@article{ZhangRen, author = {Zhang, Yongzheng and Ren, Huilong}, title = {Implicit implementation of the nonlocal operator method: an open source code}, series = {Engineering with computers}, volume = {2022}, journal = {Engineering with computers}, publisher = {Springer}, address = {London}, doi = {10.1007/s00366-021-01537-x}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220216-45930}, pages = {1 -- 35}, abstract = {In this paper, we present an open-source code for the first-order and higher-order nonlocal operator method (NOM) including a detailed description of the implementation. The NOM is based on so-called support, dual-support, nonlocal operators, and an operate energy functional ensuring stability. The nonlocal operator is a generalization of the conventional differential operators. Combined with the method of weighed residuals and variational principles, NOM establishes the residual and tangent stiffness matrix of operate energy functional through some simple matrix without the need of shape functions as in other classical computational methods such as FEM. NOM only requires the definition of the energy drastically simplifying its implementation. The implementation in this paper is focused on linear elastic solids for sake of conciseness through the NOM can handle more complex nonlinear problems. The NOM can be very flexible and efficient to solve partial differential equations (PDEs), it's also quite easy for readers to use the NOM and extend it to solve other complicated physical phenomena described by one or a set of PDEs. Finally, we present some classical benchmark problems including the classical cantilever beam and plate-with-a-hole problem, and we also make an extension of this method to solve complicated problems including phase-field fracture modeling and gradient elasticity material.}, subject = {Strukturmechanik}, language = {en} } @article{Zhang, author = {Zhang, Yongzheng}, title = {Nonlocal dynamic Kirchhoff plate formulation based on nonlocal operator method}, series = {Engineering with Computers}, volume = {2022}, journal = {Engineering with Computers}, publisher = {Springer}, address = {London}, doi = {10.1007/s00366-021-01587-1}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220209-45849}, pages = {1 -- 35}, abstract = {In this study, we propose a nonlocal operator method (NOM) for the dynamic analysis of (thin) Kirchhoff plates. The nonlocal Hessian operator is derived based on a second-order Taylor series expansion. The NOM does not require any shape functions and associated derivatives as 'classical' approaches such as FEM, drastically facilitating the implementation. Furthermore, NOM is higher order continuous, which is exploited for thin plate analysis that requires C1 continuity. The nonlocal dynamic governing formulation and operator energy functional for Kirchhoff plates are derived from a variational principle. The Verlet-velocity algorithm is used for the time discretization. After confirming the accuracy of the nonlocal Hessian operator, several numerical examples are simulated by the nonlocal dynamic Kirchhoff plate formulation.}, subject = {Angewandte Mathematik}, language = {en} } @phdthesis{Zhang, author = {Zhang, Yongzheng}, title = {A Nonlocal Operator Method for Quasi-static and Dynamic Fracture Modeling}, doi = {10.25643/bauhaus-universitaet.4732}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20221026-47321}, school = {Bauhaus-Universit{\"a}t Weimar}, abstract = {Material failure can be tackled by so-called nonlocal models, which introduce an intrinsic length scale into the formulation and, in the case of material failure, restore the well-posedness of the underlying boundary value problem or initial boundary value problem. Among nonlocal models, peridynamics (PD) has attracted a lot of attention as it allows the natural transition from continuum to discontinue and thus allows modeling of discrete cracks without the need to describe and track the crack topology, which has been a major obstacle in traditional discrete crack approaches. This is achieved by replacing the divergence of the Cauchy stress tensor through an integral over so-called bond forces, which account for the interaction of particles. A quasi-continuum approach is then used to calibrate the material parameters of the bond forces, i.e., equating the PD energy with the energy of a continuum. One major issue for the application of PD to general complex problems is that they are limited to fairly simple material behavior and pure mechanical problems based on explicit time integration. PD has been extended to other applications but losing simultaneously its simplicity and ease in modeling material failure. Furthermore, conventional PD suffers from instability and hourglass modes that require stabilization. It also requires the use of constant horizon sizes, which drastically reduces its computational efficiency. The latter issue was resolved by the so-called dual-horizon peridynamics (DH-PD) formulation and the introduction of the duality of horizons. Within the nonlocal operator method (NOM), the concept of nonlocality is further extended and can be considered a generalization of DH-PD. Combined with the energy functionals of various physical models, the nonlocal forms based on the dual-support concept can be derived. In addition, the variation of the energy functional allows implicit formulations of the nonlocal theory. While traditional integral equations are formulated in an integral domain, the dual-support approaches are based on dual integral domains. One prominent feature of NOM is its compatibility with variational and weighted residual methods. The NOM yields a direct numerical implementation based on the weighted residual method for many physical problems without the need for shape functions. Only the definition of the energy or boundary value problem is needed to drastically facilitate the implementation. The nonlocal operator plays an equivalent role to the derivatives of the shape functions in meshless methods and finite element methods (FEM). Based on the variational principle, the residual and the tangent stiffness matrix can be obtained with ease by a series of matrix multiplications. In addition, NOM can be used to derive many nonlocal models in strong form. The principal contributions of this dissertation are the implementation and application of NOM, and also the development of approaches for dealing with fractures within the NOM, mostly for dynamic fractures. The primary coverage and results of the dissertation are as follows: -The first/higher-order implicit NOM and explicit NOM, including a detailed description of the implementation, are presented. The NOM is based on so-called support, dual-support, nonlocal operators, and an operate energy functional ensuring stability. The nonlocal operator is a generalization of the conventional differential operators. Combining with the method of weighted residuals and variational principles, NOM establishes the residual and tangent stiffness matrix of operate energy functional through some simple matrix without the need of shape functions as in other classical computational methods such as FEM. NOM only requires the definition of the energy drastically simplifying its implementation. For the sake of conciseness, the implementation in this chapter is focused on linear elastic solids only, though the NOM can handle more complex nonlinear problems. An explicit nonlocal operator method for the dynamic analysis of elasticity solid problems is also presented. The explicit NOM avoids the calculation of the tangent stiffness matrix as in the implicit NOM model. The explicit scheme comprises the Verlet-velocity algorithm. The NOM can be very flexible and efficient for solving partial differential equations (PDEs). It's also quite easy for readers to use the NOM and extend it to solve other complicated physical phenomena described by one or a set of PDEs. Several numerical examples are presented to show the capabilities of this method. -A nonlocal operator method for the dynamic analysis of (thin) Kirchhoff plates is proposed. The nonlocal Hessian operator is derived from a second-order Taylor series expansion. NOM is higher-order continuous, which is exploited for thin plate analysis that requires \$C^1\$ continuity. The nonlocal dynamic governing formulation and operator energy functional for Kirchhoff plates are derived from a variational principle. The Verlet-velocity algorithm is used for time discretization. After confirming the accuracy of the nonlocal Hessian operator, several numerical examples are simulated by the nonlocal dynamic Kirchhoff plate formulation. -A nonlocal fracture modeling is developed and applied to the simulation of quasi-static and dynamic fractures using the NOM. The phase field's nonlocal weak and associated strong forms are derived from a variational principle. The NOM requires only the definition of energy. We present both a nonlocal implicit phase field model and a nonlocal explicit phase field model for fracture; the first approach is better suited for quasi-static fracture problems, while the key application of the latter one is dynamic fracture. To demonstrate the performance of the underlying approach, several benchmark examples for quasi-static and dynamic fracture are solved.}, subject = {Variationsprinzip}, language = {en} } @misc{ZandersBein, author = {Zanders, Theresa and Bein, Laura Eleana}, title = {Der anonyme Behandlungsschein - von der Idee zur Umsetzung. Ein Handlungsleitfaden}, editor = {Calbet i Elias, Laura and Vollmer, Lisa and Zanders, Theresa}, doi = {10.25643/bauhaus-universitaet.4716}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220928-47161}, abstract = {Der vorliegende Handlungsleitfaden hilft zivilgesellschaftlichen Organisationen und staatlichen Einrichtungen bei der Installation eines anonymen Behandlungs- oder Krankenschein f{\"u}r Menschen ohne Krankenversicherung. Dabei b{\"u}ndelt sich hier der Erfahrungsschatz verschiedener Initiativen aus dem gesamten Bundesgebiet.}, subject = {Gesundheitsversorgung}, language = {de} } @techreport{Zanders, type = {Working Paper}, author = {Zanders, Theresa}, title = {Teilhabe an Gesundheitsversorgung von aufenthaltsrechtlich illegalisierten Menschen in Deutschland}, doi = {10.25643/bauhaus-universitaet.6396}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230530-63968}, pages = {25}, abstract = {Die Gesundheitsversorgung in Deutschland ist seit den Bismarckschen Sozialreformen ein zunehmend institutionalisierter Teil der staatlichen Daseinsvorsorge im wohlfahrtsstaatlichen Gef{\"u}ge. Institutionalisiert ist die Gesundheitsversorgung in korporatistischer Logik, das heißt in kooperativen Beziehungen zum privatwirtschaftlichen und zivilgesellschaftlichen Sektor und mit Befugnissen der Selbstverwaltung. Zudem fußt das Gesundheitssystem auf einem Versicherungssystem mit lohnabh{\"a}ngigen Abgaben. Institutionalisiert ist die staatliche Daseinsvorsorge jedoch auch in seinen Ausschl{\"u}ssen. So werden Menschen ohne B{\"u}rgerrechte von vielen sozialen Rechten, wie von der Gesundheitsversorgung, ausgeschlossen, obwohl dieser Ausschluss im Widerspruch zu anderen konstitutiven Elementen des Nationalstaats steht. In diesem Working Paper werden die grundlegende Strukturen des deutschen Gesundheitssystems und darin innewohnende Funktionslogiken der Produktion von Teilhabe dargestellt. Abschließend werden in Anlehnung an Kronauer die verschiedenen Dimensionen von Teilhabe an Gesundheitsversorgung in ihrer Produktions- und Ausschlusslogik im Wohlfahrtsregime dargelegt dabei auf die Gruppe der aufenthaltsrechtlich Illegalisierten fokussiert, denen gesellschaftliche Teilhabe in vielen Lebensbereichen, wie auch stark im Gesundheitsbereich, untersagt wird. Gleichzeitig soll dargestellt werden, wie zivilgesellschaftliche Akteur*innen auch gegen staatliche Vorgaben oder Anreize, Teilhabe (wieder-)herstellen.}, subject = {Gesundheit}, language = {de} } @phdthesis{Zacharias, author = {Zacharias, Christin}, title = {Numerical Simulation Models for Thermoelastic Damping Effects}, doi = {10.25643/bauhaus-universitaet.4735}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20221116-47352}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {191}, abstract = {Finite Element Simulations of dynamically excited structures are mainly influenced by the mass, stiffness, and damping properties of the system, as well as external loads. The prediction quality of dynamic simulations of vibration-sensitive components depends significantly on the use of appropriate damping models. Damping phenomena have a decisive influence on the vibration amplitude and the frequencies of the vibrating structure. However, developing realistic damping models is challenging due to the multiple sources that cause energy dissipation, such as material damping, different types of friction, or various interactions with the environment. This thesis focuses on thermoelastic damping, which is the main cause of material damping in homogeneous materials. The effect is caused by temperature changes due to mechanical strains. In vibrating structures, temperature gradients arise in adjacent tension and compression areas. Depending on the vibration frequency, they result in heat flows, leading to increased entropy and the irreversible transformation of mechanical energy into thermal energy. The central objective of this thesis is the development of efficient simulation methods to incorporate thermoelastic damping in finite element analyses based on modal superposition. The thermoelastic loss factor is derived from the structure's mechanical mode shapes and eigenfrequencies. In subsequent analyses that are performed in the time and frequency domain, it is applied as modal damping. Two approaches are developed to determine the thermoelastic loss in thin-walled plate structures, as well as three-dimensional solid structures. The realistic representation of the dissipation effects is verified by comparing the simulation results with experimentally determined data. Therefore, an experimental setup is developed to measure material damping, excluding other sources of energy dissipation. The three-dimensional solid approach is based on the determination of the generated entropy and therefore the generated heat per vibration cycle, which is a measure for thermoelastic loss in relation to the total strain energy. For thin plate structures, the amount of bending energy in a modal deformation is calculated and summarized in the so-called Modal Bending Factor (MBF). The highest amount of thermoelastic loss occurs in the state of pure bending. Therefore, the MBF enables a quantitative classification of the mode shapes concerning the thermoelastic damping potential. The results of the developed simulations are in good agreement with the experimental results and are appropriate to predict thermoelastic loss factors. Both approaches are based on modal superposition with the advantage of a high computational efficiency. Overall, the modeling of thermoelastic damping represents an important component in a comprehensive damping model, which is necessary to perform realistic simulations of vibration processes.}, subject = {Werkstoffd{\"a}mpfung}, language = {en} } @phdthesis{Yousefi, author = {Yousefi, Hassan}, title = {Discontinuous propagating fronts: linear and nonlinear systems}, doi = {10.25643/bauhaus-universitaet.4717}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220922-47178}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {356}, abstract = {The aim of this study is controlling of spurious oscillations developing around discontinuous solutions of both linear and non-linear wave equations or hyperbolic partial differential equations (PDEs). The equations include both first-order and second-order (wave) hyperbolic systems. In these systems even smooth initial conditions, or smoothly varying source (load) terms could lead to discontinuous propagating solutions (fronts). For the first order hyperbolic PDEs, the concept of central high resolution schemes is integrated with the multiresolution-based adaptation to capture properly both discontinuous propagating fronts and effects of fine-scale responses on those of larger scales in the multiscale manner. This integration leads to using central high resolution schemes on non-uniform grids; however, such simulation is unstable, as the central schemes are originally developed to work properly on uniform cells/grids. Hence, the main concern is stable collaboration of central schemes and multiresoltion-based cell adapters. Regarding central schemes, the considered approaches are: 1) Second order central and central-upwind schemes; 2) Third order central schemes; 3) Third and fourth order central weighted non-oscillatory schemes (central-WENO or CWENO); 4) Piece-wise parabolic methods (PPMs) obtained with two different local stencils. For these methods, corresponding (nonlinear) stability conditions are studied and modified, as well. Based on these stability conditions several limiters are modified/developed as follows: 1) Several second-order limiters with total variation diminishing (TVD) feature, 2) Second-order uniformly high order accurate non-oscillatory (UNO) limiters, 3) Two third-order nonlinear scaling limiters, 4) Two new limiters for PPMs. Numerical results show that adaptive solvers lead to cost-effective computations (e.g., in some 1-D problems, number of adapted grid points are less than 200 points during simulations, while in the uniform-grid case, to have the same accuracy, using of 2049 points is essential). Also, in some cases, it is confirmed that fine scale responses have considerable effects on higher scales. In numerical simulation of nonlinear first order hyperbolic systems, the two main concerns are: convergence and uniqueness. The former is important due to developing of the spurious oscillations, the numerical dispersion and the numerical dissipation. Convergence in a numerical solution does not guarantee that it is the physical/real one (the uniqueness feature). Indeed, a nonlinear systems can converge to several numerical results (which mathematically all of them are true). In this work, the convergence and uniqueness are directly studied on non-uniform grids/cells by the concepts of local numerical truncation error and numerical entropy production, respectively. Also, both of these concepts have been used for cell/grid adaptations. So, the performance of these concepts is also compared by the multiresolution-based method. Several 1-D and 2-D numerical examples are examined to confirm the efficiency of the adaptive solver. Examples involve problems with convex and non-convex fluxes. In the latter case, due to developing of complex waves, proper capturing of real answers needs more attention. For this purpose, using of method-adaptation seems to be essential (in parallel to the cell/grid adaptation). This new type of adaptation is also performed in the framework of the multiresolution analysis. Regarding second order hyperbolic PDEs (mechanical waves), the regularization concept is used to cure artificial (numerical) oscillation effects, especially for high-gradient or discontinuous solutions. There, oscillations are removed by the regularization concept acting as a post-processor. Simulations will be performed directly on the second-order form of wave equations. It should be mentioned that it is possible to rewrite second order wave equations as a system of first-order waves, and then simulated the new system by high resolution schemes. However, this approach ends to increasing of variable numbers (especially for 3D problems). The numerical discretization is performed by the compact finite difference (FD) formulation with desire feature; e.g., methods with spectral-like or optimized-error properties. These FD methods are developed to handle high frequency waves (such as waves near earthquake sources). The performance of several regularization approaches is studied (both theoretically and numerically); at last, a proper regularization approach controlling the Gibbs phenomenon is recommended. At the end, some numerical results are provided to confirm efficiency of numerical solvers enhanced by the regularization concept. In this part, shock-like responses due to local and abrupt changing of physical properties, and also stress wave propagation in stochastic-like domains are studied.}, subject = {Partielle Differentialgleichung}, language = {en} } @article{WelchGuerra, author = {Welch Guerra, Max}, title = {Fach, Gesellschaft und Wissenschaft. Beitrag zur Debatte „Was ist Stadt? Was ist Kritik?"}, series = {sub\urban. zeitschrift f{\"u}r kritische stadtforschung}, volume = {2022}, journal = {sub\urban. zeitschrift f{\"u}r kritische stadtforschung}, number = {Band 10, Nr. 1}, publisher = {Sub\urban e.V.}, address = {Leipzig}, doi = {10.36900/suburban.v10i1.779}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220810-46855}, pages = {188 -- 190}, abstract = {Der Aufruf, die Begriffe Stadt und Kritik in das Zentrum einer Debatte zu stellen, bietet die große Chance, uns weit {\"u}ber begriffliche Kl{\"a}rungen unseres gemeinsamen Arbeitsgegenstands hinaus - die ja auch f{\"u}r sich selbst sehr fruchtbar sein k{\"o}nnen - {\"u}ber die Funktion zu verst{\"a}ndigen, die wir in der Gesellschaft aus{\"u}ben, wenn wir r{\"a}umliche Planung praktizieren, erforschen und lehren. Da in der Bundesrepublik nicht nur ein großer Bedarf, sondern auch eine betr{\"a}chtliche Nachfrage nach {\"o}ffentlicher Planung besteht und die planungsbezogenen Wissenschaften sich eines insgesamt stabilen institutionellen Standes erfreuen, laufen wir Gefahr, die gesellschaftspolitische Legitimation von Berufsfeld und Wissenschaft zu vernachl{\"a}ssigen, sie als gegeben zu behandeln. Wir m{\"u}ssen uns ja kaum rechtfertigen.}, subject = {Stadt}, language = {de} } @phdthesis{Wang, author = {Wang, Jiasheng}, title = {Lebensdauerabsch{\"a}tzung von Bauteilen aus globularem Grauguss auf der Grundlage der lokalen gießprozessabh{\"a}ngigen Werkstoffzust{\"a}nde}, doi = {10.25643/bauhaus-universitaet.4554}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220111-45542}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {165}, abstract = {Das Ziel der Arbeit ist, eine m{\"o}gliche Verbesserung der G{\"u}te der Lebensdauervorhersage f{\"u}r Gusseisenwerkstoffe mit Kugelgraphit zu erreichen, wobei die Gießprozesse verschiedener Hersteller ber{\"u}cksichtigt werden. Im ersten Schritt wurden Probenk{\"o}rper aus GJS500 und GJS600 von mehreren Gusslieferanten gegossen und daraus Schwingproben erstellt. Insgesamt wurden Schwingfestigkeitswerte der einzelnen gegossenen Proben sowie der Proben des Bauteils von verschiedenen Gussherstellern weltweit entweder durch direkte Schwingversuche oder durch eine Sammlung von Betriebsfestigkeitsversuchen bestimmt. Dank der metallografischen Arbeit und Korrelationsanalyse konnten drei wesentliche Parameter zur Bestimmung der lokalen Dauerfestigkeit festgestellt werden: 1. statische Festigkeit, 2. Ferrit- und Perlitanteil der Mikrostrukturen und 3. Kugelgraphitanzahl pro Fl{\"a}cheneinheit. Basierend auf diesen Erkenntnissen wurde ein neues Festigkeitsverh{\"a}ltnisdiagramm (sogenanntes Sd/Rm-SG-Diagramm) entwickelt. Diese neue Methodik sollte vor allem erm{\"o}glichen, die Bauteildauerfestigkeit auf der Grundlage der gemessenen oder durch eine Gießsimulation vorhersagten lokalen Zugfestigkeitswerte sowie Mikrogef{\"u}genstrukturen besser zu prognostizieren. Mithilfe der Versuche sowie der Gießsimulation ist es gelungen, unterschiedliche Methoden der Lebensdauervorhersage unter Ber{\"u}cksichtigung der Herstellungsprozesse weiterzuentwickeln.}, subject = {Grauguss}, language = {de} } @misc{Vollmer, author = {Vollmer, Lisa}, title = {Aber das sind doch die Guten - oder? Wohnungsgenossenschaften in Hamburg. Rezension zu Jo-scha Metzger (2021): Genossenschaften und die Wohnungsfrage. Konflikte im Feld der Sozialen Wohnungswirtschaft. M{\"u}nster: Westf{\"a}lisches Dampfboot}, series = {sub\urban. zeitschrift f{\"u}r kritische stadtforschung}, volume = {2022}, journal = {sub\urban. zeitschrift f{\"u}r kritische stadtforschung}, number = {Band 10, Nr. 1}, publisher = {sub\urban e. V.}, address = {Berlin}, doi = {10.36900/suburban.v10i1.795}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220713-46691}, pages = {261 -- 267}, abstract = {Warum werden in aktuellen Diskussionen Wohnungsgenossenschaften immer wieder als zentrale Akteure einer gemeinwohlorientierten Wohnraumversorgung benannt - obwohl sie kaum zur Schaffung neuen bezahlbaren Wohnraums beitragen? Warum wehrt sich die Mehrzahl der Wohnungsgenossenschaften mit H{\"a}nden und F{\"u}ßen gegen die Wiedereinf{\"u}hrung eines Gesetzes zur Wohnungsgemeinn{\"u}tzigkeit, obwohl es doch gerade dieses Gesetz war, dass sie im 20. Jahrhundert zu im internationalen Vergleich großen Unternehmen wachsen ließ? Sind Wohnungsgenossenschaften nun klientilistische, wenig demokratische und nur halb dekommodifizierte Marktteilnehmer oder wichtiger Teil der Wohnungsversorgung der unteren Mittelschicht? Wer Antworten auf diese und andere Fragen sucht und Differenziertheit in ihrer Beantwortung aush{\"a}lt, lese Joscha Metzers Dissertation „Genossenschaften und die Wohnungsfrage.}, subject = {Gentrifizierung}, language = {de} }