@inproceedings{SzolomickiBaranski, author = {Szolomicki, Jerzy Pawel and Baranski, Jacek}, title = {COMPUTATIONAL SIMULATIONS FOR HOMOGENIZATION OF MASONRY STRUCTURES}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.3026}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-30265}, pages = {7}, abstract = {In this paper proposed the application of two-parameters damage model, based on non-linear finite element approach, to the analysis of masonry panels. Masonry is treated as a homogenized material, for which the material characteristics can be defined by using homogenization technique. The masonry panels subjected to shear loading are studied by using the proposed procedure within the framework of three-dimensional analyses. The nonlinear behaviour of masonry can be modelled using concepts of damage theory. In this case an adequate damage function is defined for taking into account different response of masonry under tension and compression states. Cracking can, therefore, be interpreted as a local damage effect, defined by the evolution of known material parameters and by one or several functions which control the onset and evolution of damage. The model takes into account all the important aspects which should be considered in the nonlinear analysis of masonry structures such as the effect of stiffness degradation due to mechanical effects and the problem of objectivity of the results with respect to the finite element mesh. Finally the proposed damage model is validated with a comparison with experimental results available in the literature.}, subject = {Architektur }, language = {en} } @inproceedings{Szolomicki, author = {Szolomicki, Jerzy Pawel}, title = {STRUCTURAL BEHAVIOUR OF MASONRY VAULTS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2896}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28966}, pages = {11}, abstract = {This paper deals with the modelling and the analysis of masonry vaults. Numerical FEM analyses are performed using LUSAS code. Two vault typologies are analysed (barrel and cross-ribbed vaults) parametrically varying geometrical proportions and constraints. The proposed model and the developed numerical procedure are implemented in a computer analysis. Numerical applications are developed to assess the model effectiveness and the efficiency of the numerical procedure. The main object of the present paper is the development of a computational procedure which allows to define 3D structural behaviour of masonry vaults. For each investigated example, the homogenized limit analysis approach has been employed to predict ultimate load and failure mechanisms. Finally, both a mesh dependence study and a sensitivity analysis are reported. Sensitivity analysis is conducted varying in a wide range mortar tensile strength and mortar friction angle with the aim of investigating the influence of the mechanical properties of joints on collapse load and failure mechanisms. The proposed computer model is validated by a comparison with experimental results available in the literature.}, subject = {Angewandte Informatik}, language = {en} }