ENGINEERING}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2861}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28616}, pages = {10}, abstract = {Geotechnical constructions are sophisticated structures due to the non-linear soil behaviour and the complex soil-structure interaction, which entails great exigencies on the liable engineer during the design process. The process can be schematised as a difficult and, depending on the opportunities and skills of the processor more or less innovative, creative and heuristic search for one or a multiple of defined objectives under given boundary conditions. Wholistic approaches including numerical optimisation which support the constructing engineer in this task do not currently exist. Abstract problem formulation is not state of the art; commonly parameter studies are bounded by computational effort. Thereby potential regarding cost effectiveness, construction time, load capacity and/or serviceability are often used insufficiently. This paper describes systematic approaches for comprehensive optimisation of selected geotechnical constructions like combined pile raft foundations and quay wall structures. Several optimisation paradigms like the mono- and the multi-objective optimisation are demonstrated and their use for a more efficient design concerning various intentions is shown in example. The optimisation is implemented by using Evolutionary Algorithms. The applicability to geotechnical real world problems including nonlinearities, discontinuities and multi-modalities is shown. The routines are adapted to common problems and coupled with conventional analysis procedures as well as with numerical calculation software based on the finite element method. Numerical optimisation of geotechnical design using efficient algorithms is able to deliver highly effective solutions after investing more effort into the parameterization of the problem. Obtained results can be used for realizing different constructions near the stability limit, visualizing the sensitivity regarding the construction parameters or simply procuring more effective solutions.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{Knabe, author = {Knabe, Tina}, title = {CONSTITUTIVE MODELS FOR SUBSOIL IN THE CONTEXT OF STRUCTURAL ANALYSIS IN CONSTRUCTION ENGINEERING}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2862}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28628}, pages = {16}, abstract = {Parameters of constitutive models are obtained generally comparing the results of forward numerical simulations to measurement data. Mostly the parameter values are varied by trial-and-error in order to reach an improved fit and obtain plausible results. However, the description of complex soil behavior requires advanced constitutive models where the rising complexity of these models mainly increases the number of unknown constitutive parameters. Thus an efficient identification "by hand" becomes quite difficult for most practical geotechnical problems. The main focus of this article is on finding a vector of parameters in a given search space which minimizes discrepancy between measurements and the associated numerical result. Classically, the parameter values are estimated from laboratory tests on small samples (triaxial tests or oedometer tests). For this purpose an automatic population-based approach is present to determine the material parameters for reconstituted and natural Bothkennar Clay. After the identification a statistical assessment is carried out of numerical results to evaluate different constitutive models. On the other side a geotechnical problem, stone columns under an embankment, is treated in a well instrumented field trial in Klagenfurt, Austria. For the identification purpose there are measurements from multilevel-piezometers, multilevel-extensometers and horizontal inclinometer. Based on the simulation of the stone columns in a FE-Model the identification of the constitutive parameters is similar to the experimental tests by minimizing the absolute error between measurement and numerical curves.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{Krausshar, author = {Kraußhar, Rolf S{\"o}ren}, title = {SOME HARMONIC ANALYSIS ON M{\"O}BIUS STRIP DOMAINS AND THE KLEIN BOTTLE IN Rn}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2769}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27692}, pages = {10}, abstract = {The aim of this paper we discuss explicit series constructions for the fundamental solution of the Helmholtz operator on some important examples non-orientable conformally at manifolds. In the context of this paper we focus on higher dimensional generalizations of the Klein bottle which in turn generalize higher dimensional M{\"o}bius strips that we discussed in preceding works. We discuss some basic properties of pinor valued solutions to the Helmholtz equation on these manifolds.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{KrausshardeAlmeida, author = {Kraußhar, Rolf S{\"o}ren and de Almeida, Regina}, title = {FUNDAMENTALS OF A WIMAN VALIRON THEORY FOR POLYMONOGENIC FUNCTIONS}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2810}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28100}, pages = {6}, abstract = {In this paper we present some rudiments of a generalized Wiman-Valiron theory in the context of polymonogenic functions. In particular, we analyze the relations between different notions of growth orders and the Taylor coefficients. Our main intention is to look for generalizations of the Lindel¨of-Pringsheim theorem. In contrast to the classical holomorphic and the monogenic setting we only obtain inequality relations in the polymonogenic setting. This is due to the fact that the Almansi-Fischer decomposition of a polymonogenic function consists of different monogenic component functions where each of them can have a totally different kind of asymptotic growth behavior.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{KulchytskyyHorokhovGubanovetal., author = {Kulchytskyy, Artem and Horokhov, Yevgen and Gubanov, Vadim and Golikov, Alexandr}, title = {THE INFLUENCE OF THE LOCAL CONCAVITY ON THE FUNCTIONING OF BEARING SHELL OF HIGH-RISE CONSTRUCTION}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2770}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27701}, pages = {10}, abstract = {Areas with various defects and damages, which reduce carrying capacity, were examined in a study of metal chimneys. In this work, the influence of the local dimples on the function of metal chimneys was considered. Modeling tasks were completed in the software packages LIRA and ANSYS. Parameters were identified, which characterize the local dimples, and a numerical study of the influence of local dimples on the stress-strain state of shells of metal chimneys was conducted. A distribution field of circular and meridional tension was analyzed in a researched area. Zones of influence of dimples on the bearing cover of metal chimneys were investigated. The bearing capacities of high-rise structures with various dimple geometries and various cover parameters were determined with respect to specified areas of the trunk. Dependent relationships are represented graphically for the decrease in bearing capacity of a cover with respect to dimples. Diameter and thickness of covers of metal chimneys were constructed according to the resulting data.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{Kunoth, author = {Kunoth, Angela}, title = {MULTISCALE ANALYSIS OF MULTIVARIATE DATA}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2864}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28644}, pages = {20}, abstract = {For many applications, nonuniformly distributed functional data is given which lead to large-scale scattered data problems. We wish to represent the data in terms of a sparse representation with a minimal amount of degrees of freedom. For this, an adaptive scheme which operates in a coarse-to-fine fashion using a multiscale basis is proposed. Specifically, we investigate hierarchical bases using B-splines and spline-(pre)wavelets. At each stage a leastsquares approximation of the data is computed. We take into account different requests arising in large-scale scattered data fitting: we discuss the fast iterative solution of the least square systems, regularization of the data, and the treatment of outliers. A particular application concerns the approximate continuation of harmonic functions, an issue arising in geodesy.}, subject = {Angewandte Informatik}, language = {en} }