@phdthesis{Goswami, author = {Goswami, Somdatta}, title = {Phase field modeling of fracture with isogeometric analysis and machine learning methods}, doi = {10.25643/bauhaus-universitaet.4384}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210304-43841}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {168}, abstract = {This thesis presents the advances and applications of phase field modeling in fracture analysis. In this approach, the sharp crack surface topology in a solid is approximated by a diffusive crack zone governed by a scalar auxiliary variable. The uniqueness of phase field modeling is that the crack paths are automatically determined as part of the solution and no interface tracking is required. The damage parameter varies continuously over the domain. But this flexibility comes with associated difficulties: (1) a very fine spatial discretization is required to represent sharp local gradients correctly; (2) fine discretization results in high computational cost; (3) computation of higher-order derivatives for improved convergence rates and (4) curse of dimensionality in conventional numerical integration techniques. As a consequence, the practical applicability of phase field models is severely limited. The research presented in this thesis addresses the difficulties of the conventional numerical integration techniques for phase field modeling in quasi-static brittle fracture analysis. The first method relies on polynomial splines over hierarchical T-meshes (PHT-splines) in the framework of isogeometric analysis (IGA). An adaptive h-refinement scheme is developed based on the variational energy formulation of phase field modeling. The fourth-order phase field model provides increased regularity in the exact solution of the phase field equation and improved convergence rates for numerical solutions on a coarser discretization, compared to the second-order model. However, second-order derivatives of the phase field are required in the fourth-order model. Hence, at least a minimum of C1 continuous basis functions are essential, which is achieved using hierarchical cubic B-splines in IGA. PHT-splines enable the refinement to remain local at singularities and high gradients, consequently reducing the computational cost greatly. Unfortunately, when modeling complex geometries, multiple parameter spaces (patches) are joined together to describe the physical domain and there is typically a loss of continuity at the patch boundaries. This decrease of smoothness is dictated by the geometry description, where C0 parameterizations are normally used to deal with kinks and corners in the domain. Hence, the application of the fourth-order model is severely restricted. To overcome the high computational cost for the second-order model, we develop a dual-mesh adaptive h-refinement approach. This approach uses a coarser discretization for the elastic field and a finer discretization for the phase field. Independent refinement strategies have been used for each field. The next contribution is based on physics informed deep neural networks. The network is trained based on the minimization of the variational energy of the system described by general non-linear partial differential equations while respecting any given law of physics, hence the name physics informed neural network (PINN). The developed approach needs only a set of points to define the geometry, contrary to the conventional mesh-based discretization techniques. The concept of `transfer learning' is integrated with the developed PINN approach to improve the computational efficiency of the network at each displacement step. This approach allows a numerically stable crack growth even with larger displacement steps. An adaptive h-refinement scheme based on the generation of more quadrature points in the damage zone is developed in this framework. For all the developed methods, displacement-controlled loading is considered. The accuracy and the efficiency of both methods are studied numerically showing that the developed methods are powerful and computationally efficient tools for accurately predicting fractures.}, subject = {Phasenfeldmodell}, language = {en} } @phdthesis{Valizadeh, author = {Valizadeh, Navid}, title = {Developments in Isogeometric Analysis and Application to High-Order Phase-Field Models of Biomembranes}, doi = {10.25643/bauhaus-universitaet.4565}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220114-45658}, school = {Bauhaus-Universit{\"a}t Weimar}, abstract = {Isogeometric analysis (IGA) is a numerical method for solving partial differential equations (PDEs), which was introduced with the aim of integrating finite element analysis with computer-aided design systems. The main idea of the method is to use the same spline basis functions which describe the geometry in CAD systems for the approximation of solution fields in the finite element method (FEM). Originally, NURBS which is a standard technology employed in CAD systems was adopted as basis functions in IGA but there were several variants of IGA using other technologies such as T-splines, PHT splines, and subdivision surfaces as basis functions. In general, IGA offers two key advantages over classical FEM: (i) by describing the CAD geometry exactly using smooth, high-order spline functions, the mesh generation process is simplified and the interoperability between CAD and FEM is improved, (ii) IGA can be viewed as a high-order finite element method which offers basis functions with high inter-element continuity and therefore can provide a primal variational formulation of high-order PDEs in a straightforward fashion. The main goal of this thesis is to further advance isogeometric analysis by exploiting these major advantages, namely precise geometric modeling and the use of smooth high-order splines as basis functions, and develop robust computational methods for problems with complex geometry and/or complex multi-physics. As the first contribution of this thesis, we leverage the precise geometric modeling of isogeometric analysis and propose a new method for its coupling with meshfree discretizations. We exploit the strengths of both methods by using IGA to provide a smooth, geometrically-exact surface discretization of the problem domain boundary, while the Reproducing Kernel Particle Method (RKPM) discretization is used to provide the volumetric discretization of the domain interior. The coupling strategy is based upon the higher-order consistency or reproducing conditions that are directly imposed in the physical domain. The resulting coupled method enjoys several favorable features: (i) it preserves the geometric exactness of IGA, (ii) it circumvents the need for global volumetric parameterization of the problem domain, (iii) it achieves arbitrary-order approximation accuracy while preserving higher-order smoothness of the discretization. Several numerical examples are solved to show the optimal convergence properties of the coupled IGA-RKPM formulation, and to demonstrate its effectiveness in constructing volumetric discretizations for complex-geometry objects. As for the next contribution, we exploit the use of smooth, high-order spline basis functions in IGA to solve high-order surface PDEs governing the morphological evolution of vesicles. These governing equations are often consisted of geometric PDEs, high-order PDEs on stationary or evolving surfaces, or a combination of them. We propose an isogeometric formulation for solving these PDEs. In the context of geometric PDEs, we consider phase-field approximations of mean curvature flow and Willmore flow problems and numerically study the convergence behavior of isogeometric analysis for these problems. As a model problem for high-order PDEs on stationary surfaces, we consider the Cahn-Hilliard equation on a sphere, where the surface is modeled using a phase-field approach. As for the high-order PDEs on evolving surfaces, a phase-field model of a deforming multi-component vesicle, which consists of two fourth-order nonlinear PDEs, is solved using the isogeometric analysis in a primal variational framework. Through several numerical examples in 2D, 3D and axisymmetric 3D settings, we show the robustness of IGA for solving the considered phase-field models. Finally, we present a monolithic, implicit formulation based on isogeometric analysis and generalized-alpha time integration for simulating hydrodynamics of vesicles according to a phase-field model. Compared to earlier works, the number of equations of the phase-field model which need to be solved is reduced by leveraging high continuity of NURBS functions, and the algorithm is extended to 3D settings. We use residual-based variational multi-scale method (RBVMS) for solving Navier-Stokes equations, while the rest of PDEs in the phase-field model are treated using a standard Galerkin-based IGA. We introduce the resistive immersed surface (RIS) method into the formulation which can be employed for an implicit description of complex geometries using a diffuse-interface approach. The implementation highlights the robustness of the RBVMS method for Navier-Stokes equations of incompressible flows with non-trivial localized forcing terms including bending and tension forces of the vesicle. The potential of the phase-field model and isogeometric analysis for accurate simulation of a variety of fluid-vesicle interaction problems in 2D and 3D is demonstrated.}, subject = {Phasenfeldmodell}, language = {en} } @phdthesis{Zhang, author = {Zhang, Yongzheng}, title = {A Nonlocal Operator Method for Quasi-static and Dynamic Fracture Modeling}, doi = {10.25643/bauhaus-universitaet.4732}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20221026-47321}, school = {Bauhaus-Universit{\"a}t Weimar}, abstract = {Material failure can be tackled by so-called nonlocal models, which introduce an intrinsic length scale into the formulation and, in the case of material failure, restore the well-posedness of the underlying boundary value problem or initial boundary value problem. Among nonlocal models, peridynamics (PD) has attracted a lot of attention as it allows the natural transition from continuum to discontinue and thus allows modeling of discrete cracks without the need to describe and track the crack topology, which has been a major obstacle in traditional discrete crack approaches. This is achieved by replacing the divergence of the Cauchy stress tensor through an integral over so-called bond forces, which account for the interaction of particles. A quasi-continuum approach is then used to calibrate the material parameters of the bond forces, i.e., equating the PD energy with the energy of a continuum. One major issue for the application of PD to general complex problems is that they are limited to fairly simple material behavior and pure mechanical problems based on explicit time integration. PD has been extended to other applications but losing simultaneously its simplicity and ease in modeling material failure. Furthermore, conventional PD suffers from instability and hourglass modes that require stabilization. It also requires the use of constant horizon sizes, which drastically reduces its computational efficiency. The latter issue was resolved by the so-called dual-horizon peridynamics (DH-PD) formulation and the introduction of the duality of horizons. Within the nonlocal operator method (NOM), the concept of nonlocality is further extended and can be considered a generalization of DH-PD. Combined with the energy functionals of various physical models, the nonlocal forms based on the dual-support concept can be derived. In addition, the variation of the energy functional allows implicit formulations of the nonlocal theory. While traditional integral equations are formulated in an integral domain, the dual-support approaches are based on dual integral domains. One prominent feature of NOM is its compatibility with variational and weighted residual methods. The NOM yields a direct numerical implementation based on the weighted residual method for many physical problems without the need for shape functions. Only the definition of the energy or boundary value problem is needed to drastically facilitate the implementation. The nonlocal operator plays an equivalent role to the derivatives of the shape functions in meshless methods and finite element methods (FEM). Based on the variational principle, the residual and the tangent stiffness matrix can be obtained with ease by a series of matrix multiplications. In addition, NOM can be used to derive many nonlocal models in strong form. The principal contributions of this dissertation are the implementation and application of NOM, and also the development of approaches for dealing with fractures within the NOM, mostly for dynamic fractures. The primary coverage and results of the dissertation are as follows: -The first/higher-order implicit NOM and explicit NOM, including a detailed description of the implementation, are presented. The NOM is based on so-called support, dual-support, nonlocal operators, and an operate energy functional ensuring stability. The nonlocal operator is a generalization of the conventional differential operators. Combining with the method of weighted residuals and variational principles, NOM establishes the residual and tangent stiffness matrix of operate energy functional through some simple matrix without the need of shape functions as in other classical computational methods such as FEM. NOM only requires the definition of the energy drastically simplifying its implementation. For the sake of conciseness, the implementation in this chapter is focused on linear elastic solids only, though the NOM can handle more complex nonlinear problems. An explicit nonlocal operator method for the dynamic analysis of elasticity solid problems is also presented. The explicit NOM avoids the calculation of the tangent stiffness matrix as in the implicit NOM model. The explicit scheme comprises the Verlet-velocity algorithm. The NOM can be very flexible and efficient for solving partial differential equations (PDEs). It's also quite easy for readers to use the NOM and extend it to solve other complicated physical phenomena described by one or a set of PDEs. Several numerical examples are presented to show the capabilities of this method. -A nonlocal operator method for the dynamic analysis of (thin) Kirchhoff plates is proposed. The nonlocal Hessian operator is derived from a second-order Taylor series expansion. NOM is higher-order continuous, which is exploited for thin plate analysis that requires \$C^1\$ continuity. The nonlocal dynamic governing formulation and operator energy functional for Kirchhoff plates are derived from a variational principle. The Verlet-velocity algorithm is used for time discretization. After confirming the accuracy of the nonlocal Hessian operator, several numerical examples are simulated by the nonlocal dynamic Kirchhoff plate formulation. -A nonlocal fracture modeling is developed and applied to the simulation of quasi-static and dynamic fractures using the NOM. The phase field's nonlocal weak and associated strong forms are derived from a variational principle. The NOM requires only the definition of energy. We present both a nonlocal implicit phase field model and a nonlocal explicit phase field model for fracture; the first approach is better suited for quasi-static fracture problems, while the key application of the latter one is dynamic fracture. To demonstrate the performance of the underlying approach, several benchmark examples for quasi-static and dynamic fracture are solved.}, subject = {Variationsprinzip}, language = {en} }