@article{MortazaviRabczuk, author = {Mortazavi, Bohayra and Rabczuk, Timon}, title = {Multiscale modeling of heat conduction in graphene laminates}, series = {Carbon}, journal = {Carbon}, pages = {1 -- 7}, abstract = {Multiscale modeling of heat conduction in graphene laminates}, subject = {Angewandte Mathematik}, language = {en} } @article{ThaiNguyenXuanBordasetal., author = {Thai, Chien H. and Nguyen-Xuan, Hung and Bordas, St{\´e}phane Pierre Alain and Nguyen-Thanh, Nhon and Rabczuk, Timon}, title = {Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory}, series = {Mechanics of Advanced Materials and Structures}, journal = {Mechanics of Advanced Materials and Structures}, pages = {451 -- 469}, abstract = {Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory}, subject = {Angewandte Mathematik}, language = {en} } @article{YangBudarapuMahapatraetal., author = {Yang, Shih-Wei and Budarapu, Pattabhi Ramaiah and Mahapatra, D.R. and Bordas, St{\´e}phane Pierre Alain and Zi, Goangseup and Rabczuk, Timon}, title = {A Meshless Adaptive Multiscale Method for Fracture}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {382 -- 395}, abstract = {A Meshless Adaptive Multiscale Method for Fracture}, subject = {Angewandte Mathematik}, language = {en} } @phdthesis{Budarapu, author = {Budarapu, Pattabhi Ramaiah}, title = {Adaptive multiscale methods for fracture}, doi = {10.25643/bauhaus-universitaet.2391}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20150507-23918}, school = {Bauhaus-Universit{\"a}t Weimar}, abstract = {One major research focus in the Material Science and Engineering Community in the past decade has been to obtain a more fundamental understanding on the phenomenon 'material failure'. Such an understanding is critical for engineers and scientists developing new materials with higher strength and toughness, developing robust designs against failure, or for those concerned with an accurate estimate of a component's design life. Defects like cracks and dislocations evolve at nano scales and influence the macroscopic properties such as strength, toughness and ductility of a material. In engineering applications, the global response of the system is often governed by the behaviour at the smaller length scales. Hence, the sub-scale behaviour must be computed accurately for good predictions of the full scale behaviour. Molecular Dynamics (MD) simulations promise to reveal the fundamental mechanics of material failure by modeling the atom to atom interactions. Since the atomistic dimensions are of the order of Angstroms ( A), approximately 85 billion atoms are required to model a 1 micro- m^3 volume of Copper. Therefore, pure atomistic models are prohibitively expensive with everyday engineering computations involving macroscopic cracks and shear bands, which are much larger than the atomistic length and time scales. To reduce the computational effort, multiscale methods are required, which are able to couple a continuum description of the structure with an atomistic description. In such paradigms, cracks and dislocations are explicitly modeled at the atomistic scale, whilst a self-consistent continuum model elsewhere. Many multiscale methods for fracture are developed for "fictitious" materials based on "simple" potentials such as the Lennard-Jones potential. Moreover, multiscale methods for evolving cracks are rare. Efficient methods to coarse grain the fine scale defects are missing. However, the existing multiscale methods for fracture do not adaptively adjust the fine scale domain as the crack propagates. Most methods, therefore only "enlarge" the fine scale domain and therefore drastically increase computational cost. Adaptive adjustment requires the fine scale domain to be refined and coarsened. One of the major difficulties in multiscale methods for fracture is to up-scale fracture related material information from the fine scale to the coarse scale, in particular for complex crack problems. Most of the existing approaches therefore were applied to examples with comparatively few macroscopic cracks. Key contributions The bridging scale method is enhanced using the phantom node method so that cracks can be modeled at the coarse scale. To ensure self-consistency in the bulk, a virtual atom cluster is devised providing the response of the intact material at the coarse scale. A molecular statics model is employed in the fine scale where crack propagation is modeled by naturally breaking the bonds. The fine scale and coarse scale models are coupled by enforcing the displacement boundary conditions on the ghost atoms. An energy criterion is used to detect the crack tip location. Adaptive refinement and coarsening schemes are developed and implemented during the crack propagation. The results were observed to be in excellent agreement with the pure atomistic simulations. The developed multiscale method is one of the first adaptive multiscale method for fracture. A robust and simple three dimensional coarse graining technique to convert a given atomistic region into an equivalent coarse region, in the context of multiscale fracture has been developed. The developed method is the first of its kind. The developed coarse graining technique can be applied to identify and upscale the defects like: cracks, dislocations and shear bands. The current method has been applied to estimate the equivalent coarse scale models of several complex fracture patterns arrived from the pure atomistic simulations. The upscaled fracture pattern agree well with the actual fracture pattern. The error in the potential energy of the pure atomistic and the coarse grained model was observed to be acceptable. A first novel meshless adaptive multiscale method for fracture has been developed. The phantom node method is replaced by a meshless differential reproducing kernel particle method. The differential reproducing kernel particle method is comparatively more expensive but allows for a more "natural" coupling between the two scales due to the meshless interpolation functions. The higher order continuity is also beneficial. The centro symmetry parameter is used to detect the crack tip location. The developed multiscale method is employed to study the complex crack propagation. Results based on the meshless adaptive multiscale method were observed to be in excellent agreement with the pure atomistic simulations. The developed multiscale methods are applied to study the fracture in practical materials like Graphene and Graphene on Silicon surface. The bond stretching and the bond reorientation were observed to be the net mechanisms of the crack growth in Graphene. The influence of time step on the crack propagation was studied using two different time steps. Pure atomistic simulations of fracture in Graphene on Silicon surface are presented. Details of the three dimensional multiscale method to study the fracture in Graphene on Silicon surface are discussed.}, subject = {Material}, language = {en} } @article{HamdiaLahmerNguyenThoietal., author = {Hamdia, Khader and Lahmer, Tom and Nguyen-Thoi, T. and Rabczuk, Timon}, title = {Predicting The Fracture Toughness of PNCs: A Stochastic Approach Based on ANN and ANFIS}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {304 -- 313}, abstract = {Predicting The Fracture Toughness of PNCs: A Stochastic Approach Based on ANN and ANFIS}, subject = {Angewandte Mathematik}, language = {en} } @article{NguyenThanhValizadehNguyenetal., author = {Nguyen-Thanh, Nhon and Valizadeh, Navid and Nguyen, Manh Hung and Nguyen-Xuan, Hung and Zhuang, Xiaoying and Areias, Pedro and Zi, Goangseup and Bazilevs, Yuri and De Lorenzis, Laura and Rabczuk, Timon}, title = {An extended isogeometric thin shell analysis based on Kirchhoff-Love theory}, series = {Computer Methods in Applied Mechanics and Engineering}, journal = {Computer Methods in Applied Mechanics and Engineering}, pages = {265 -- 291}, abstract = {An extended isogeometric thin shell analysis based on Kirchho_-Love theory}, subject = {Angewandte Mathematik}, language = {en} } @phdthesis{Jia, author = {Jia, Yue}, title = {Methods based on B-splines for model representation, numerical analysis and image registration}, doi = {10.25643/bauhaus-universitaet.2484}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20151210-24849}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {200}, abstract = {The thesis consists of inter-connected parts for modeling and analysis using newly developed isogeometric methods. The main parts are reproducing kernel triangular B-splines, extended isogeometric analysis for solving weakly discontinuous problems, collocation methods using superconvergent points, and B-spline basis in image registration applications. Each topic is oriented towards application of isogeometric analysis basis functions to ease the process of integrating the modeling and analysis phases of simulation. First, we develop reproducing a kernel triangular B-spline-based FEM for solving PDEs. We review the triangular B-splines and their properties. By definition, the triangular basis function is very flexible in modeling complicated domains. However, instability results when it is applied for analysis. We modify the triangular B-spline by a reproducing kernel technique, calculating a correction term for the triangular kernel function from the chosen surrounding basis. The improved triangular basis is capable to obtain the results with higher accuracy and almost optimal convergence rates. Second, we propose an extended isogeometric analysis for dealing with weakly discontinuous problems such as material interfaces. The original IGA is combined with XFEM-like enrichments which are continuous functions themselves but with discontinuous derivatives. Consequently, the resulting solution space can approximate solutions with weak discontinuities. The method is also applied to curved material interfaces, where the inverse mapping and the curved triangular elements are considered. Third, we develop an IGA collocation method using superconvergent points. The collocation methods are efficient because no numerical integration is needed. In particular when higher polynomial basis applied, the method has a lower computational cost than Galerkin methods. However, the positions of the collocation points are crucial for the accuracy of the method, as they affect the convergent rate significantly. The proposed IGA collocation method uses superconvergent points instead of the traditional Greville abscissae points. The numerical results show the proposed method can have better accuracy and optimal convergence rates, while the traditional IGA collocation has optimal convergence only for even polynomial degrees. Lastly, we propose a novel dynamic multilevel technique for handling image registration. It is application of the B-spline functions in image processing. The procedure considered aims to align a target image from a reference image by a spatial transformation. The method starts with an energy function which is the same as a FEM-based image registration. However, we simplify the solving procedure, working on the energy function directly. We dynamically solve for control points which are coefficients of B-spline basis functions. The new approach is more simple and fast. Moreover, it is also enhanced by a multilevel technique in order to prevent instabilities. The numerical testing consists of two artificial images, four real bio-medical MRI brain and CT heart images, and they show our registration method is accurate, fast and efficient, especially for large deformation problems.}, subject = {Finite-Elemente-Methode}, language = {en} } @article{RabizadehSaboorBagherzadehRabczuk, author = {Rabizadeh, Ehsan and Saboor Bagherzadeh, Amir and Rabczuk, Timon}, title = {Application of goal-oriented error estimation and adaptive mesh refinement on thermo-mechanical multifield problems}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {27 -- 44}, abstract = {Application of goal-oriented error estimation and adaptive mesh re_nement on thermo-mechanical multi_eld problems}, subject = {Angewandte Mathematik}, language = {en} } @article{GhorashiValizadehMohammadietal., author = {Ghorashi, Seyed Shahram and Valizadeh, Navid and Mohammadi, S. and Rabczuk, Timon}, title = {T-spline based XIGA for Fracture Analysis of Orthotropic Media}, series = {Computers \& Structures}, journal = {Computers \& Structures}, pages = {138 -- 146}, abstract = {T-spline based XIGA for Fracture Analysis of Orthotropic Media}, subject = {Angewandte Mathematik}, language = {en} } @misc{Almasi, type = {Master Thesis}, author = {Almasi, Ashkan}, title = {Stochastic Analysis of Interfacial Effects on the Polymeric Nanocomposites}, doi = {10.25643/bauhaus-universitaet.2433}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20150709-24339}, school = {Bauhaus-Universit{\"a}t Weimar}, abstract = {The polymeric clay nanocomposites are a new class of materials of which recently have become the centre of attention due to their superior mechanical and physical properties. Several studies have been performed on the mechanical characterisation of these nanocomposites; however most of those studies have neglected the effect of the interfacial region between the clays and the matrix despite of its significant influence on the mechanical performance of the nanocomposites. There are different analytical methods to calculate the overall elastic material properties of the composites. In this study we use the Mori-Tanaka method to determine the overall stiffness of the composites for simple inclusion geometries of cylinder and sphere. Furthermore, the effect of interphase layer on the overall properties of composites is calculated. Here, we intend to get ounds for the effective mechanical properties to compare with the analytical results. Hence, we use linear displacement boundary conditions (LD) and uniform traction boundary conditions (UT) accordingly. Finally, the analytical results are compared with numerical results and they are in a good agreement. The next focus of this dissertation is a computational approach with a hierarchical multiscale method on the mesoscopic level. In other words, in this study we use the stochastic analysis and computational homogenization method to analyse the effect of thickness and stiffness of the interfacial region on the overall elastic properties of the clay/epoxy nanocomposites. The results show that the increase in interphase thickness, reduces the stiffness of the clay/epoxy naocomposites and this decrease becomes significant in higher clay contents. The results of the sensitivity analysis prove that the stiffness of the interphase layer has more significant effect on the final stiffness of nanocomposites. We also validate the results with the available experimental results from the literature which show good agreement.}, language = {en} }