@article{HarirchianLahmerBuddhirajuetal., author = {Harirchian, Ehsan and Lahmer, Tom and Buddhiraju, Sreekanth and Mohammad, Kifaytullah and Mosavi, Amir}, title = {Earthquake Safety Assessment of Buildings through Rapid Visual Screening}, series = {Buildings}, volume = {2020}, journal = {Buildings}, number = {Volume 10, Issue 3}, publisher = {MDPI}, doi = {10.3390/buildings10030051}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200331-41153}, pages = {15}, abstract = {Earthquake is among the most devastating natural disasters causing severe economical, environmental, and social destruction. Earthquake safety assessment and building hazard monitoring can highly contribute to urban sustainability through identification and insight into optimum materials and structures. While the vulnerability of structures mainly depends on the structural resistance, the safety assessment of buildings can be highly challenging. In this paper, we consider the Rapid Visual Screening (RVS) method, which is a qualitative procedure for estimating structural scores for buildings suitable for medium- to high-seismic cases. This paper presents an overview of the common RVS methods, i.e., FEMA P-154, IITK-GGSDMA, and EMPI. To examine the accuracy and validation, a practical comparison is performed between their assessment and observed damage of reinforced concrete buildings from a street survey in the Bing{\"o}l region, Turkey, after the 1 May 2003 earthquake. The results demonstrate that the application of RVS methods for preliminary damage estimation is a vital tool. Furthermore, the comparative analysis showed that FEMA P-154 creates an assessment that overestimates damage states and is not economically viable, while EMPI and IITK-GGSDMA provide more accurate and practical estimation, respectively.}, subject = {Maschinelles Lernen}, language = {en} } @article{IşıkBueyueksaracLeventEkincietal., author = {I{\c{s}}{\i}k, Ercan and B{\"u}y{\"u}ksara{\c{c}}, Ayd{\i}n and Levent Ekinci, Yunus and Ayd{\i}n, Mehmet Cihan and Harirchian, Ehsan}, title = {The Effect of Site-Specific Design Spectrum on Earthquake-Building Parameters: A Case Study from the Marmara Region (NW Turkey)}, series = {Applied Sciences}, volume = {2020}, journal = {Applied Sciences}, number = {Volume 10, issue 20, article 7247}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app10207247}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20201022-42758}, pages = {23}, abstract = {The Marmara Region (NW Turkey) has experienced significant earthquakes (M > 7.0) to date. A destructive earthquake is also expected in the region. To determine the effect of the specific design spectrum, eleven provinces located in the region were chosen according to the Turkey Earthquake Building Code updated in 2019. Additionally, the differences between the previous and updated regulations of the country were investigated. Peak Ground Acceleration (PGA) and Peak Ground Velocity (PGV) were obtained for each province by using earthquake ground motion levels with 2\%, 10\%, 50\%, and 68\% probability of exceedance in 50-year periods. The PGA values in the region range from 0.16 to 0.7 g for earthquakes with a return period of 475 years. For each province, a sample of a reinforced-concrete building having two different numbers of stories with the same ground and structural characteristics was chosen. Static adaptive pushover analyses were performed for the sample reinforced-concrete building using each province's design spectrum. The variations in the earthquake and structural parameters were investigated according to different geographical locations. It was determined that the site-specific design spectrum significantly influences target displacements for performance-based assessments of buildings due to seismicity characteristics of the studied geographic location.}, subject = {Erdbeben}, language = {en} }