@article{AhmadiBaghbanSadeghzadehetal., author = {Ahmadi, Mohammad Hossein and Baghban, Alireza and Sadeghzadeh, Milad and Zamen, Mohammad and Mosavi, Amir and Shamshirband, Shahaboddin and Kumar, Ravinder and Mohammadi-Khanaposhtani, Mohammad}, title = {Evaluation of electrical efficiency of photovoltaic thermal solar collector}, series = {Engineering Applications of Computational Fluid Mechanics}, volume = {2020}, journal = {Engineering Applications of Computational Fluid Mechanics}, number = {volume 14, issue 1}, publisher = {Taylor \& Francis}, doi = {10.1080/19942060.2020.1734094}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200304-41049}, pages = {545 -- 565}, abstract = {In this study, machine learning methods of artificial neural networks (ANNs), least squares support vector machines (LSSVM), and neuro-fuzzy are used for advancing prediction models for thermal performance of a photovoltaic-thermal solar collector (PV/T). In the proposed models, the inlet temperature, flow rate, heat, solar radiation, and the sun heat have been considered as the input variables. Data set has been extracted through experimental measurements from a novel solar collector system. Different analyses are performed to examine the credibility of the introduced models and evaluate their performances. The proposed LSSVM model outperformed the ANFIS and ANNs models. LSSVM model is reported suitable when the laboratory measurements are costly and time-consuming, or achieving such values requires sophisticated interpretations.}, subject = {Fotovoltaik}, language = {en} } @article{NabipourMosaviBaghbanetal., author = {Nabipour, Narjes and Mosavi, Amir and Baghban, Alireza and Shamshirband, Shahaboddin and Felde, Imre}, title = {Extreme Learning Machine-Based Model for Solubility Estimation of Hydrocarbon Gases in Electrolyte Solutions}, series = {Processes}, volume = {2020}, journal = {Processes}, number = {Volume 8, Issue 1, 92}, publisher = {MDPI}, doi = {10.3390/pr8010092}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200113-40624}, pages = {12}, abstract = {Calculating hydrocarbon components solubility of natural gases is known as one of the important issues for operational works in petroleum and chemical engineering. In this work, a novel solubility estimation tool has been proposed for hydrocarbon gases—including methane, ethane, propane, and butane—in aqueous electrolyte solutions based on extreme learning machine (ELM) algorithm. Comparing the ELM outputs with a comprehensive real databank which has 1175 solubility points yielded R-squared values of 0.985 and 0.987 for training and testing phases respectively. Furthermore, the visual comparison of estimated and actual hydrocarbon solubility led to confirm the ability of proposed solubility model. Additionally, sensitivity analysis has been employed on the input variables of model to identify their impacts on hydrocarbon solubility. Such a comprehensive and reliable study can help engineers and scientists to successfully determine the important thermodynamic properties, which are key factors in optimizing and designing different industrial units such as refineries and petrochemical plants.}, subject = {Maschinelles Lernen}, language = {en} }