@article{DehghaniSalehiMosavietal., author = {Dehghani, Majid and Salehi, Somayeh and Mosavi, Amir and Nabipour, Narjes and Shamshirband, Shahaboddin and Ghamisi, Pedram}, title = {Spatial Analysis of Seasonal Precipitation over Iran: Co-Variation with Climate Indices}, series = {ISPRS, International Journal of Geo-Information}, volume = {2020}, journal = {ISPRS, International Journal of Geo-Information}, number = {Volume 9, Issue 2, 73}, publisher = {MDPI}, doi = {10.3390/ijgi9020073}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200128-40740}, pages = {23}, abstract = {Temporary changes in precipitation may lead to sustained and severe drought or massive floods in different parts of the world. Knowing the variation in precipitation can effectively help the water resources decision-makers in water resources management. Large-scale circulation drivers have a considerable impact on precipitation in different parts of the world. In this research, the impact of El Ni{\~n}o-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and North Atlantic Oscillation (NAO) on seasonal precipitation over Iran was investigated. For this purpose, 103 synoptic stations with at least 30 years of data were utilized. The Spearman correlation coefficient between the indices in the previous 12 months with seasonal precipitation was calculated, and the meaningful correlations were extracted. Then, the month in which each of these indices has the highest correlation with seasonal precipitation was determined. Finally, the overall amount of increase or decrease in seasonal precipitation due to each of these indices was calculated. Results indicate the Southern Oscillation Index (SOI), NAO, and PDO have the most impact on seasonal precipitation, respectively. Additionally, these indices have the highest impact on the precipitation in winter, autumn, spring, and summer, respectively. SOI has a diverse impact on winter precipitation compared to the PDO and NAO, while in the other seasons, each index has its special impact on seasonal precipitation. Generally, all indices in different phases may decrease the seasonal precipitation up to 100\%. However, the seasonal precipitation may increase more than 100\% in different seasons due to the impact of these indices. The results of this study can be used effectively in water resources management and especially in dam operation.}, subject = {Maschinelles Lernen}, language = {en} } @article{AmirinasabShamshirbandChronopoulosetal., author = {Amirinasab, Mehdi and Shamshirband, Shahaboddin and Chronopoulos, Anthony Theodore and Mosavi, Amir and Nabipour, Narjes}, title = {Energy-Efficient Method for Wireless Sensor Networks Low-Power Radio Operation in Internet of Things}, series = {electronics}, volume = {2020}, journal = {electronics}, number = {volume 9, issue 2, 320}, publisher = {MDPI}, doi = {10.3390/electronics9020320}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200213-40954}, pages = {20}, abstract = {The radio operation in wireless sensor networks (WSN) in Internet of Things (IoT)applications is the most common source for power consumption. Consequently, recognizing and controlling the factors affecting radio operation can be valuable for managing the node power consumption. Among essential factors affecting radio operation, the time spent for checking the radio is of utmost importance for monitoring power consumption. It can lead to false WakeUp or idle listening in radio duty cycles and ContikiMAC. ContikiMAC is a low-power radio duty-cycle protocol in Contiki OS used in WakeUp mode, as a clear channel assessment (CCA) for checking radio status periodically. This paper presents a detailed analysis of radio WakeUp time factors of ContikiMAC. Furthermore, we propose a lightweight CCA (LW-CCA) as an extension to ContikiMAC to reduce the Radio Duty-Cycles in false WakeUps and idle listening though using dynamic received signal strength indicator (RSSI) status check time. The simulation results in the Cooja simulator show that LW-CCA reduces about 8\% energy consumption in nodes while maintaining up to 99\% of the packet delivery rate (PDR).}, subject = {Internet der Dinge}, language = {en} } @article{AhmadiBaghbanSadeghzadehetal., author = {Ahmadi, Mohammad Hossein and Baghban, Alireza and Sadeghzadeh, Milad and Zamen, Mohammad and Mosavi, Amir and Shamshirband, Shahaboddin and Kumar, Ravinder and Mohammadi-Khanaposhtani, Mohammad}, title = {Evaluation of electrical efficiency of photovoltaic thermal solar collector}, series = {Engineering Applications of Computational Fluid Mechanics}, volume = {2020}, journal = {Engineering Applications of Computational Fluid Mechanics}, number = {volume 14, issue 1}, publisher = {Taylor \& Francis}, doi = {10.1080/19942060.2020.1734094}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200304-41049}, pages = {545 -- 565}, abstract = {In this study, machine learning methods of artificial neural networks (ANNs), least squares support vector machines (LSSVM), and neuro-fuzzy are used for advancing prediction models for thermal performance of a photovoltaic-thermal solar collector (PV/T). In the proposed models, the inlet temperature, flow rate, heat, solar radiation, and the sun heat have been considered as the input variables. Data set has been extracted through experimental measurements from a novel solar collector system. Different analyses are performed to examine the credibility of the introduced models and evaluate their performances. The proposed LSSVM model outperformed the ANFIS and ANNs models. LSSVM model is reported suitable when the laboratory measurements are costly and time-consuming, or achieving such values requires sophisticated interpretations.}, subject = {Fotovoltaik}, language = {en} } @article{AbbaspourGilandehMolaeeSabzietal., author = {Abbaspour-Gilandeh, Yousef and Molaee, Amir and Sabzi, Sajad and Nabipour, Narjes and Shamshirband, Shahaboddin and Mosavi, Amir}, title = {A Combined Method of Image Processing and Artificial Neural Network for the Identification of 13 Iranian Rice Cultivars}, series = {agronomy}, volume = {2020}, journal = {agronomy}, number = {Volume 10, Issue 1, 117}, publisher = {MDPI}, doi = {10.3390/agronomy10010117}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200123-40695}, pages = {21}, abstract = {Due to the importance of identifying crop cultivars, the advancement of accurate assessment of cultivars is considered essential. The existing methods for identifying rice cultivars are mainly time-consuming, costly, and destructive. Therefore, the development of novel methods is highly beneficial. The aim of the present research is to classify common rice cultivars in Iran based on color, morphologic, and texture properties using artificial intelligence (AI) methods. In doing so, digital images of 13 rice cultivars in Iran in three forms of paddy, brown, and white are analyzed through pre-processing and segmentation of using MATLAB. Ninety-two specificities, including 60 color, 14 morphologic, and 18 texture properties, were identified for each rice cultivar. In the next step, the normal distribution of data was evaluated, and the possibility of observing a significant difference between all specificities of cultivars was studied using variance analysis. In addition, the least significant difference (LSD) test was performed to obtain a more accurate comparison between cultivars. To reduce data dimensions and focus on the most effective components, principal component analysis (PCA) was employed. Accordingly, the accuracy of rice cultivar separations was calculated for paddy, brown rice, and white rice using discriminant analysis (DA), which was 89.2\%, 87.7\%, and 83.1\%, respectively. To identify and classify the desired cultivars, a multilayered perceptron neural network was implemented based on the most effective components. The results showed 100\% accuracy of the network in identifying and classifying all mentioned rice cultivars. Hence, it is concluded that the integrated method of image processing and pattern recognition methods, such as statistical classification and artificial neural networks, can be used for identifying and classification of rice cultivars.}, subject = {Maschinelles Lernen}, language = {en} }