@phdthesis{Zacharias, author = {Zacharias, Christin}, title = {Numerical Simulation Models for Thermoelastic Damping Effects}, doi = {10.25643/bauhaus-universitaet.4735}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20221116-47352}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {191}, abstract = {Finite Element Simulations of dynamically excited structures are mainly influenced by the mass, stiffness, and damping properties of the system, as well as external loads. The prediction quality of dynamic simulations of vibration-sensitive components depends significantly on the use of appropriate damping models. Damping phenomena have a decisive influence on the vibration amplitude and the frequencies of the vibrating structure. However, developing realistic damping models is challenging due to the multiple sources that cause energy dissipation, such as material damping, different types of friction, or various interactions with the environment. This thesis focuses on thermoelastic damping, which is the main cause of material damping in homogeneous materials. The effect is caused by temperature changes due to mechanical strains. In vibrating structures, temperature gradients arise in adjacent tension and compression areas. Depending on the vibration frequency, they result in heat flows, leading to increased entropy and the irreversible transformation of mechanical energy into thermal energy. The central objective of this thesis is the development of efficient simulation methods to incorporate thermoelastic damping in finite element analyses based on modal superposition. The thermoelastic loss factor is derived from the structure's mechanical mode shapes and eigenfrequencies. In subsequent analyses that are performed in the time and frequency domain, it is applied as modal damping. Two approaches are developed to determine the thermoelastic loss in thin-walled plate structures, as well as three-dimensional solid structures. The realistic representation of the dissipation effects is verified by comparing the simulation results with experimentally determined data. Therefore, an experimental setup is developed to measure material damping, excluding other sources of energy dissipation. The three-dimensional solid approach is based on the determination of the generated entropy and therefore the generated heat per vibration cycle, which is a measure for thermoelastic loss in relation to the total strain energy. For thin plate structures, the amount of bending energy in a modal deformation is calculated and summarized in the so-called Modal Bending Factor (MBF). The highest amount of thermoelastic loss occurs in the state of pure bending. Therefore, the MBF enables a quantitative classification of the mode shapes concerning the thermoelastic damping potential. The results of the developed simulations are in good agreement with the experimental results and are appropriate to predict thermoelastic loss factors. Both approaches are based on modal superposition with the advantage of a high computational efficiency. Overall, the modeling of thermoelastic damping represents an important component in a comprehensive damping model, which is necessary to perform realistic simulations of vibration processes.}, subject = {Werkstoffd{\"a}mpfung}, language = {en} } @phdthesis{Will1999, author = {Will, Johannes}, title = {Beitrag zur Standsicherheitsberechnung im gekl{\"u}fteten Fels in der Kontinuums- und Diskontinuumsmechanik unter Verwendung impliziter und expliziter Berechnungsstrategien}, doi = {10.25643/bauhaus-universitaet.58}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20040310-613}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {1999}, subject = {Staumauer}, language = {de} } @phdthesis{Schwedler, author = {Schwedler, Michael}, title = {Integrated structural analysis using isogeometric finite element methods}, doi = {10.25643/bauhaus-universitaet.2737}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170130-27372}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {209}, abstract = {The gradual digitization in the architecture, engineering, and construction industry over the past fifty years led to an extremely heterogeneous software environment, which today is embodied by the multitude of different digital tools and proprietary data formats used by the many specialists contributing to the design process in a construction project. Though these projects become increasingly complex, the demands on financial efficiency and the completion within a tight schedule grow at the same time. The digital collaboration of project partners has been identified as one key issue in successfully dealing with these challenges. Yet currently, the numerous software applications and their respective individual views on the design process severely impede that collaboration. An approach to establish a unified basis for the digital collaboration, regardless of the existing software heterogeneity, is a comprehensive digital building model contributed to by all projects partners. This type of data management known as building information modeling (BIM) has many benefits, yet its adoption is associated with many difficulties and thus, proceeds only slowly. One aspect in the field of conflicting requirements on such a digital model is the cooperation of architects and structural engineers. Traditionally, these two disciplines use different abstractions of reality for their models that in consequence lead to incompatible digital representations thereof. The onset of isogeometric analysis (IGA) promised to ease the discrepancy in design and analysis model representations. Yet, that initial focus quickly shifted towards using these methods as a more powerful basis for numerical simulations. Furthermore, the isogeometric representation alone is not capable of solving the model abstraction problem. It is thus the intention of this work to contribute to an improved digital collaboration of architects and engineers by exploring an integrated analysis approach on the basis of an unified digital model and solid geometry expressed by splines. In the course of this work, an analysis framework is developed that utilizes such models to automatically conduct numerical simulations commonly required in construction projects. In essence, this allows to retrieve structural analysis results from BIM models in a fast and simple manner, thereby facilitating rapid design iterations and profound design feedback. The BIM implementation Industry Foundation Classes (IFC) is reviewed with regard to its capabilities of representing the unified model. The current IFC schema strongly supports the use of redundant model data, a major pitfall in digital collaboration. Additionally, it does not allow to describe the geometry by volumetric splines. As the pursued approach builds upon a unique model for both, architectural and structural design, and furthermore requires solid geometry, necessary schema modifications are suggested. Structural entities are modeled by volumetric NURBS patches, each of which constitutes an individual subdomain that, with regard to the analysis, is incompatible with the remaining full model. The resulting consequences for numerical simulation are elaborated in this work. The individual subdomains have to be weakly coupled, for which the mortar method is used. Different approaches to discretize the interface traction fields are implemented and their respective impact on the analysis results is evaluated. All necessary coupling conditions are automatically derived from the related geometry model. The weak coupling procedure leads to a linear system of equations in saddle point form, which, owed to the volumetric modeling, is large in size and, the associated coefficient matrix has, due to the use of higher degree basis functions, a high bandwidth. The peculiarities of the system require adapted solution methods that generally cause higher numerical costs than the standard procedures for symmetric, positive-definite systems do. Different methods to solve the specific system are investigated and an efficient parallel algorithm is finally proposed. When the structural analysis model is derived from the unified model in the BIM data, it does in general initially not meet the requirements on the discretization that are necessary to obtain sufficiently accurate analysis results. The consequently necessary patch refinements must be controlled automatically to allowfor an entirely automatic analysis procedure. For that purpose, an empirical refinement scheme based on the geometrical and possibly mechanical properties of the specific entities is proposed. The level of refinement may be selectively manipulated by the structural engineer in charge. Furthermore, a Zienkiewicz-Zhu type error estimator is adapted for the use with isogeometric analysis results. It is shown that also this estimator can be used to steer an adaptive refinement procedure.}, subject = {Finite-Elemente-Methode}, language = {en} } @phdthesis{Schorling1997, author = {Schorling, York}, title = {Beitrag zur Stabilit{\"a}tsuntersuchung von Strukturen mit r{\"a}umlich korrelierten geometrischen Imperfektionen}, doi = {10.25643/bauhaus-universitaet.29}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20040216-317}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {1997}, abstract = {F{\"u}r geometrisch imperfekte Strukturen wird die Versagenswahrscheinlichkeit bez{\"u}glich Stabilit{\"a}tskriterien bestimmt. Eine probabilistische Beschreibung der geometrischen Imperfektionen erfolgt mit skalaren ortsdiskretisierten Zufallsfeldern. Die Stabilit{\"a}tsberechnungen werden mit der Finite Elemente Methode durchgef{\"u}hrt. Ausgangspunkt der Berechnung ist eine systematische Formulierung probabilistisch gewichteter Imperfektionsformen durch eine Eigenwertzerlegung der Kovarianzmatrix. Wenn mit einer strukturmechanisch orientierten Sensitivit{\"a}tsanalyse ein Unterraum zur n{\"a}herungsweisen Beschreibung des probabilistischen Strukturverhaltens gefunden wird, kann die Versagenswahrscheinlichkeit numerisch sehr effizient durch ein Interaktionsmodell bestimmt werden. Es zeigte sich, daß dies genau dann m{\"o}glich ist, wenn die Beulform merklich im Imperfektionsfeld enthalten ist. Die Imperfektionsform am Bemessungspunkt entspricht dann, unabh{\"a}ngig vom Lastniveau, gerade der Beulform. Wenn die Beulform im Imperfektionsfeld einen untergeordneten Beitrag liefert, erscheint eine Reduktion des stochastischen Problems auf wenige Zufallsvariablen dagegen nicht m{\"o}glich.}, subject = {Tragwerk}, language = {de} } @phdthesis{Roos2001, author = {Roos, Dirk}, title = {Approximation und Interpolation von Grenzzustandsfunktionen zur Sicherheitsbewertung nichtlinearer Finite-Elemente-Strukturen}, doi = {10.25643/bauhaus-universitaet.71}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20040311-745}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2001}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit der Berechnung der Sicherheit von Strukturen mit sowohl geometrisch als auch physikalisch nichtlinearem Verhalten. Die Berechnung der Versagenswahrscheinlichkeit einer Struktur mit Hilfe von Monte-Carlo-Simulationsmethoden erfordert, dass die Funktion der Strukturantwort implizit berechnet wird, zum Beispiel durch nichtlineare Strukturanalysen f{\"u}r jede Realisation der Zufallsvariablen. Die Strukturanalysen bilden jedoch den Hauptanteil am Berechnungsaufwand der Zuverl{\"a}ssigkeitsanalyse, so dass die Analyse von realistischen Strukturen mit nichtlinearem Verhalten durch die begrenzten Computer-Ressourcen stark eingeschr{\"a}nkt ist. Die klassischen Antwortfl{\"a}chenverfahren approximieren die Funktion der Strukturantwort oder aber die Grenzzustandsfunktion durch Polynome niedriger Ordnung. Dadurch ist f{\"u}r die Auswertung des Versagens-Kriteriums nur noch von Interesse, ob eine Realisation der Basisvariablen innerhalb oder außerhalb des von der Antwortfl{\"a}chenfunktion gebildeten Raumes liegt - die Strukturanalyse kann dann entfallen. Bei stark nichtlinearen Grenzzustandsfunktionen versagt die polynomiale Approximation. Das directional sampling neigt bei Problemen mit vielen Zufallsvariablen zu einem systematischen Fehler. Das adaptive importance directional sampling dagegen beseitigt diesen Fehler, verschenkt jedoch Informationen {\"u}ber den Verlauf der Grenzzustandsfunktion, da die aufgefundenen St{\"u}tzstellen aus den vorangegangenen Simulationsl{\"a}ufen nicht ber{\"u}cksichtigt werden k{\"o}nnen. Aus diesem Grund erscheint eine Kombination beider Simulationsverfahren und eine Interpolation mittels einer Antwortfl{\"a}che geeignet, diese Probleme zu l{\"o}sen. Dies war die Motivation f{\"u}r die Entwicklung eines Verfahren der adaptiven Simulation der Einheitsvektoren und anschließender Interpolation der Grenzzustandsfunktion durch eine Antwortfl{\"a}chenfunktion. Dieses Vorgehen stellt besondere Anforderungen an die Antwortfl{\"a}chenfunktion. Diese muss flexibel genug sein, um stark nichtlineare Grenzzustandsfunktionen beliebig genau ann{\"a}hern zu k{\"o}nnen. Außerdem sollte die Anzahl der verarbeitbaren St{\"u}tzstellen nicht begrenzt sein. Auch ist zu ber{\"u}cksichtigen, dass die Ermittlung der St{\"u}tzstellen auf der Grenzzustandsfunktion nicht regelm{\"a}ßig erfolgt. Die in dieser Arbeit entwickelten Methoden der lokalen Interpolation der Grenzzustandsfunktion durch Normalen-Hyperebenen bzw. sekantialen Hyperebenen und der sowohl lokalen als auch globalen Interpolation durch gewichtete Radien erf{\"u}llen diese Anforderungen. ungen. dieser Arbeit entwickelten Methoden der lokalen Interpolation der Grenzzustandsfunktion durch Normalen-Hyperebenen bzw. sekantialen Hyperebenen und der sowohl lokalen als auch globalen Interpolation durch gewichtete Radien erf{\"u}llen diese Anforderungen.}, subject = {Tragwerk}, language = {de} } @phdthesis{Nanthakumar, author = {Nanthakumar, S.S.}, title = {Inverse and optimization problems in piezoelectric materials using Extended Finite Element Method and Level sets}, doi = {10.25643/bauhaus-universitaet.2709}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20161128-27095}, school = {Bauhaus-Universit{\"a}t Weimar}, abstract = {Piezoelectric materials are used in several applications as sensors and actuators where they experience high stress and electric field concentrations as a result of which they may fail due to fracture. Though there are many analytical and experimental works on piezoelectric fracture mechanics. There are very few studies about damage detection, which is an interesting way to prevent the failure of these ceramics. An iterative method to treat the inverse problem of detecting cracks and voids in piezoelectric structures is proposed. Extended finite element method (XFEM) is employed for solving the inverse problem as it allows the use of a single regular mesh for large number of iterations with different flaw geometries. Firstly, minimization of cost function is performed by Multilevel Coordinate Search (MCS) method. The XFEM-MCS methodology is applied to two dimensional electromechanical problems where flaws considered are straight cracks and elliptical voids. Then a numerical method based on combination of classical shape derivative and level set method for front propagation used in structural optimization is utilized to minimize the cost function. The results obtained show that the XFEM-level set methodology is effectively able to determine the number of voids in a piezoelectric structure and its corresponding locations. The XFEM-level set methodology is improved to solve the inverse problem of detecting inclusion interfaces in a piezoelectric structure. The material interfaces are implicitly represented by level sets which are identified by applying regularisation using total variation penalty terms. The formulation is presented for three dimensional structures and inclusions made of different materials are detected by using multiple level sets. The results obtained prove that the iterative procedure proposed can determine the location and approximate shape of material subdomains in the presence of higher noise levels. Piezoelectric nanostructures exhibit size dependent properties because of surface elasticity and surface piezoelectricity. Initially a study to understand the influence of surface elasticity on optimization of nano elastic beams is performed. The boundary of the nano structure is implicitly represented by a level set function, which is considered as the design variable in the optimization process. Two objective functions, minimizing the total potential energy of a nanostructure subjected to a material volume constraint and minimizing the least square error compared to a target displacement, are chosen for the numerical examples. The numerical examples demonstrate the importance of size and aspect ratio in determining how surface effects impact the optimized topology of nanobeams. Finally a conventional cantilever energy harvester with a piezoelectric nano layer is analysed. The presence of surface piezoelectricity in nano beams and nano plates leads to increase in electromechanical coupling coefficient. Topology optimization of these piezoelectric structures in an energy harvesting device to further increase energy conversion using appropriately modified XFEM-level set algorithm is performed .}, subject = {Finite-Elemente-Methode}, language = {de} } @phdthesis{Msekh, author = {Msekh, Mohammed Abdulrazzak}, title = {Phase Field Modeling for Fracture with Applications to Homogeneous and Heterogeneous Materials}, doi = {10.25643/bauhaus-universitaet.3229}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170615-32291}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {190}, abstract = {The thesis presents an implementation including different applications of a variational-based approach for gradient type standard dissipative solids. Phase field model for brittle fracture is an application of the variational-based framework for gradient type solids. This model allows the prediction of different crack topologies and states. Of significant concern is the application of theoretical and numerical formulation of the phase field modeling into the commercial finite element software Abaqus in 2D and 3D. The fully coupled incremental variational formulation of phase field method is implemented by using the UEL and UMAT subroutines of Abaqus. The phase field method considerably reduces the implementation complexity of fracture problems as it removes the need for numerical tracking of discontinuities in the displacement field that are characteristic of discrete crack methods. This is accomplished by replacing the sharp discontinuities with a scalar damage phase field representing the diffuse crack topology wherein the amount of diffusion is controlled by a regularization parameter. The nonlinear coupled system consisting of the linear momentum equation and a diffusion type equation governing the phase field evolution is solved simultaneously via a Newton- Raphson approach. Post-processing of simulation results to be used as visualization module is performed via an additional UMAT subroutine implemented in the standard Abaqus viewer. In the same context, we propose a simple yet effective algorithm to initiate and propagate cracks in 2D geometries which is independent of both particular constitutive laws and specific element technology and dimension. It consists of a localization limiter in the form of the screened Poisson equation with, optionally, local mesh refinement. A staggered scheme for standard equilibrium and screened Cauchy equations is used. The remeshing part of the algorithm consists of a sequence of mesh subdivision and element erosion steps. Element subdivision is based on edge split operations using a given constitutive quantity (either damage or void fraction). Mesh smoothing makes use of edge contraction as function of a given constitutive quantity such as the principal stress or void fraction. To assess the robustness and accuracy of this algorithm, we use both quasi-brittle benchmarks and ductile tests. Furthermore, we introduce a computational approach regarding mechanical loading in microscale on an inelastically deforming composite material. The nanocomposites material of fully exfoliated clay/epoxy is shaped to predict macroscopic elastic and fracture related material parameters based on their fine-scale features. Two different configurations of polymer nanocomposites material (PNCs) have been studied. These configurations are fully bonded PNCs and PNCs with an interphase zone formation between the matrix and the clay reinforcement. The representative volume element of PNCs specimens with different clay weight contents, different aspect ratios, and different interphase zone thicknesses are generated by adopting Python scripting. Different constitutive models are employed for the matrix, the clay platelets, and the interphase zones. The brittle fracture behavior of the epoxy matrix and the interphase zones material are modeled using the phase field approach, whereas the stiff silicate clay platelets of the composite are designated as a linear elastic material. The comprehensive study investigates the elastic and fracture behavior of PNCs composites, in addition to predict Young's modulus, tensile strength, fracture toughness, surface energy dissipation, and cracks surface area in the composite for different material parameters, geometry, and interphase zones properties and thicknesses.}, subject = {Finite-Elemente-Methode}, language = {en} } @phdthesis{LopezZermeno, author = {L{\´o}pez Zerme{\~n}o, Jorge Alberto}, title = {Isogeometric and CAD-based methods for shape and topology optimization: Sensitivity analysis, B{\´e}zier elements and phase-field approaches}, doi = {10.25643/bauhaus-universitaet.4710}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220831-47102}, school = {Bauhaus-Universit{\"a}t Weimar}, abstract = {The Finite Element Method (FEM) is widely used in engineering for solving Partial Differential Equations (PDEs) over complex geometries. To this end, it is required to provide the FEM software with a geometric model that is typically constructed in a Computer-Aided Design (CAD) software. However, FEM and CAD use different approaches for the mathematical description of the geometry. Thus, it is required to generate a mesh, which is suitable for FEM, based on the CAD model. Nonetheless, this procedure is not a trivial task and it can be time consuming. This issue becomes more significant for solving shape and topology optimization problems, which consist in evolving the geometry iteratively. Therefore, the computational cost associated to the mesh generation process is increased exponentially for this type of applications. The main goal of this work is to investigate the integration of CAD and CAE in shape and topology optimization. To this end, numerical tools that close the gap between design and analysis are presented. The specific objectives of this work are listed below: • Automatize the sensitivity analysis in an isogeometric framework for applications in shape optimization. Applications for linear elasticity are considered. • A methodology is developed for providing a direct link between the CAD model and the analysis mesh. In consequence, the sensitivity analysis can be performed in terms of the design variables located in the design model. • The last objective is to develop an isogeometric method for shape and topological optimization. This method should take advantage of using Non-Uniform Rational B-Splines (NURBS) with higher continuity as basis functions. Isogeometric Analysis (IGA) is a framework designed to integrate the design and analysis in engineering problems. The fundamental idea of IGA is to use the same basis functions for modeling the geometry, usually NURBS, for the approximation of the solution fields. The advantage of integrating design and analysis is two-fold. First, the analysis stage is more accurate since the system of PDEs is not solved using an approximated geometry, but the exact CAD model. Moreover, providing a direct link between the design and analysis discretizations makes possible the implementation of efficient sensitivity analysis methods. Second, the computational time is significantly reduced because the mesh generation process can be avoided. Sensitivity analysis is essential for solving optimization problems when gradient-based optimization algorithms are employed. Automatic differentiation can compute exact gradients, automatically by tracking the algebraic operations performed on the design variables. For the automation of the sensitivity analysis, an isogeometric framework is used. Here, the analysis mesh is obtained after carrying out successive refinements, while retaining the coarse geometry for the domain design. An automatic differentiation (AD) toolbox is used to perform the sensitivity analysis. The AD toolbox takes the code for computing the objective and constraint functions as input. Then, using a source code transformation approach, it outputs a code for computing the objective and constraint functions, and their sensitivities as well. The sensitivities obtained from the sensitivity propagation method are compared with analytical sensitivities, which are computed using a full isogeometric approach. The computational efficiency of AD is comparable to that of analytical sensitivities. However, the memory requirements are larger for AD. Therefore, AD is preferable if the memory requirements are satisfied. Automatic sensitivity analysis demonstrates its practicality since it simplifies the work of engineers and designers. Complex geometries with sharp edges and/or holes cannot easily be described with NURBS. One solution is the use of unstructured meshes. Simplex-elements (triangles and tetrahedra for two and three dimensions respectively) are particularly useful since they can automatically parameterize a wide variety of domains. In this regard, unstructured B{\´e}zier elements, commonly used in CAD, can be employed for the exact modelling of CAD boundary representations. In two dimensions, the domain enclosed by NURBS curves is parameterized with B{\´e}zier triangles. To describe exactly the boundary of a two-dimensional CAD model, the continuity of a NURBS boundary representation is reduced to C^0. Then, the control points are used to generate a triangulation such that the boundary of the domain is identical to the initial CAD boundary representation. Thus, a direct link between the design and analysis discretizations is provided and the sensitivities can be propagated to the design domain. In three dimensions, the initial CAD boundary representation is given as a collection of NURBS surfaces that enclose a volume. Using a mesh generator (Gmsh), a tetrahedral mesh is obtained. The original surface is reconstructed by modifying the location of the control points of the tetrahedral mesh using B{\´e}zier tetrahedral elements and a point inversion algorithm. This method offers the possibility of computing the sensitivity analysis using the analysis mesh. Then, the sensitivities can be propagated into the design discretization. To reuse the mesh originally generated, a moving B{\´e}zier tetrahedral mesh approach was implemented. A gradient-based optimization algorithm is employed together with a sensitivity propagation procedure for the shape optimization cases. The proposed shape optimization approaches are used to solve some standard benchmark problems in structural mechanics. The results obtained show that the proposed approach can compute accurate gradients and evolve the geometry towards optimal solutions. In three dimensions, the moving mesh approach results in faster convergence in terms of computational time and avoids remeshing at each optimization step. For considering topological changes in a CAD-based framework, an isogeometric phase-field based shape and topology optimization is developed. In this case, the diffuse interface of a phase-field variable over a design domain implicitly describes the boundaries of the geometry. The design variables are the local values of the phase-field variable. The descent direction to minimize the objective function is found by using the sensitivities of the objective function with respect to the design variables. The evolution of the phase-field is determined by solving the time dependent Allen-Cahn equation. Especially for topology optimization problems that require C^1 continuity, such as for flexoelectric structures, the isogeometric phase field method is of great advantage. NURBS can achieve the desired continuity more efficiently than the traditional employed functions. The robustness of the method is demonstrated when applied to different geometries, boundary conditions, and material configurations. The applications illustrate that compared to piezoelectricity, the electrical performance of flexoelectric microbeams is larger under bending. In contrast, the electrical power for a structure under compression becomes larger with piezoelectricity.}, subject = {CAD}, language = {en} } @phdthesis{Lehmkuhl2004, author = {Lehmkuhl, Hansj{\"o}rg}, title = {Zur praktischen Anwendung numerischer Analysemethoden f{\"u}r Stabilit{\"a}tsprobleme}, doi = {10.25643/bauhaus-universitaet.676}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20051013-7102}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2004}, abstract = {In der t{\"a}glichen Ingenieurpraxis werden in zunehmenden Maße numerische Analysen im Rahmen der Finite-Elemente-Methode auch zur Untersuchung stabilit{\"a}tsgef{\"a}hrdeter Strukturen eingesetzt. F{\"u}r die aktuelle Praxis, insbesondere im konstruktiven Stahlbau, ist jedoch festzustellen, dass zwischen der fortgeschrittenen Theorie und dem Niveau der praktischen Anwendung numerischer Stabilit{\"a}tsanalysen eine große Kluft besteht. Aus praktischer Sicht erscheint es unumg{\"a}nglich, die weiter wachsende Diskrepanz zwischen den umfangreichen theoretischen M{\"o}glichkeiten und der gegenw{\"a}rtigen Praxis abzubauen. Damit steht der praktisch t{\"a}tige Ingenieur vor der Aufgabe, sein Wissen auf dem Gebiet numerischer Stabilit{\"a}tsanalysen zu vertiefen und bereits vorhandene FE-Programme um Berechnungsalgorithmen f{\"u}r umfassende numerische Stabilit{\"a}tsanalysen zu erweitern. Daf{\"u}r werden in der Arbeit die Grundlagen einer FEM- orientierten modernen Stabilit{\"a}tstheorie einheitlich und aus Sicht einer praktischen Anwendung aufbereitet. Die Darstellung von realisierten programmtechnischen Umsetzungen f{\"u}r erweiterte Analysenmethoden wie Nachbeulanalysen, Pfadwechsel und Approximationen imperfekter Pfade erm{\"o}glicht eine Erweiterung des Methodenvorrates. Die innerhalb der Arbeit untersuchten Beispiele zeigen, dass durch die Anwendung der behandelten Verfahren das Tragverhalten einer stabilit{\"a}tsgef{\"a}hrdeten Struktur wesentlich besser eingesch{\"a}tzt werden kann als bei Beschr{\"a}nkung auf die herk{\"o}mmlichen Analysemethoden.}, subject = {Nichtlineare Stabilit{\"a}tstheorie}, language = {de} } @phdthesis{Kessler2018, author = {Keßler, Andrea}, title = {Matrix-free voxel-based finite element method for materials with heterogeneous microstructures}, doi = {10.25643/bauhaus-universitaet.3844}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20190116-38448}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {113}, year = {2018}, abstract = {Modern image detection techniques such as micro computer tomography (μCT), magnetic resonance imaging (MRI) and scanning electron microscopy (SEM) provide us with high resolution images of the microstructure of materials in a non-invasive and convenient way. They form the basis for the geometrical models of high-resolution analysis, so called image-based analysis. However especially in 3D, discretizations of these models reach easily the size of 100 Mill. degrees of freedoms and require extensive hardware resources in terms of main memory and computing power to solve the numerical model. Consequently, the focus of this work is to combine and adapt numerical solution methods to reduce the memory demand first and then the computation time and therewith enable an execution of the image-based analysis on modern computer desktops. Hence, the numerical model is a straightforward grid discretization of the voxel-based (pixels with a third dimension) geometry which omits the boundary detection algorithms and allows reduced storage of the finite element data structure and a matrix-free solution algorithm. This in turn reduce the effort of almost all applied grid-based solution techniques and results in memory efficient and numerically stable algorithms for the microstructural models. Two variants of the matrix-free algorithm are presented. The efficient iterative solution method of conjugate gradients is used with matrix-free applicable preconditioners such as the Jacobi and the especially suited multigrid method. The jagged material boundaries of the voxel-based mesh are smoothed through embedded boundary elements which contain different material information at the integration point and are integrated sub-cell wise though without additional boundary detection. The efficiency of the matrix-free methods can be retained.}, subject = {Dissertation}, language = {en} }