@inproceedings{EbertBucher2000, author = {Ebert, Matthias and Bucher, Christian}, title = {Modelling of changing of dynamic and static parameters of damaged R/C}, doi = {10.25643/bauhaus-universitaet.582}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-5825}, year = {2000}, abstract = {Dynamic testing for damage assessment as non-destructive method has attracted growing in-terest for systematic inspections and maintenance of civil engineering structures. In this con-text the paper presents the Stochastic Finite Element (SFE) Modeling of the static and dy-namic results of own four point bending experiments with R/C beams. The beams are dam-aged by an increasing load. Between the load levels the dynamic properties are determined. Calculated stiffness loss factors for the displacements and the natural frequencies show differ-ent histories. A FE Model for the beams is developed with a discrete crack formulation. Cor-related random fields are used for structural parameters stiffness and tension strength. The idea is to simulate different crack evolutions. The beams have the same design parameters, but because of the stochastic material properties their undamaged state isn't yet the same. As the structure is loaded a stochastic first crack occurs on the weakest place of the structure. The further crack evolution is also stochastic. These is a great advantage compared with de-terministic formulations. To reduce the computational effort of the Monte Carlo simulation of this nonlinear problem the Latin-Hypercube sampling technique is applied. From the results functions of mean value and standard deviation of displacements and frequencies are calcu-lated. Compared with the experimental results some qualitative phenomena are good de-scribed by the model. Differences occurs especially in the dynamic behavior of the higher load levels. Aim of the investigations is to assess the possibilities of dynamic testing under consideration of effects from stochastic material properties}, subject = {Stahlbetonbauteil}, language = {en} } @inproceedings{ChristovPetkov2000, author = {Christov, Christo T. and Petkov, Zdravko B.}, title = {DETERMINATION OF THE DYNAMIC STRESS INTENSITY FACTOR USING ADVANCED ENERGY RELEASE EVALUATION}, doi = {10.25643/bauhaus-universitaet.577}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-5770}, year = {2000}, abstract = {In this study a simple effective procedure practically based upon the FEM for determination of the dynamic stress intensity factor (DSIF) depending on the input frequency and using an advanced strain energy release evaluation by the simultaneous release of a set of fictitious nodal spring links near the crack tip is developed and applied. The DSIF is expressed in terms of the released energy per unit crack length. The formulations of the linear fracture mechanics are accepted. This technique is theoretically based upon the eigenvalue problem for assessment of the spring stiffnesses and on the modal decomposition of the crack shape. The inertial effects are included into the released energy. A linear elastic material, time-dependent loading of sine type and steady state response of the structure are assumed. The procedure allows the opening, sliding and mixed modes of the structure fracture to be studied. This rational and powerful technique requires a mesh refinement near the crack tip. A numerical test example of a square notched steel plate under tension is given. Opening mode of fracture is studied only. The DSIF is calculated using a coarse mesh and a single node release for the released energy computation as well a fine mesh and simultaneous release of four links for more accurate values. The results are analyzed. Comparisons with the known exact results from a static loading are presented. Conclusions are derived. The values of the DSIF are significantly larger than the values of the corresponding static SIF. Significant peaks of the DSIF are observed near the natural frequences. This approach is general, practicable, reliable and versatile.}, subject = {Bruchmechanik}, language = {en} } @article{MelnikovKadashevichSemenov1997, author = {Melnikov, B. E. and Kadashevich, I. Y. and Semenov, Artem}, title = {Damage of Metalworkses under the Complex Varying Loading}, doi = {10.25643/bauhaus-universitaet.540}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-5409}, year = {1997}, abstract = {The phenomenological and computational aspects of the various damage models applications for the low and multi cyclic fatigue processes are investigated. Damage is considered as internal state variable, describing macroscopic effects of the progressive material degradation, within the framework of continuum damage mechanics. Present analysis is restricted to the case of isotropic damage, which can be modeled by a scalar variable. The strain, force and power types of kinetic equations for the damage evolution description are considered. The original mixed strain-power type damage model is developed for taking into account the different physical fracture mechanism in monotone and cyclic loading. The constitutive equations of plastic flow theory coupled and uncoupled to damage has been considered. The rational algorithm of implementation into finite element code is considered for developed damage models. Set of the computational experiments has been carried out for the various structures (huge aerials, pipelines, fastening units, vessel of nuclear reactor) and cases of loading. The comparison of the predictions of the developed model with experimental data is performed for 1X18H10T steel tubular specimens for complex paths of loading and for complex profiles beams under cyclic loading. Damage field distribution is the basic information for the prediction of crack initiation in structures. The developed method of structural parameter for stress concentration zones is discussed for correcting of crack location. It allows to describe the crack initiation near surface domain as observe in numerous experiments.}, subject = {Stahlkonstruktion}, language = {en} } @inproceedings{Oeljeklaus2003, author = {Oeljeklaus, Michael}, title = {A Non-Modal Structural-Damage-Location Method and its Application}, doi = {10.25643/bauhaus-universitaet.339}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-3397}, year = {2003}, abstract = {The paper is about model based parameter identification and damage localization of elastomechanical systems using input and output measurements in the frequency domain. An adaptation of the Projective Input Residual Method to subsystem damage identification is presented. For this purpose the projected residuals were adapted with respect to a given subsystem to be analysed. Based on the gradients of these projected subsystem residuals a damage indicator was introduced which is sensitive to parameter changes and structural damages in this subsystem. Since the computations are done w.r.t. the smaller dimension of a subsystem this indicator shows a computational performance gain compared to the non-subsystem approach. This gain in efficiency makes the indicator applicable in online-monitoring and online-damage-diagnosis where continuous and fast data processing is required. The presented application of the indicator to a gantry robot could illustrate the ability of the indicator to indicate and locate real damage of a complex structure. Since in civil engineering applications the system input is often unknown, further investigations will focus on the output-only case since the generalization of the presented methods to this case will broaden its application spectrum.}, subject = {Bruchmechanik}, language = {en} } @inproceedings{MostBucher2003, author = {Most, Thomas and Bucher, Christian}, title = {Application of the "fictious crack model" to meshless crack growth simulations}, doi = {10.25643/bauhaus-universitaet.335}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-3359}, year = {2003}, abstract = {In this paper a meshless component is presented, which internally uses the common meshless interpolation technique >Moving Least Squares<. In contrast to usual meshless integration schemes like the cell quadrature and the nodal integration in this study integration zones with triangular geometry spanned by three nodes are used for 2D analysis. The boundary of the structure is defined by boundary nodes, which are similar to finite element nodes. By using the neighborhood relations of the integration zones an efficient search algorithm to detected the nodes in the influence of the integration points was developed. The components are directly coupled with finite elements by using a penalty method. An widely accepted model to describe the fracture behavior of concrete is the >Fictitious Crack Model< which is applied in this study, which differentiates between micro cracks and macro cracks, with and without force transmission over the crack surface, respectively. In this study the crack surface is discretized by node pairs in form of a polygon, which is part of the boundary. To apply the >Fictitious Crack Model< finite interface elements are included between the crack surface nodes. The determination of the maximum principal strain at the crack tip is done by introducing an influence area around the singularity. On a practical example it is shown that the included elements improve the model by the transmission of the surface forces during monotonic loading and by the representation of the contact forces of closed cracks during reverse loading.}, subject = {Bruchmechanik}, language = {en} } @inproceedings{KabelePokornyKoska2003, author = {Kabele, Petr and Pokorny, Tomas and Koska, Robert}, title = {Finite Element Analysis of Building Collapse during Demolition}, doi = {10.25643/bauhaus-universitaet.316}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-3162}, year = {2003}, abstract = {A computational strategy that employs a multi-level approach to model the physical phenomena that occur during a structural collapse is used to simulate demolition of a multi-story precast concrete building. The building is modeled by means of beam elements, whose rigidity relations have been derived from a fracture mechanics-based model of cracked RC panels and joints. The motion and deformation of the collapsing building are solved as a transient dynamic problem in the finite displacements/ rotations range. The presented approach appears as an efficient way to verify whether a proposed demolition method leads to the desired mechanism of building collapse. By simulating various blasting scenarios, the most suitable demolition procedure is identified.}, subject = {Geschossbau}, language = {en} }