@inproceedings{AldaCremersBilek2004, author = {Alda, Sascha and Cremers, Armin B. and Bilek, Jochen}, title = {Support of Collaborative Structural Design Processes through the Integration of Peer-to-Peer and Multiagent Architectures}, doi = {10.25643/bauhaus-universitaet.148}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1481}, year = {2004}, abstract = {Structural engineering projects are increasingly organized in networked cooperations due to a permanently enlarged competition pressure and a high degree of complexity while performing the concurrent design activities. Software that intends to support such collaborative structural design processes implicates enormous requirements. In the course of our common research work, we analyzed the pros and cons of the application of both the peer-to-peer (University of Bonn) and multiagent architecture style (University of Bochum) within the field of collaborative structural design. In this paper, we join the benefits of both architecture styles in an integrated conceptual approach. We demonstrate the surplus value of the integrated multiagent-peer-to-peer approach by means of an example scenario in which several structural engineers are co-operatively designing the basic structural elements of an arched bridge, applying heterogeneous CAD systems.}, subject = {Ingenieurbau}, language = {en} } @inproceedings{BoukampAkinci2004, author = {Boukamp, Frank and Akinci, Burcu}, title = {Towards Automated Defect Detection: Object-oriented Modeling of Construction Specifications}, doi = {10.25643/bauhaus-universitaet.131}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1315}, year = {2004}, abstract = {This paper describes an ongoing research on the representation and reasoning about construction specifications, which is part of a bigger research project that aims at developing a formalism for automating the identification of deviations and defects on construction sites. We specifically describe the requirements on product and process models and an approach for representing and reasoning about construction specifications to enable automated detection and assessment of construction deviations and defects. This research builds on the previous research on modeling design specifications and extends and elaborates concept of contexts developed in that domain. The paper provides an overview of how the construction specifications are being modele d in this research and points out future steps that need to be accomplished to develop the envisioned automated deviation and defect detection system.}, subject = {Bauwerk}, language = {en} } @inproceedings{EslimyIsfahanyPegels2004, author = {Eslimy-Isfahany, S. H. R. and Pegels, Georg}, title = {Net-distributed Co-operation Including Developing Countries, Practical Case Study - Iran}, doi = {10.25643/bauhaus-universitaet.142}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1421}, year = {2004}, abstract = {The scientific transfer of key technology features to developing countries, together with adequate competence, localisation and adaptation, is the primary purpose of the proposed investigation. It is evident that introducing high-level CAD design and detailing will improve the planning process in developing countries. Successful utilization of applied information technology for the planning process, however, depends on the user-interface of individual software. Therefore, to open the great opportunity embedded in CAD software for clients globally, the language and character-set barrier of traditional user-interfaces must be overcome. A proposal for a research program is given here to address such issue in favour of global civil engineering.}, subject = {Ingenieurbau}, language = {en} } @article{Fink2004, author = {Fink, Thomas}, title = {Structural analysis, design and detailing using standard CAD software and standard building information model}, doi = {10.25643/bauhaus-universitaet.270}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2702}, year = {2004}, abstract = {This paper describes the concept of a german commercial software package developed for the needs of structural engineers. Using a standard CAD software as user interface for all geometrical data and to save all important input data, there is a natural link to upcoming building information models.}, subject = {Bauindustrie}, language = {en} } @inproceedings{GebbekenBaumhauerIonita2004, author = {Gebbeken, Norbert and Baumhauer, Andreas and Ionita, Mihai}, title = {Increasing the Reliability and Performance through Automatization and Parallel Working}, doi = {10.25643/bauhaus-universitaet.139}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1397}, year = {2004}, abstract = {Re-examination of the behaviour of structures can be necessary due to deterioration or changes in the traffic situation during their lifetime. The Finite Element Method (FEM) is widely used in order to accomplish numerical analysis. Considering the development of computer performance, more detailed FEM models can be analyzed, even on site, with mobile computers. To compensate the increasing amount of data needed for the model input, measures need to be taken to save time, by distributing the work. In order to provide consistency to the model, fedback data must be checked upon reception. A local wireless computer network of ultra-portable devices linked together with a computer can provide the coordination necessary for efficient parallel working. Based on a digital model consisting of all data gathered, structural modelling and numerical analysis are performed automatically. Thus, the user is released from the work that can be automatized and the time needed for the overall analysis of a structure is decreased.}, subject = {Ingenieurbau}, language = {en} } @inproceedings{HartmannMeissnerRueppel2004, author = {Hartmann, Dietrich and Meißner, Udo F. and Rueppel, Uwe}, title = {Integration of Productmodel Databases into Multi-Agent Systems}, doi = {10.25643/bauhaus-universitaet.141}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1410}, year = {2004}, abstract = {This paper deals with two different agent-based approaches aimed at the incorporation of complex design information into multi-agent planning systems. The first system facilitates collaborative structural design processes, the second one supports fire engineering in buildings. Both approaches are part of two different research projects that belong to the DFG1 priority program 1103 entitled "Network-based Co-operative Planning Processes in Structural Engineering" (DFG 2000). The two approaches provide similar database wrapper agents to integrate relevant design information into two multi-agent systems: Database wrapper agents make the relevant product model data usable for further agents in the multi-agent system, independent on their physical location. Thus, database wrapper agents act as an interface between multi-agent system and heterogeneous database systems. The communication between the database wrapper agents and other requesting agents presumes a common vocabulary: a specific database ontology that maps database related message contents into database objects. Hereby, the software-wrapping technology enables the various design experts to plug in existing database systems and data resources into a specific multi-agent system easily. As a consequence, dynamic changes in the design information of large collaborative engineering projects are adequately supported. The flexible architecture of the database wrapper agent concept is demonstrated by the integration of an XML and a relational database system.}, subject = {Ingenieurbau}, language = {en} } @inproceedings{Hartmann2004, author = {Hartmann, Ulrich C.}, title = {Collaboration in AEC Design : Web-enabling Applications using Peer-to-Peer Office Communicator}, doi = {10.25643/bauhaus-universitaet.138}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1386}, year = {2004}, abstract = {A market analysis conducted by Gartner Dataquest in August 2001 has shown the typical characteristics of the AEC design process. High volatility in membership of AEC design groups and members dispersed over several external offices is the common collaboration scenario. Membership is most times short lived, compared to the overall duration of the process. A technical solution has to take that into account by making joining and leaving a collaborative work group very easy. The modelling of roles of collaboration between group members must be based on a commonly understood principle like the publisher / subscriber model, where the individual that is responsible for the distribution of vital information is clear. Security issues and trust in the confidentiality of the system is a central concern for the acceptance of the system. Therefore, keeping the subset of data that will be published under the absolute control of the publisher is a must. This is not the case with server-based scenarios, sometimes even due to psychological reasons. A loosely bound Peer-to-Peer network offers advantages over a server-based solution, because of less administrative overhead and simple installation procedures. In a peer-to-peer environment, a publish/subscribe role model can be more easily implemented. The publish/subscribe model matches the way AEC processes are modelled in real world scenarios today, where legal proof of information exchange between external offices is of high importance. Workflow management systems for small to midsize companies of the AEC industry may adopt the peer-to-peer approach to collaboration in the future. Further investigations are being made on the research level (WINDS) by integrating the viewer and redlining application Collaborate! into a collaborative environment.}, subject = {Ingenieurbau}, language = {en} } @inproceedings{HauschildBorrmannHuebler2004, author = {Hauschild, Thomas and Borrmann, Andr{\´e} and H{\"u}bler, Reinhard}, title = {Integration of Constraints into Digital Building Models for Cooperative Planning Processes}, doi = {10.25643/bauhaus-universitaet.177}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1775}, year = {2004}, abstract = {The uniqueness and the long life cycle of buildings imply a dynamically modifiable building model. The technological foundation for the management of digital building models, a dynamic model management system (MMS), developed by our research group, allows to explicitly access and to modify the object model of the stored planning data. In this paper, the integration of constraints in digital building models will be shown. Constraints are conditions, which apply to the instances of domain model classes, and are defined by the user at runtime of the information system. For the expression of constraints, the Constraint Modelling Language (CML) has been developed and will be described in this paper. CML is a powerful, intuitively usable object-oriented language, which allows the expression of constraints at a high semantic level. A constrained-enabled MMS can verify, whether an instance fulfils the applying constraints. To ensure flexibility, the evaluation of constraints is not implicitly performed by the systems, but explicitly initiated by the user. A classification of constraint types and example usage scenarios are given.}, subject = {Architektur}, language = {en} } @article{KiviniemiFischer2004, author = {Kiviniemi, Arto and Fischer, Martin}, title = {Requirements Management Interface to Building Product Models}, doi = {10.25643/bauhaus-universitaet.242}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2427}, year = {2004}, abstract = {In current AEC practice client requirements are typically recorded in a building program, which, depending on the building type, covers various aspects from the overall goals, activities and spatial needs to very detailed material and condition requirements. This documentation is used as the starting point of the design process, but as the design progresses, it is usually left aside and changes are made incrementally based on the previous design solution. These incremental small changes can lead to a solution that may no longer meet the original requirements. In addition, design is by nature an iterative process and the proposed solutions often also cause evolution in the client requirements. However, the requirements documentation is usually not updated accordingly. Finding the latest updates and evolution of the requirements from the documentation is very difficult, if not impossible. This process can lead to an end result, which is significantly different from the documented requirements. Some important requirements may not be satisfied, and even if the design process was based on agreed-upon changes in the scope and requirements, differences in the requirements documents and in the completed building can lead to well-justified doubts about the quality of the design and construction process...}, subject = {Produktmodell}, language = {en} } @inproceedings{LehnerHartmann2004, author = {Lehner, Karlheinz and Hartmann, Dietrich}, title = {Scenarios for the deployment of distributed engineering applications}, doi = {10.25643/bauhaus-universitaet.147}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1476}, year = {2004}, abstract = {Although there are some good reasons to design engineering software as a stand-alone application for a single computer, there are also numerous possibilities for creating distributed engineering applications, in particular using the Internet. This paper presents some typical scenarios how engineering applications can benefit from including network capabilities. Also, some examples of Internet-based engineering applications are discussed to show how the concepts presented can be implemented.}, subject = {Ingenieurbau}, language = {en} }