@inproceedings{LepeniesRichterZastrau2003, author = {Lepenies, Ingolf and Richter, Mike and Zastrau, Bernd W.}, title = {Numerische Simulation des mechanischen Verhaltens von Textilbeton unter Ber{\"u}cksichtigung mehrerer Strukturebenen}, doi = {10.25643/bauhaus-universitaet.328}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-3281}, year = {2003}, abstract = {The failure mechanisms of textile reinforced concrete (TRC), which is a composite of bundles of long fibers and fine concrete, are complex. Most important for the ductility is the successive debonding of the fibers from the surrounding matrix when the brittle matrix is cracking. Therefore, one of the main issues is the simulation of the bond behavior between the reinforcement and the matrix. By introducing a hierarchical material model for TRC the mechanical behavior is simulated by means of representative volume elements modelled on the meso scale. Finite element analysis is used to determine the effective properties of TRC within a periodic homogenization framework. Further, a multiscale finite element technique is suggested, where constitutive equation are formulated only on the meso level.}, subject = {Beton}, language = {en} }