@inproceedings{Raue, author = {Raue, Erich}, title = {NONLINEAR ANALYSIS OF COMPOSITE CROSS-SECTIONS WITH PRE-DEFORMATIONS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2880}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28804}, pages = {9}, abstract = {An energy method based on the LAGRANGE Principle of the minimum of total potential en-ergy is presented to calculate the stresses and strains of composite cross-sections. The stress-strain relation of each partition of the cross-section can be an arbitrary piecewise continuous function. The strain energy is transformed into a line integral by GAUSS's integral theorem. The total strain of each partition of the cross-section is split into load-dependent strain and pre-strain. Pre-strains have to be taken into account when the cross-section is pre-stressed, retrofit-ted or influenced by shrinkage, temperature etc. The unconstrained minimum problem can be solved for each load combination using standard software. The application of the method presented in the paper is demonstrated by means of examples.}, subject = {Angewandte Informatik}, language = {en} } @article{Zhang, author = {Zhang, Yongzheng}, title = {Nonlocal dynamic Kirchhoff plate formulation based on nonlocal operator method}, series = {Engineering with Computers}, volume = {2022}, journal = {Engineering with Computers}, publisher = {Springer}, address = {London}, doi = {10.1007/s00366-021-01587-1}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220209-45849}, pages = {1 -- 35}, abstract = {In this study, we propose a nonlocal operator method (NOM) for the dynamic analysis of (thin) Kirchhoff plates. The nonlocal Hessian operator is derived based on a second-order Taylor series expansion. The NOM does not require any shape functions and associated derivatives as 'classical' approaches such as FEM, drastically facilitating the implementation. Furthermore, NOM is higher order continuous, which is exploited for thin plate analysis that requires C1 continuity. The nonlocal dynamic governing formulation and operator energy functional for Kirchhoff plates are derived from a variational principle. The Verlet-velocity algorithm is used for the time discretization. After confirming the accuracy of the nonlocal Hessian operator, several numerical examples are simulated by the nonlocal dynamic Kirchhoff plate formulation.}, subject = {Angewandte Mathematik}, language = {en} } @inproceedings{EbertBernsteinCerejeirasetal., author = {Ebert, Svend and Bernstein, Swanhild and Cerejeiras, Paula and K{\"a}hler, Uwe}, title = {NONZONAL WAVELETS ON S^N}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2840}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28406}, pages = {18}, abstract = {In the present article we will construct wavelets on an arbitrary dimensional sphere S^n due the approach of approximate Identities. There are two equivalently approaches to wavelets. The group theoretical approach formulates a square integrability condition for a group acting via unitary, irreducible representation on the sphere. The connection to the group theoretical approach will be sketched. The concept of approximate identities uses the same constructions in the background, here we select an appropriate section of dilations and translations in the group acting on the sphere in two steps. At First we will formulate dilations in terms of approximate identities and than we call in translations on the sphere as rotations. This leads to the construction of an orthogonal polynomial system in L²(SO(n+1)). That approach is convenient to construct concrete wavelets, since the appropriate kernels can be constructed form the heat kernel leading to the approximate Identity of Gauss-Weierstra\ss. We will work out conditions to functions forming a family of wavelets, subsequently we formulate how we can construct zonal wavelets from a approximate Identity and the relation to admissibility of nonzonal wavelets. Eventually we will give an example of a nonzonal Wavelet on \$S^n\$, which we obtain from the approximate identity of Gauss-Weierstraß.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{UbyszMajStachonetal., author = {Ubysz, Andrzej and Maj, Marek and Stachon, T. and Rogoza, Agnieszka}, title = {NUMERICAL ANALYSIS OF STRESS DISTRIBUTION IN THE REINFORCED CONCRETE SUPPORT BEAM BRACKET EXPOSED TO DAMAGE}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2869}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28693}, pages = {11}, abstract = {The article presents analysis of stress distribution in the reinforced concrete support beam bracket which is a component of prefabricated reinforced concrete building. The building structure is spatial frame where dilatations were applied. The proper stiffness of its structure is provided by frames with stiff joints, monolithic lift shifts and staircases. The prefabricated slab floors are supported by beam shelves which are shaped as inverted letter 'T'. Beams are supported by the column brackets. In order to lower the storey height and fulfill the architectural demands at the same time, the designer lowered the height of beam at the support zone. The analyzed case refers to the bracket zone where the slant crack. on the support beam bracket was observed. It could appear as a result of overcrossing of allowable tension stresses in reinforced concrete, in the bracket zone. It should be noted that the construction solution applied, i.e. concurrent support of the "undercut" beam on the column bracket causes local concentration of stresses in the undercut zone where the strongest transverse forces and tangent stresses occur concurrently. Some additional rectangular stresses being a result of placing the slab floors on the lower part of beam shelves sum up with those described above.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{RogozaUbysz, author = {Rogoza, Agnieszka and Ubysz, Andrzej}, title = {NUMERICAL ANALYSIS OF THE CRACKED REINFORCED CONCRETE BEAMS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2883}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28835}, pages = {8}, abstract = {We present the way of calculation of displacement in the bent reinforced concrete bar elements where rearrangement of internal forces and plastic hinge occurred. The described solution is based on prof. Borcz's mathematical model. It directly takes into consideration the effects connected with the occurrence of plastic hinge, such as for example a crack, by means of a differential equation of axis of the bent reinforced concrete beam. The EN Eurocode 2 makes it possible to consider the influence of plastic hinge on the values of the reinforced concrete structures. This influence can also be assumed using other analytical methods. However, the results obtained by the application of Eurocode 2 are higher from those received in testing. Just comparably big error level occurs when calculations are made by means of Borcz's method, but in the latter case, the results depend on the assumptions made beforehand. This method makes it possible to apply the experimental results using parameters r1 i r0. When the experimental results are taken into account, one could observe the compatibility between the calculations and actual deflections of the structure.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{NguyenTuanDatchevaSchanz, author = {Nguyen-Tuan, Long and Datcheva, Maria and Schanz, Tom}, title = {NUMERICAL SIMULATION AND INVERSE ANALYSIS OF THERMO-HYDRO-MECHANICAL BEHAVIOR OF SAND-BENTONITE MIXTURE}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2876}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28767}, pages = {18}, abstract = {Sand-bentonite mixtures are well recognized as buffer and sealing material in nuclear waste repository constructions. The behaviour of compacted sand-bentonite mixture needs to be well understood in order to guarantee the safety and the efficiency of the barrier construction. This paper presents numerical simulations of swelling test and coupled thermo-hydro-mechanical (THM) test on compacted sand-bentonite mixture in order to reveal the influence of the temperature and hydraulic gradients on the distribution of temperature, mechanical stress and water content in such materials. Sensitivity analysis is carried out to identify the parameters which influence the most the response of the numerical model. Results of back analysis of the model parameters are reported and critically assessed.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{Itam, author = {Itam, Zarina}, title = {NUMERICAL SIMULATION OF THERMO-HYGRAL ALKALI-SILICA REACTION MODEL IN CONCRETE AT THE MESOSCALE}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2853}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28536}, pages = {7}, abstract = {This research aims to model Alkali-Silica Reaction gel expansion in concrete under the influence of hygral and thermal loading, based on experimental results. ASR provokes a heterogeneous expansion in concrete leading to dimensional changes and eventually the premature failure of the concrete structure. This can result in map cracking on the concrete surface which will decrease the concrete stiffness. Factors that influence ASR are parameters such as the cement alkalinity, the number of deleterious silica from the aggregate used, concrete porosity, and external factors like temperature, humidity and external source of alkali from ingression of deicing salts. Uncertainties of the influential factors make ASR a difficult phenomenon to solve; hence my approach to this matter is to solve the problem using stochastic modelling, where a numerical simulation of concrete cross-section with integration of experimental results from Finger-Institute for Building Materials Science at the Bauhaus-Universit{\"a}t Weimar. The problem is formulated as a multi-field problem, combining heat transfer, fluid transfer and the reaction rate model with the mechanical stress field. Simulation is performed as a mesoscale model considering aggregates and mortar matrix. The reaction rate model will be conducted using experimental results from concrete expansions due to ASR gained from concrete prism tests. Expansive strains values for transient environmental conditions due to the reaction rate will be determined from calculation based on the reaction rate model. Results from these models will be able to predict the rate of ASR expansion and the cracking propagation that may arise.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{Stein, author = {Stein, Peter}, title = {NURBS-BASED ELEMENTS AS A BASIS FOR INTEGRATING ENGINEERING APPLICATIONS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2894}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28944}, pages = {11}, abstract = {Building information modeling offers a huge potential for increasing the productivity and quality of construction planning processes. Despite its promising concept, this approach has not found widespread use. One of the reasons is the insufficient coupling of the structural models with the general building model. Instead, structural engineers usually set up a structural model that is independent from the building model and consists of mechanical models of reduced dimension. An automatic model generation, which would be valuable in case of model revisions is therefore not possible. This can be overcome by a volumetric formulation of the problem. A recent approach employed the p-version of the finite element method to this problem. This method, in conjunction with a volumetric formulation is suited to simulate the structural behaviour of both „thick" solid bodies and thin-walled structures. However, there remains a notable discretization error in the numerical models. This paper therefore proposes a new approach for overcoming this situation. It sugggests the combination of the Isogeometric analysis together with the volumetric models in order to integrate the structural design into the digital, building model-centered planning process and reduce the discretization error. The concept of the isogeometric analysis consists, roughly, in the application of NURBS functions to represent the geometry and the shape functions of the elements. These functions possess some beneficial properties regarding numerical simulation. Their use, however, leads to some intricacies related to the setup of the stiffness matrix. This paper describes some of these properties.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{Tomaz, author = {Tomaz, Gra{\c{c}}a Maria}, title = {ON BLOCK MATRICES OF PASCAL TYPE IN CLIFFORD ANALYSIS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2897}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28979}, pages = {8}, abstract = {Since the 90-ties the Pascal matrix, its generalizations and applications have been in the focus of a great amount of publications. As it is well known, the Pascal matrix, the symmetric Pascal matrix and other special matrices of Pascal type play an important role in many scientific areas, among them Numerical Analysis, Combinatorics, Number Theory, Probability, Image processing, Sinal processing, Electrical engineering, etc. We present a unified approach to matrix representations of special polynomials in several hypercomplex variables (new Bernoulli, Euler etc. polynomials), extending results of H. Malonek, G.Tomaz: Bernoulli polynomials and Pascal matrices in the context of Clifford Analysis, Discrete Appl. Math. 157(4)(2009) 838-847. The hypercomplex version of a new Pascal matrix with block structure, which resembles the ordinary one for polynomials of one variable will be discussed in detail.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{AlYasiriGuerlebeck, author = {Al-Yasiri, Zainab and G{\"u}rlebeck, Klaus}, title = {ON BOUNDARY VALUE PROBLEMS FOR P-LAPLACE AND P-DIRAC EQUATIONS}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2792}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27928}, pages = {8}, abstract = {The p-Laplace equation is a nonlinear generalization of the Laplace equation. This generalization is often used as a model problem for special types of nonlinearities. The p-Laplace equation can be seen as a bridge between very general nonlinear equations and the linear Laplace equation. The aim of this paper is to solve the p-Laplace equation for 2 < p < 3 and to find strong solutions. The idea is to apply a hypercomplex integral operator and spatial function theoretic methods to transform the p-Laplace equation into the p-Dirac equation. This equation will be solved iteratively by using a fixed point theorem.}, subject = {Angewandte Informatik}, language = {en} }