@article{JiangZhaoZhouetal., author = {Jiang, Jin-Wu and Zhao, Jun-Hua and Zhou, K. and Rabczuk, Timon}, title = {Superior thermal conductivity and extremely high mechanical strength in polyethylene chains from ab initio calculation}, series = {Journal of Applied Physics}, journal = {Journal of Applied Physics}, doi = {10.1063/1.4729489}, abstract = {The upper limit of the thermal conductivity and the mechanical strength are predicted for the polyethylene chain, by performing the ab initio calculation and applying the quantum mechanical non-equilibrium Green's function approach. Specially, there are two main findings from our calculation: (1) the thermal conductivity can reach a high value of 310 Wm-1 K-1 in a 100 nm polyethylene chain at room temperature and the thermal conductivity increases with the length of the chain; (2) the Young's modulus in the polyethylene chain is as high as 374.5 GPa, and the polyethylene chain can sustain 32.85\%±0.05\% (ultimate) strain before undergoing structural phase transition into gaseous ethylene.}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhaoGuoRabczuk, author = {Zhao, Jun-Hua and Guo, Wanlin and Rabczuk, Timon}, title = {An analytical molecular mechanics model for the elastic properties of crystalline polyethylene}, series = {Journal of Applied Physics}, journal = {Journal of Applied Physics}, doi = {10.1063/1.4745035}, abstract = {We present an analytical model to relate the elastic properties of crystalline polyethylene based on a molecular mechanics approach. Along the polymer chains direction, the united-atom (UA) CH2-CH2 bond stretching, angle bending potentials are replaced with equivalent Euler-Bernoulli beams. Between any two polymer chains, the explicit formulae are derived for the van der Waals interaction represented by the linear springs of different stiffness. Then, the nine independent elastic constants are evaluated systematically using the formulae. The analytical model is finally validated by present united-atom molecular dynamics (MD) simulations and against available all-atom molecular dynamics results in the literature. The established analytical model provides an efficient route for mechanical characterization of crystalline polymers and related materials.}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhaoWeiFanetal., author = {Zhao, Jun-Hua and Wei, Ning and Fan, Z. and Jiang, Jin-Wu and Rabczuk, Timon}, title = {Mechanical properties of three types of carbon allotropes}, series = {Nanotechnology}, journal = {Nanotechnology}, abstract = {Mechanical properties of three types of carbon allotropes}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhaoWangJiangetal., author = {Zhao, Jun-Hua and Wang, L. and Jiang, Jin-Wu and Wang, Z. and Guo, Wanlin and Rabczuk, Timon}, title = {A comparative study of two molecular mechanics models based on harmonic potentials}, series = {Journal of Applied Physics}, journal = {Journal of Applied Physics}, abstract = {A comparative study of two molecular mechanics models based on harmonic potentials}, subject = {Angewandte Mathematik}, language = {en} } @article{JiangZhaoRabczuk, author = {Jiang, Jin-Wu and Zhao, Jun-Hua and Rabczuk, Timon}, title = {Size-Sensitive Young's Modulus of Kinked Silicon Nanowires}, series = {Nanotechnology}, journal = {Nanotechnology}, doi = {10.1088/0957-4484/24/18/185702}, abstract = {We perform both classical molecular dynamics simulations and beam model calculations to investigate the Young's modulus of kinked silicon nanowires (KSiNWs). The Young's modulus is found to be highly sensitive to the arm length of the kink and is essentially inversely proportional to the arm length. The mechanism underlying the size dependence is found to be the interplay between the kink angle potential and the arm length potential, where we obtain an analytic relationship between the Young's modulus and the arm length of the KSiNW. Our results provide insight into the application of this novel building block in nanomechanical devices.}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhangZhaoJiaetal., author = {Zhang, Yancheng and Zhao, Jun-Hua and Jia, Yue and Mabrouki, Tarek and Gong, Yadong and Wei, Ning and Rabczuk, Timon}, title = {An analytical solution on the interface debonding for large diameter carbon nanotube-reinforced composite with functionally graded variation interphase}, series = {Composite Structures}, journal = {Composite Structures}, pages = {261 -- 269}, abstract = {An analytical solution on the interface debonding for large diameter carbon nanotube-reinforced composite with functionally graded variation interphase}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhangWeiZhaoetal., author = {Zhang, Yancheng and Wei, Ning and Zhao, Jun-Hua and Gong, Yadong and Rabczuk, Timon}, title = {Quasi-analytical solution for the stable system of the multi-layer folded graphene wrinkles}, series = {Journal of Applied Physics}, journal = {Journal of Applied Physics}, abstract = {Quasi-analytical solution for the stable system of the multi-layer folded graphene wrinkles}, subject = {Angewandte Mathematik}, language = {en} } @article{VuBacLahmerKeiteletal., author = {Vu-Bac, N. and Lahmer, Tom and Keitel, Holger and Zhao, Jun-Hua and Zhuang, Xiaoying and Rabczuk, Timon}, title = {Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations}, series = {Mechanics of Materials}, journal = {Mechanics of Materials}, pages = {70 -- 84}, abstract = {Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhaoLuRabczuk, author = {Zhao, Jun-Hua and Lu, Lixin and Rabczuk, Timon}, title = {Binding energy and mechanical stability of single- and multi-walled carbon nanotube serpentines}, series = {The Journal of Chemical Physics}, journal = {The Journal of Chemical Physics}, doi = {10.1063/1.4878115}, abstract = {Binding energy and mechanical stability of single- and multi-walled carbon nanotube serpentines}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhaoJiangJiaetal., author = {Zhao, Jun-Hua and Jiang, Jin-Wu and Jia, Yue and Guo, Wanlin and Rabczuk, Timon}, title = {A theoretical analysis of cohesive energy between carbon nanotubes, graphene and substrates}, series = {Carbon}, journal = {Carbon}, doi = {10.1016/j.carbon.2013.01.041}, pages = {108 -- 119}, abstract = {Explicit solutions for the cohesive energy between carbon nanotubes, graphene and substrates are obtained through continuum modeling of the van der Waals interaction between them. The dependence of the cohesive energy on their size, spacing and crossing angles is analyzed. Checking against full atom molecular dynamics calculations and available experimental results shows that the continuum solution has high accuracy. The equilibrium distances between the nanotubes, graphene and substrates with minimum cohesive energy are also provided explicitly. The obtained analytical solution should be of great help for understanding the interaction between the nanostructures and substrates, and designing composites and nanoelectromechanical systems.}, subject = {Angewandte Mathematik}, language = {en} }