@phdthesis{Wendler, author = {Wendler, Andr{\´e}}, title = {Anachronismen: Historiografie und Kino}, doi = {10.25643/bauhaus-universitaet.1799}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20121219-17991}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {284+81}, abstract = {Die Arbeit »Anachronismen: Historiografie und Kino« geht von einer zun{\"a}chst einfachen Beobachtung aus: beinahe immer, wenn Historiker_innen sich mit Geschichtsfilmen auseinander setzen, findet sich die lautstark gef{\"u}hrte Beschwerde {\"u}ber die zahlreichen und vermeidbaren Anachronismen der Filme, die sie als ernst zu nehmende historiografische Beitr{\"a}ge desavouieren. Von hier ausgehend verfolgt die Arbeit ein dreifaches Projekt: zun{\"a}chst in einer kritischen Analyse geschichtstheoretischer Texte einige Hinweise f{\"u}r den Status von Anachronismen f{\"u}r die moderne westliche Historiografie zu gewinnen. Zweitens zu untersuchen, welche Rolle Anachronismen f{\"u}r den Geschichtsfilm spielen. Und drittens von dort aus das epistemische Potential anachronistischen Geschichtskinos zu untersuchen. Eine der Hauptthesen, welche den Blick sowohl auf die Filme wie auf die theoretischen Texte leitet, besagt, dass Anachronismen genau jene Punkte sind, an denen die Medien einer jeden Geschichtsschreibung beobachtbar werden. Die Beobachtung und Beschreibung dieser Medien der kinematografischen Geschichtsschreibung unternimmt die Arbeit unter Zuhilfenahme einiger theoretischer {\"U}berlegungen der Actor Network Theory (ANT). Die Arbeit ist in vier Kapitel gegliedert, in deren Zentrum jeweils die Diskussion eines ANT-Begriffs sowie die Analyse eines Geschichtsfilmes steht. Zu den untersuchten Filmen geh{\"o}ren Shutter Island (Martin Scorsese, 2010), Chronik der Anna Magdalena Bach (Jean-Marie Straub/Dani{\`e}le Huillet, 1968), Cleopatra (Joseph L. Mankiewicz, 1963) und Caravaggio (Derek Jarman, 1986). Die Arbeit kommentiert außerdem theoretische Texte zur Historiografie und zu Anachronismen von Walter Benjamin, Leo Bersani, Georges Didi-Huberman, Siegfried Kracauer, Friedrich Meinecke, Friedrich Nietzsche, Jacques Ranci{\`e}re, Leopold Ranke, Paul Ricœur, Georg Simmel, Hayden White u. a.}, subject = {Geschichtsschreibung}, language = {de} } @phdthesis{Karaki, author = {Karaki, Ghada}, title = {Assessment of coupled models of bridges considering time-dependent vehicular loading}, doi = {10.25643/bauhaus-universitaet.1589}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20120402-15894}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {184}, abstract = {Bridge vibration due to traffic loading has been a subject of extensive research in the last decades. The focus of such research has been to develop solution algorithms and investigate responses or behaviors of interest. However, proving the quality and reliability of the model output in structural engineering has become a topic of increasing importance. Therefore, this study is an attempt to extend concepts of uncertainty and sensitivity analyses to assess the dynamic response of a coupled model in bridge engineering considering time-dependent vehicular loading. A setting for the sensitivity analysis is proposed, which enables performing the sensitivity analysis considering random stochastic processes. The classical and proposed sensitivity settings are used to identify the relevant input parameters and models that have the most influence on the variance of the dynamic response. The sensitivity analysis exercises the model itself and extracts results without the need for measurements or reference solutions; however, it does not offer a means of ranking the coupled models studied. Therefore, concepts of total uncertainty are employed to rank the coupled models studied according to their fitness in describing the dynamic problem. The proposed procedures are applied in two examples to assess the output of coupled subsystems and coupled partial models in bridge engineering considering the passage of a heavy vehicle at various speeds.}, subject = {Ingenieurbau}, language = {en} } @phdthesis{Keitel, author = {Keitel, Holger}, title = {Bewertungsmethoden f{\"u}r die Prognosequalit{\"a}t von Kriechmodellen des Betons}, publisher = {Verlag der Bauhaus-Universit{\"a}t Weimar}, address = {Weimar}, isbn = {978-3-86068-466-5}, doi = {10.25643/bauhaus-universitaet.1556}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20120207-15569}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {390}, abstract = {Ziel dieser Arbeit ist die Entwicklung von Methoden, mit denen die Prognosequalit{\"a}t von Kriechmodellen des Betons bestimmt werden kann. Die Methoden werden in zwei Ausgangsszenarien unterschieden: die Bewertung ohne und die Bewertung mit Verwendung von spezifischen Versuchsdaten zum Kriechverhalten des Betons. Die Modellqualit{\"a}t wird anhand der Gesamtunsicherheit der prognostizierten Kriechnachgiebigkeit quantifiziert. Die Unsicherheit wird f{\"u}r die Kriechprognose ohne Versuchsdaten {\"u}ber eine Unsicherheitsanalyse unter Ber{\"u}cksichtigung korrelierter Eingangsparameter ermittelt. Bei der Verwendung experimenteller Daten werden die stochastischen Eigenschaften der Modellparameter mittels Bayesian Updating bestimmt. Die Bewertung erfolgt erneut basierend auf einer Unsicherheitsanalyse sowie alternativ mittels Modellselektion nach Bayes. Weiterhin wird eine auf Graphentheorie und Sensitivit{\"a}tsanalysen basierende Methode zur Bewertung von gekoppelten Partialmodellen entwickelt. Damit wird der Einfluss eines Partialmodells auf das Verhalten einer globalen Tragstruktur quantifiziert, Interaktionen von Partialmodellen festgestellt und ein Maß f{\"u}r die Qualit{\"a}t eines Gesamtmodells ermittelt.}, subject = {Kriechen}, language = {de} } @phdthesis{UrbinaCazenave, author = {Urbina Cazenave, Mario Humberto}, title = {Gaze Controlled Applications and Optical-See-Through Displays - General Conditions for Gaze Driven Companion Technologies}, doi = {10.25643/bauhaus-universitaet.1749}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20121107-17492}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {106}, abstract = {Gaze based human-computer-interaction has been a research topic for over a quarter century. Since then, the main scenario for gaze interaction has been helping handicapped people to communicate an interact with their environment. With the rapid development of mobile and wearable display technologies, a new application field for gaze interaction has appeared, opening new research questions. This thesis investigates the feasibility of mobile gaze based interaction, studying deeply the use of pie menus as a generic and robust widget for gaze interaction as well as visual and perceptual issues on head mounted (wearable) optical see-through displays. It reviews conventional gaze-based selection methods and investigates in detail the use of pie menus for gaze control. It studies and discusses layout issues, selection methods and applications. Results show that pie menus can allocate up to six items in width and multiple depth layers, allowing a fast and accurate navigation through hierarchical levels by using or combining multiple selection methods. Based on these results, several text entry methods based on pie menus are proposed. Character-by-character text entry, text entry with bigrams and with text entry with bigrams derived by word prediction, as well as possible selection methods, are examined in a longitudinal study. Data showed large advantages of the bigram entry methods over single character text entry in speed and accuracy. Participants preferred the novel selection method based on saccades (selecting by borders) over the conventional and well established dwell time method. On the one hand, pie menus showed to be a feasible and robust widget, which may enable the efficient use of mobile eye tracking systems that may not be accurate enough for controlling elements on conventional interface. On the other hand, visual perception on mobile displays technologies need to be examined in order to deduce if the mentioned results can be transported to mobile devices. Optical see-through devices enable observers to see additional information embedded in real environments. There is already some evidence of increasing visual load on the respective systems. We investigated visual performance on participants with a visual search tasks and dual tasks presenting visual stimuli on the optical see-through device, only on a computer screen, and simultaneously on both devices. Results showed that switching between the presentation devices (i.e. perceiving information simultaneously from both devices) produced costs in visual performance. The implications of these costs and of further perceptual and technical factors for mobile gaze-based interaction are discussed and solutions are proposed.}, subject = {Eye tracking movement}, language = {en} } @phdthesis{Schrader, author = {Schrader, Kai}, title = {Hybrid 3D simulation methods for the damage analysis of multiphase composites}, doi = {10.25643/bauhaus-universitaet.2059}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20131021-20595}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {174}, abstract = {Modern digital material approaches for the visualization and simulation of heterogeneous materials allow to investigate the behavior of complex multiphase materials with their physical nonlinear material response at various scales. However, these computational techniques require extensive hardware resources with respect to computing power and main memory to solve numerically large-scale discretized models in 3D. Due to a very high number of degrees of freedom, which may rapidly be increased to the two-digit million range, the limited hardware ressources are to be utilized in a most efficient way to enable an execution of the numerical algorithms in minimal computation time. Hence, in the field of computational mechanics, various methods and algorithms can lead to an optimized runtime behavior of nonlinear simulation models, where several approaches are proposed and investigated in this thesis. Today, the numerical simulation of damage effects in heterogeneous materials is performed by the adaption of multiscale methods. A consistent modeling in the three-dimensional space with an appropriate discretization resolution on each scale (based on a hierarchical or concurrent multiscale model), however, still contains computational challenges in respect to the convergence behavior, the scale transition or the solver performance of the weak coupled problems. The computational efficiency and the distribution among available hardware resources (often based on a parallel hardware architecture) can significantly be improved. In the past years, high-performance computing (HPC) and graphics processing unit (GPU) based computation techniques were established for the investigationof scientific objectives. Their application results in the modification of existing and the development of new computational methods for the numerical implementation, which enables to take advantage of massively clustered computer hardware resources. In the field of numerical simulation in material science, e.g. within the investigation of damage effects in multiphase composites, the suitability of such models is often restricted by the number of degrees of freedom (d.o.f.s) in the three-dimensional spatial discretization. This proves to be difficult for the type of implementation method used for the nonlinear simulation procedure and, simultaneously has a great influence on memory demand and computational time. In this thesis, a hybrid discretization technique has been developed for the three-dimensional discretization of a three-phase material, which is respecting the numerical efficiency of nonlinear (damage) simulations of these materials. The increase of the computational efficiency is enabled by the improved scalability of the numerical algorithms. Consequently, substructuring methods for partitioning the hybrid mesh were implemented, tested and adapted to the HPC computing framework using several hundred CPU (central processing units) nodes for building the finite element assembly. A memory-efficient iterative and parallelized equation solver combined with a special preconditioning technique for solving the underlying equation system was modified and adapted to enable combined CPU and GPU based computations. Hence, it is recommended by the author to apply the substructuring method for hybrid meshes, which respects different material phases and their mechanical behavior and which enables to split the structure in elastic and inelastic parts. However, the consideration of the nonlinear material behavior, specified for the corresponding phase, is limited to the inelastic domains only, and by that causes a decreased computing time for the nonlinear procedure. Due to the high numerical effort for such simulations, an alternative approach for the nonlinear finite element analysis, based on the sequential linear analysis, was implemented in respect to scalable HPC. The incremental-iterative procedure in finite element analysis (FEA) during the nonlinear step was then replaced by a sequence of linear FE analysis when damage in critical regions occured, known in literature as saw-tooth approach. As a result, qualitative (smeared) crack initiation in 3D multiphase specimens has efficiently been simulated.}, subject = {high-performance computing}, language = {en} } @phdthesis{Krause2011, author = {Krause, Haie-Jann}, title = {Kallmeyer und Facilides. Eine Architektengemeinschaft im Kontext ihrer Entwicklung von konservativen Gestaltungstendenzen zur Baukunst der Moderne.}, doi = {10.25643/bauhaus-universitaet.1514}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20120114-15140}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2011}, abstract = {Die Vorstellung des Gesamtwerkes der halleschen Architekten Julius Kallmeyer und Wilhelm Facilides, die sich Anfang der 1920er Jahre zu einer Zusammenarbeit entschlossen und eine Vielzahl interessanter Geb{\"a}ude f{\"u}r die Saalestadt schufen, ist in der Fokussierung der Gesamtthematik der Lebens- und Werksdarstellung das Grundanliegen dieser Ausarbeitung. Dieses bisher nicht in Angriff genommene architekturgeschichtliche Anliegen besch{\"a}ftigt sich mit den Ergebnissen der B{\"u}rogeschichte einer- und der Lebensgeschichte der Pers{\"o}nlichkeiten andererseits. Bis heute gelten die klassisch modernen Architekturen Kallmeyers \& Facilides', gerade f{\"u}r den gehobenen Wohnhausbau in Halle an der Saale, als herausragende Leistungen.}, subject = {Kallmeyer}, language = {de} } @phdthesis{Nerlich, author = {Nerlich, Luise}, title = {KLANG tektonik _ Entwurfsgrammatik in Architektur und Musik im Werk des Architekten und Komponisten Iannis Xenakis}, doi = {10.25643/bauhaus-universitaet.1668}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20120607-16689}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {392}, abstract = {klang_tektonik Design by grammar in architecture and music Architectural design is a creative process. Its emergence requires a creative component and it cannot be systematized. But while teaching architecture, work with a method to design is an essential aspect. In addition to the intuitive methods of design, however, also exist grammars, which explicit rules postulated for form finding and can be taught as such. In consideration of formative architectural and musical design, parameters will be presented, to design a transformation of music into architecture. Two revolutionary works are created in the 1950s, the composition Metastaseis and the Philips Pavilion for the World Exhibition in Brussels by the architect and composer Iannis Xenakis. Based on these works, there will be presented the method, how to replace musical parameters in to architectural parameters. This process provides the basis for an accurate spatial transformation model, which is designed on the basis of mathematical functions and has a strong similarity in language between the shape of the composition Metastaseis and architecture of the pavilion.}, subject = {Architektur}, language = {de} } @phdthesis{PhungThi, author = {Phung Thi, Thu Ha}, title = {Metakaolin as an Additive in Composite Cement}, publisher = {F. A. Finger-Institut f{\"u}r Baustoffkunde}, address = {Weimar}, isbn = {978-3-00-042655-1}, doi = {10.25643/bauhaus-universitaet.1976}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20130705-19764}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {119}, abstract = {Metakaolin made from kaolin is used around the world but rarely in Vietnam where abundant deposits of kaolin is found. The first studies of producing metakaolin were conducted with high quality Vietnamese kaolins. The results showed the potential to produce metakaolin, and its effect has on strength development of mortars and concretes. However, utilisation of a low quality kaolin for producing Vietnamese metakaolin has not been studied so far. The objectives of this study were to produce a good quality metakaolin made from low quality Vietnamese kaolin and to facilitate the utilisation of Vietnamese metakaolin in composite cements. In order to reach such goals, the optimal thermal conversion of Vietnamese kaolin into metakaolin was carried out by many investigations, and as such the optimal conversion is found using the analysis results of DSC/TGA, XRD and CSI. During the calcination in a range of 500 - 800 oC lasting for 1 - 5 hours, the characterisation of calcinated kaolin was also monitored for mass loss, BET surface, PSD, density as well as the presence of the residual water. It is found to have a well correlation between residual water and BET surface. The pozzolanic activity of metakaolin was tested by various methods regarding to the saturated lime method, mCh and TGA-CaO method. The results of the study showed which method is the most suitable one to characterise the real activity of metakaolin and can reach the greatest agreement with concrete performance. Furthermore, the pozzolanic activity results tested using methods were also analysed and compared to each other with respect to the BET surface. The properties of Vietnam metakaolin was established using investigations on water demand, setting time, spread-flowability, and strength. It is concluded that depending on the intended use of composite cement and weather conditions of cure, each Vietnamese metakaolin can be used appropriately to produce (1) a composite cement with a low water demand (2) a high strength of composite cement (3) a composite cement that aims to reduce CO2 emissions and to improve economics of cement products (4) a high performance mortar. The durability of metakaolin mortar was tested to find the needed metakaolin content against ASR, sulfat and sulfuric acid attacks successfully.}, subject = {metakaolin}, language = {en} } @phdthesis{Stein, author = {Stein, Peter}, title = {Procedurally generated models for Isogeometric Analysis}, publisher = {Universit{\"a}tsverlag}, address = {Weimar}, isbn = {978-3-86068-488-7}, doi = {10.25643/bauhaus-universitaet.1848}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20130212-18483}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {82}, abstract = {Increasingly powerful hard- and software allows for the numerical simulation of complex physical phenomena with high levels of detail. In light of this development the definition of numerical models for the Finite Element Method (FEM) has become the bottleneck in the simulation process. Characteristic features of the model generation are large manual efforts and a de-coupling of geometric and numerical model. In the highly probable case of design revisions all steps of model preprocessing and mesh generation have to be repeated. This includes the idealization and approximation of a geometric model as well as the definition of boundary conditions and model parameters. Design variants leading to more resource-efficient structures might hence be disregarded due to limited budgets and constrained time frames. A potential solution to above problem is given with the concept of Isogeometric Analysis (IGA). Core idea of this method is to directly employ a geometric model for numerical simulations, which allows to circumvent model transformations and the accompanying data losses. Basis for this method are geometric models described in terms of Non-uniform rational B-Splines (NURBS). This class of piecewise continuous rational polynomial functions is ubiquitous in computer graphics and Computer-Aided Design (CAD). It allows the description of a wide range of geometries using a compact mathematical representation. The shape of an object thereby results from the interpolation of a set of control points by means of the NURBS functions, allowing efficient representations for curves, surfaces and solid bodies alike. Existing software applications, however, only support the modeling and manipulation of the former two. The description of three-dimensional solid bodies consequently requires significant manual effort, thus essentially forbidding the setup of complex models. This thesis proposes a procedural approach for the generation of volumetric NURBS models. That is, a model is not described in terms of its data structures but as a sequence of modeling operations applied to a simple initial shape. In a sense this describes the "evolution" of the geometric model under the sequence of operations. In order to adapt this concept to NURBS geometries, only a compact set of commands is necessary which, in turn, can be adapted from existing algorithms. A model then can be treated in terms of interpretable model parameters. This leads to an abstraction from its data structures and model variants can be set up by variation of the governing parameters. The proposed concept complements existing template modeling approaches: templates can not only be defined in terms of modeling commands but can also serve as input geometry for said operations. Such templates, arranged in a nested hierarchy, provide an elegant model representation. They offer adaptivity on each tier of the model hierarchy and allow to create complex models from only few model parameters. This is demonstrated for volumetric fluid domains used in the simulation of vertical-axis wind turbines. Starting from a template representation of airfoil cross-sections, the complete "negative space" around the rotor blades can be described by a small set of model parameters, and model variants can be set up in a fraction of a second. NURBS models offer a high geometric flexibility, allowing to represent a given shape in different ways. Different model instances can exhibit varying suitability for numerical analyses. For their assessment, Finite Element mesh quality metrics are regarded. The considered metrics are based on purely geometric criteria and allow to identify model degenerations commonly used to achieve certain geometric features. They can be used to decide upon model adaptions and provide a measure for their efficacy. Unfortunately, they do not reveal a relation between mesh distortion and ill-conditioning of the equation systems resulting from the numerical model.}, subject = {NURBS}, language = {en} } @phdthesis{Nikulla, author = {Nikulla, Susanne}, title = {Quality assessment of kinematical models by means of global and goal-oriented error estimation techniques}, publisher = {Verlag der Bauhaus-Universit{\"a}t Weimar}, address = {Weimar}, doi = {10.25643/bauhaus-universitaet.1616}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20120419-16161}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {117}, abstract = {Methods for model quality assessment are aiming to find the most appropriate model with respect to accuracy and computational effort for a structural system under investigation. Model error estimation techniques can be applied for this purpose when kinematical models are investigated. They are counted among the class of white box models, which means that the model hierarchy and therewith the best model is known. This thesis gives an overview of discretisation error estimators. Deduced from these, methods for model error estimation are presented. Their general goal is to make a prediction of the inaccuracies that are introduced using the simpler model without knowing the solution of a more complex model. This information can be used to steer an adaptive process. Techniques for linear and non-linear problems as well as global and goal-oriented errors are introduced. The estimation of the error in local quantities is realised by solving a dual problem, which serves as a weight for the primal error. So far, such techniques have mainly been applied in material modelling and for dimensional adaptivity. Within the scope of this thesis, available model error estimators are adapted for an application to kinematical models. Their applicability is tested regarding the question of whether a geometrical non-linear calculation is necessary or not. The analysis is limited to non-linear estimators due to the structure of the underlying differential equations. These methods often involve simplification, e.g linearisations. It is investigated to which extent such assumptions lead to meaningful results, when applied to kinematical models.}, subject = {Model quality, Model error estimation, Kinematical model, Geometric non-linearity, Finite Element method}, language = {en} }