@phdthesis{Jaouadi, author = {Jaouadi, Zouhour}, title = {Pareto and Reliability-Oriented Aeroelastic Shape Optimization of Bridge Decks}, doi = {10.25643/bauhaus-universitaet.4935}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230303-49352}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {167}, abstract = {Due to the development of new technologies and materials, optimized bridge design has recently gained more attention. The aim is to reduce the bridge components materials and the CO2 emission from the cement manufacturing process. Thus, most long-span bridges are designed to be with high flexibility, low structural damping, and longer and slender spans. Such designs lead, however, to aeroelastic challenges. Moreover, the consideration of both the structural and aeroelastic behavior in bridges leads to contradictory solutions as the structural constraints lead to deck prototypes with high depth which provide high inertia to material volume ratios. On the other hand, considering solely the aerodynamic requirements, slender airfoil-shaped bridge box girders are recommended since they prevent vortex shedding and exhibit minimum drag. Within this framework comes this study which provides approaches to find optimal bridge deck cross-sections while considering the aerodynamic effects. Shape optimization of deck cross-section is usually formulated to minimize the amount of material by finding adequate parameters such as the depth, the height, and the thickness and while ensuring the overall stability of the structure by the application of some constraints. Codes and studies have been implemented to analyze the wind phenomena and the structural responses towards bridge deck cross-sections where simplifications have been adopted due to the complexity and the uniqueness of such components besides the difficulty of obtaining a final model of the aerodynamic behavior. In this thesis, two main perspectives have been studied; the first is fully deterministic and presents a novel framework on generating optimal aerodynamic shapes for streamlined and trapezoidal cross-sections based on the meta-modeling approach. Single and multi-objective optimizations were both carried out and a Pareto Front is generated. The performance of the optimal designs is checked afterwards. In the second part, a new strategy based on Reliability-Based Design Optimization (RBDO) to mitigate the vortex-induced vibration (VIV) on the Trans-Tokyo Bay bridge is proposed. Small changes in the leading and trailing edges are presented and uncertainties are considered in the structural system. Probabilistic constraints based on polynomial regression are evaluated and the problem is solved while applying the Reliability Index Approach (RIA) and the Performance Measure Approach (PMA). The results obtained in the first part showed that the aspect ratio has a significant effect on the aerodynamic behavior where deeper cross-sections have lower resistance against flutter and should be avoided. In the second part, the adopted RBDO approach succeeded to mitigate the VIV, and it is proven that designs with narrow or prolonged bottom-base length and featuring an abrupt surface change in the leading and trailing edges can lead to high vertical vibration amplitude. It is expected that this research will help engineers with the selections of the adequate deck cross-section layout, and encourage researchers to apply concepts of optimization regarding this field and develop the presented approaches for further studies.}, subject = {Gestaltoptimierung}, language = {en} } @phdthesis{Alkam, author = {Alkam, Feras}, title = {Vibration-based Monitoring of Concrete Catenary Poles using Bayesian Inference}, volume = {2021}, publisher = {Bauhaus-Universit{\"a}tsverlag}, address = {Weimar}, doi = {10.25643/bauhaus-universitaet.4433}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210526-44338}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {177}, abstract = {This work presents a robust status monitoring approach for detecting damage in cantilever structures based on logistic functions. Also, a stochastic damage identification approach based on changes of eigenfrequencies is proposed. The proposed algorithms are verified using catenary poles of electrified railways track. The proposed damage features overcome the limitation of frequency-based damage identification methods available in the literature, which are valid to detect damage in structures to Level 1 only. Changes in eigenfrequencies of cantilever structures are enough to identify possible local damage at Level 3, i.e., to cover damage detection, localization, and quantification. The proposed algorithms identified the damage with relatively small errors, even at a high noise level.}, subject = {Parameteridentifikation}, language = {en} } @misc{vonButler, type = {Master Thesis}, author = {von Butler, Natalie}, title = {Scalarization Methods for Multi-Objective Structural Optimization}, doi = {10.25643/bauhaus-universitaet.4010}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20191030-40106}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {178}, abstract = {Scalarization methods are a category of multiobjective optimization (MOO) methods. These methods allow the usage of conventional single objective optimization algorithms, as scalarization methods reformulate the MOO problem into a single objective optimization problem. The scalarization methods analysed within this thesis are the Weighted Sum (WS), the Epsilon-Constraint (EC), and the MinMax (MM) method. After explaining the approach of each method, the WS, EC and MM are applied, a-posteriori, to three different examples: to the Kursawe function; to the ten bar truss, a common benchmark problem in structural optimization; and to the metamodel of an aero engine exit module. The aim is to evaluate and compare the performance of each scalarization method that is examined within this thesis. The evaluation is conducted using performance metrics, such as the hypervolume and the generational distance, as well as using visual comparison. The application to the three examples gives insight into the advantages and disadvantages of each method, and provides further understanding of an adequate application of the methods concerning high dimensional optimization problems.}, subject = {Mehrkriterielle Optimierung}, language = {en} } @article{AlaladeNguyenTuanWuttkeetal., author = {Alalade, Muyiwa and Nguyen-Tuan, Long and Wuttke, Frank and Lahmer, Tom}, title = {Damage identification in gravity dams using dynamic coupled hydro-mechanical XFEM}, series = {International Journal of Mechanics and Materials in Design}, journal = {International Journal of Mechanics and Materials in Design}, doi = {10.25643/bauhaus-universitaet.3596}, pages = {1 -- 19}, abstract = {Damage identification in gravity dams using dynamic coupled hydro-mechanical XFEM.}, subject = {Angewandte Mathematik}, language = {en} } @article{KaltenbacherLahmerMohretal., author = {Kaltenbacher, Barbara and Lahmer, Tom and Mohr, Marcus and Kaltenbacher, Manfred}, title = {PDE based determination of piezoelectric material tensors}, series = {European Journal of Applied Mathematics}, journal = {European Journal of Applied Mathematics}, doi = {10.25643/bauhaus-universitaet.3595}, pages = {383 -- 416}, abstract = {PDE based determination of piezoelectric material tensors.}, subject = {Angewandte Mathematik}, language = {en} } @article{LahmerKaltenbacherKaltenbacheretal., author = {Lahmer, Tom and Kaltenbacher, Manfred and Kaltenbacher, Barbara and Lerch, Reinhard and Leder, Erich}, title = {Fem-based determination of real and complex elastic, dielectric, and piezoelectric moduli in piezoceramic materials}, series = {IEEE transactions on ultrasonics, ferroelectrics, and frequency control}, journal = {IEEE transactions on ultrasonics, ferroelectrics, and frequency control}, doi = {10.25643/bauhaus-universitaet.3594}, abstract = {Fem-based determination of real and complex elastic, dielectric, and piezoelectric moduli in piezoceramic materials.}, subject = {Angewandte Mathematik}, language = {en} } @article{LahmerKaltenbacherSchulz, author = {Lahmer, Tom and Kaltenbacher, Barbara and Schulz, V.}, title = {Optimal measurement selection for piezoelectric material tensor identification}, series = {Inverse Problems in Science and Engineering}, journal = {Inverse Problems in Science and Engineering}, doi = {10.25643/bauhaus-universitaet.3593}, pages = {369 -- 387}, abstract = {Optimal measurement selection for piezoelectric material tensor identification.}, subject = {Angewandte Mathematik}, language = {en} } @article{Lahmer, author = {Lahmer, Tom}, title = {Modified Landweber iterations in a multilevel algorithm applied to inverse problems in piezoelectricity}, series = {Journal of Inverse and Ill-posed Problems}, journal = {Journal of Inverse and Ill-posed Problems}, pages = {585 -- 593}, abstract = {Modified Landweber iterations in a multilevel algorithm applied to inverse problems in piezoelectricity}, subject = {Angewandte Mathematik}, language = {en} } @article{HauckLahmerKaltenbacher, author = {Hauck, A. and Lahmer, Tom and Kaltenbacher, Manfred}, title = {Enhanced homogenization technique for magnetomechanical systems using the generalized finite element method}, series = {COMPEL: The international journal for computation and mathematics in electrical and electronic engineering}, journal = {COMPEL: The international journal for computation and mathematics in electrical and electronic engineering}, pages = {935 -- 947}, abstract = {Enhanced homogenization technique for magnetomechanical systems using the generalized finite element method}, subject = {Angewandte Mathematik}, language = {en} } @article{LahmerKoenkeBettzieche, author = {Lahmer, Tom and K{\"o}nke, Carsten and Bettzieche, Volker}, title = {Optimal positioning of sensors for the monitoring of water dams}, series = {WASSERWIRTSCHAFT}, journal = {WASSERWIRTSCHAFT}, pages = {16 -- 19}, abstract = {Optimal positioning of sensors for the monitoring of water dams}, subject = {Angewandte Mathematik}, language = {de} }