@article{Makanae2004, author = {Makanae, Koji}, title = {Highway Sequence Editor based on the Length-based Highway Product Model}, doi = {10.25643/bauhaus-universitaet.234}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2347}, year = {2004}, abstract = {The highway product model based on the length information of the centerline, and the application system is developed. This paper shows the schema and the modeling process of the product model, which includes geometric elements such as an alignment, lanes, sidewalks, shoulders and sprits, and accessories such as guard fences, plantings and signs. Furthermore, The Highway Sequence Editor (HSE) is developed as an application system to verify the model.}, subject = {Produktmodell}, language = {en} } @inproceedings{WasserfuhrScherer1997, author = {Wasserfuhr, R. and Scherer, Raimar J.}, title = {Information Management in the Concurrent Design Process}, doi = {10.25643/bauhaus-universitaet.445}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-4456}, year = {1997}, abstract = {Former achievements for integrated information management have concentrated on interoperability of applications like e.g. CAD, structural analysis or facility management, based on product models introducing additional application independent model layers (core models). In the last years it has become clear, that besides interoperability of autonomous applications, the concurrent processes of model instantiation and evolution have to be modeled, including the relationship to available project resources, persons, legal requirements and communication infrastructure. This paper discusses some basic concepts for an emerging methodology relating the fields of product modeling, project management and workflow systems by elaborating the concept of a process model, which gives a decomposition of the project goals into executable activities. Integrated information management systems should be related to process models to detect pending activities, deadlocks and alternatives of execution. According to the heterogeneous nature of project communication processes, a method for dynamic classification of ad-hoc activities is suggested, that complements predefined highlevel process definitions. In a brief outline of the system architecture, we show how sophisticated information management systems can be broadly made available by using conventional Internet technologies.}, subject = {Informationsmanagement}, language = {en} } @article{NeubergFankEkkerlein2004, author = {Neuberg, Frank and Fank, Ernst and Ekkerlein, Christian}, title = {Integrated Life Cycle Simulation and Assessment of Buildings}, doi = {10.25643/bauhaus-universitaet.235}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2351}, year = {2004}, abstract = {Buildings require both for construction and, due to their comparatively long life cycle for maintenance, significant raw material and energy resources. So far available knowledge about resource consumption during an entire life cycle of a building is still quite rare, because various criteria affect each other and/or overlay mutually. In this contribution a model based software concept is presented using an integrated approach for life cycle simulation and assessment of buildings. The essential point of the development consists of connecting an IFC compliant product model of a building via the Internet with data bases for the resource and energy requirement of building materials. Furthermore, numerical simulations allow calculating and minimizing the energy consumption, the resource requirement, the waste streams and also the noxious emissions. In the context of this paper we present the first release of software programs for architects and engineers, which help them to evaluate their design decisions objectively in early planning steps. Additionally the usage of the software is demonstrated by a test case study for a real world building. By applying this software in practice a substantial contribution for saving energy and natural resources can be provided in the sense of sustainable and ecological building design.}, subject = {Produktmodell}, language = {en} } @article{KraftWilhelms2004, author = {Kraft, Bodo and Wilhelms, Nils}, title = {Interactive Distributed Knowledge Support for Conceptual Building Design}, doi = {10.25643/bauhaus-universitaet.209}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2094}, year = {2004}, abstract = {In our project, we develop new tools for the conceptual design phase. During conceptual design, the coarse functionality and organization of a building is more important than a detailed worked out construction. We identify two roles, first the knowledge engineer who is responsible for knowledge definition and maintenance; second the architect who elaborates the conceptual design. The tool for the knowledge engineer is based on graph technology, it is specified using PROGRES and the UPGRADE framework. The tools for the architect are integrated to the industrial CAD tool ArchiCAD. Consistency between knowledge and conceptual design is ensured by the constraint checker, another extension to ArchiCAD.}, subject = {Produktmodell}, language = {en} } @article{SchnellenbachHeldHartmann2004, author = {Schnellenbach-Held, Martina and Hartmann, Markus}, title = {Knowledge Based Systems in Distributed Desgin Environments}, doi = {10.25643/bauhaus-universitaet.210}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2106}, year = {2004}, abstract = {Today's building industry not only demands more and more reduced construction time on building site, but also an advanced and mostly construction attendant design phase. Even though there is software available to support design processes in distributed environments, most applications only support simple document based exchange of information. In this paper a knowledge based system is presented to support cooperative, comprehensive design processes in distributed environments. The presented research project is financially supported by the German Research Community (DFG - Deutsche Forschungsgemeinschaft).}, subject = {Produktmodell}, language = {en} } @article{VogelBreitMaerki2004, author = {Vogel, Manfred and Breit, Manfred and M{\"a}rki, Fabian}, title = {Optimization of 4D Process Planning using Genetic Algorithms}, doi = {10.25643/bauhaus-universitaet.236}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2360}, year = {2004}, abstract = {The presented work focuses on the presentation of a discrete event simulator which can be used for automated sequencing and optimization of building processes. The sequencing is based on the commonly used component-activity-resource relations taking structural and process constraints into account. For the optimization a genetic algorithm approach was developed, implemented and successfully applied to several real life steel constructions. In this contribution we discuss the application of the discrete event simulator including its optimization capabilities on a 4D process model of a steel structure of an automobile recycling facility.}, subject = {Produktmodell}, language = {en} } @article{ShihLee2004, author = {Shih, Naai-Jung and Lee, Wen-Pang}, title = {Particle Simulation and Evaluation of Personal Exposure to Contaminant Sources in an Elevation Space}, doi = {10.25643/bauhaus-universitaet.237}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2376}, year = {2004}, abstract = {An elevator, which figures a small volume, is normally used by everyone for a short period of time and equipped with simple ventilation system..Any contaminant released within it may cause serious problem. This research adapt a fire and smoke simulation software (FDS) into non-fire indoor airflow scario. Differently from previous research, particles are chosen as a risk evalution unit. A personal and multi-personal exposure model is proposed. The model takes the influence of the human thermal boundary, coughing, inhalation, exhalation, standing position, and the fan factor into account. The model is easy-to-use and suitable for the design of elevator system in practice.}, subject = {Produktmodell}, language = {en} } @article{GaoWuRen2004, author = {Gao, Zuoren and Wu, Weiyu and Ren, Aizhu}, title = {Physically Based Modeling and Multi-Physical Simulation System for Wood Structure Fire Performance}, doi = {10.25643/bauhaus-universitaet.238}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2381}, year = {2004}, abstract = {This research is devoted to promoting the performance-based engineering in wood structure fire. It looks into the characteristic of the material, structural composing and collapse detecting to find out the main factors in the wood structure collapse in fire. The aim of the research is to provide an automatic simulation platform for the complicated circulation. A physically based model for slim member for beams and columns and a frame of multi-physical simulation are provided to implement the system. The physically based model contains material model, structural mechanics model, material mechanics model, as well as geometry model for the compositive simulation. The multi-physical simulation is built on the model and has the capacity to carry out a simulation combining structural, fire (thermal, CFD) and material degradation simulation. The structural and fire simulation rely on two sophisticated software respectively, ANSYS (an FEA software) and FDS (with a core of CFD). Researchers of the paper develop system by themselves to combine the two existing ones. The system has the capability to calculate the wood char to find out the loss of cross-section and to detect the collapse caused in different ways. The paper gives a sample of Chinese traditional house to show how this simulation system works.}, subject = {Produktmodell}, language = {en} } @article{KangMiranda2004, author = {Kang, Shihchung and Miranda, Eduardo}, title = {Physics Based Model for Simulating the Dynamics of Tower Cranes}, doi = {10.25643/bauhaus-universitaet.240}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2409}, year = {2004}, abstract = {The goal of the research is to increase the understanding of dynamic behaviors during the crane operation, and develops computer-aided methods to improve the training of crane operators. There are approximately 125,000 cranes in operation today in the construction industry, responsible for major portion of erection activities. Unfortunately, many accidents occur every year in the U.S. and other countries related to the operation of cranes in construction sites. For example on November 28, 1989 a tower crane collapse during the construction of a building in San Francisco killing four construction workers, one civilian and injuring 28. According to the statistics from Occupational Safety Health Administration (OSHA), there were 137 crane-related fatalities from 1992 to 2001 in the US. A well-known internet website that keeps track of crane-related accidents (craneaccidents.com), reports 516 accidents and 277 fatalities from 2000 to 2002. These statistics show that even though many measures have been taken to decrease the number of crane-related accidents (Braam, 2002), the number of crane related accidents is still very large. It is important to recognize that each construction related fatality is not only a great human loss but also increases the costs of insurance, lawsuits, and the construction budget due to delay of a project (Paulson 1992)...}, subject = {Produktmodell}, language = {en} } @article{HoltzhauerSaal2004, author = {Holtzhauer, Eric and Saal, Helmut}, title = {Product modelling in the steel construction domain}, doi = {10.25643/bauhaus-universitaet.241}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2415}, year = {2004}, abstract = {The complexity of the relationships between the actors of a building project requires high efficiency in communication. Among other things, data sharing is crucial. The exchange of data is made possible by interfaces between expert programs, which rely on product models. The latter are neutral standards with formal definitions of building objects and their attributes. This paper deals with the state of the art and the research activities concerning product models in the steel construction domain and the advantages provided by this technology for the sector.}, subject = {Produktmodell}, language = {en} }