@article{ChenSchwingKarlovšeketal., author = {Chen, Zhen and Schwing, Moritz and Karlovšek, Jurij and Wagner, Norman and Scheuermann, Alexander}, title = {Broadband Dielectric Measurement Methods for Soft Geomaterials: Coaxial Transmission Line Cell and Open-Ended Coaxial Probe}, series = {International Journal of Engineering and Technology}, volume = {2014}, journal = {International Journal of Engineering and Technology}, number = {volume 6, number 5}, doi = {10.7763/IJET.2014.V6.728}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210408-43984}, pages = {373 -- 380}, abstract = {Broadband dielectric measurement methods based on vector network analyzer coupled with coaxial transmission line cell (CC) and open-ended coaxial probe (OC) are simply reviewed, by which the dielectric behaviors in the frequency range of 1 MHz to 3 GHz of two practical geomaterials are investigated. Kaolin after modified compaction with different water contents is measured by using CC. The results are consistent with previous study on standardized compacted kaolin and suggest that the dielectric properties at frequencies below 100 MHz are not only a function of water content but also functions of other soil state parameters including dry density. The hydration process of a commercial grout is monitored in real time by using OC. It is found that the time dependent dielectric properties can accurately reveal the different stages of the hydration process. These measurement results demonstrate the practicability of the introduced methods in determining dielectric properties of soft geomaterials.}, subject = {Impedanzspektroskopie}, language = {en} } @article{VoelkerMaempelKornadt, author = {V{\"o}lker, Conrad and M{\"a}mpel, Silvio and Kornadt, Oliver}, title = {Measuring the human body's micro-climate using a thermal manikin}, series = {Indoor Air}, journal = {Indoor Air}, number = {24, 6}, doi = {10.25643/bauhaus-universitaet.3815}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20181025-38153}, pages = {567 -- 579}, abstract = {The human body is surrounded by a micro-climate which results from its convective release of heat. In this study, the air temperature and flow velocity of this micro-climate were measured in a climate chamber at various room temperatures, using a thermal manikin simulating the heat release of the human being. Different techniques (Particle Streak Tracking, thermography, anemometry, and thermistors) were used for measurement and visualization. The manikin surface temperature was adjusted to the particular indoor climate based on simulations with a thermoregulation model (UCBerkeley Thermal Comfort Model). We found that generally, the micro-climate is thinner at the lower part of the torso, but expands going up. At the head, there is a relatively thick thermal layer, which results in an ascending plume above the head. However, the micro-climate shape strongly depends not only on the body segment, but also on boundary conditions: the higher the temperature difference between the surface temperature of the manikin and the air temperature, the faster the air flow in the micro-climate. Finally, convective heat transfer coefficients strongly increase with falling room temperature, while radiative heat transfer coefficients decrease. The type of body segment strongly influences the convective heat transfer coefficient, while only minimally influencing the radiative heat transfer coefficient.}, subject = {Raumklima}, language = {en} } @article{ZhuangHuangRabczuketal., author = {Zhuang, Xiaoying and Huang, Runqiu and Rabczuk, Timon and Liang, C.}, title = {A coupled thermo-hydro-mechanical model of jointed hard rock for compressed air energy storage}, series = {Mathematical Problems in Engineering}, journal = {Mathematical Problems in Engineering}, abstract = {A coupled thermo-hydro-mechanical model of jointed hard rock for compressed air energy storage}, subject = {Angewandte Mathematik}, language = {en} } @article{AmiriMillanShenetal., author = {Amiri, Fatemeh and Mill{\´a}n, D. and Shen, Y. and Rabczuk, Timon and Arroyo, M.}, title = {Phase-field modeling of fracture in linear thin shells}, series = {Theoretical and Applied Fracture Mechanics}, journal = {Theoretical and Applied Fracture Mechanics}, pages = {102 -- 109}, abstract = {Phase-field modeling of fracture in linear thin shells}, subject = {Angewandte Mathematik}, language = {en} } @article{ThaiFerreiraBordasetal., author = {Thai, Chien H. and Ferreira, A.J.M. and Bordas, St{\´e}phane Pierre Alain and Rabczuk, Timon and Nguyen-Xuan, Hung}, title = {Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory}, series = {European Journal of Mechanics}, journal = {European Journal of Mechanics}, pages = {89 -- 108}, abstract = {Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory}, subject = {Angewandte Mathematik}, language = {en} } @article{NanthakumarLahmerRabczuk, author = {Nanthakumar, S.S. and Lahmer, Tom and Rabczuk, Timon}, title = {Detection of multiple flaws in piezoelectric structures using XFEM and level sets}, series = {Computer Methods in Applied Mechanics and Engineering}, journal = {Computer Methods in Applied Mechanics and Engineering}, pages = {98 -- 112}, abstract = {Detection of multiple flaws in piezoelectric structures using XFEM and level sets}, subject = {Angewandte Mathematik}, language = {en} } @article{ChenNguyenThanhNguyenXuanetal., author = {Chen, Lei and Nguyen-Thanh, Nhon and Nguyen-Xuan, Hung and Rabczuk, Timon and Bordas, St{\´e}phane Pierre Alain and Limbert, Georges}, title = {Explicit finite deformation analysis of isogeometric membranes}, series = {Computer Methods in Applied Mechanics and Engineering}, journal = {Computer Methods in Applied Mechanics and Engineering}, pages = {104 -- 130}, abstract = {Explicit finite deformation analysis of isogeometric membranes}, subject = {Angewandte Mathematik}, language = {en} } @article{VuBacLahmerKeiteletal., author = {Vu-Bac, N. and Lahmer, Tom and Keitel, Holger and Zhao, Jun-Hua and Zhuang, Xiaoying and Rabczuk, Timon}, title = {Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations}, series = {Mechanics of Materials}, journal = {Mechanics of Materials}, pages = {70 -- 84}, abstract = {Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations}, subject = {Angewandte Mathematik}, language = {en} } @article{GhasemiRafieeZhuangetal., author = {Ghasemi, Hamid and Rafiee, Roham and Zhuang, Xiaoying and Muthu, Jacob and Rabczuk, Timon}, title = {Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {295 -- 305}, abstract = {Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling}, subject = {Angewandte Mathematik}, language = {en} } @article{GhasemiBrighentiZhuangetal., author = {Ghasemi, Hamid and Brighenti, Roberto and Zhuang, Xiaoying and Muthu, Jacob and Rabczuk, Timon}, title = {Optimization of fiber distribution in fiber reinforced composite by using NURBS functions}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {463 -- 473}, abstract = {Optimization of fiber distribution in fiber reinforced composite by using NURBS functions}, subject = {Angewandte Mathematik}, language = {en} }