@inproceedings{RueppelMeissnerGreb2004, author = {Rueppel, Uwe and Meißner, Udo F. and Greb, Steffen}, title = {A Petri Net based Method for Distributed Process Modelling in Structural Engineering}, doi = {10.25643/bauhaus-universitaet.133}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1338}, year = {2004}, abstract = {The contribution introduces a method for the distributed process modelling in order to support the process orientation in Structural Engineering, i.e., the modelling, analysis and management of planning processes. The approach is based on the Petri Net theory for the modelling of planning processes and workflows in Structural Engineering. Firstly, a central and coarse process model serves as a pre-structuring system for the detailed modelling of the technical planning activities. Secondly, the involved planning participants generate distributed process models with detailed technical workflow information. Finally, these distributed process models will be combined in the central workflow net. The final net is of great importance for the process orientation in Structural Engineering, i.e., the identification, publication, analysis, optimization and finally the management of planning processes.}, subject = {Ingenieurbau}, language = {en} } @inproceedings{Olivier2004, author = {Olivier, A. H.}, title = {An application-centred framework for distributed engineering applications}, doi = {10.25643/bauhaus-universitaet.135}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1353}, year = {2004}, abstract = {The conceptual structure of an application that can support the structural analysis task in a distributed collaboratory is described in (van Rooyen and Olivier 2004). The application described there has a standalone component for executing the finite element method on a local workstation in the absence of network access. This application is comparable to current, local workstation based finite element packages. However, it differs fundamentally from standard packages since the application itself, and its objects, are adapted to support distributed execution of the analysis task. Basic aspects of an object-oriented framework for the development of applications which can be used in similar distributed collaboratories are described in this paper. An important feature of this framework is its application-centred design. This means that an application can contain any number of engineering models, where the models are formed by the collection of objects according to semantic views within the application. This is achieved through very flexible classes Application and Model, which are described in detail. The advantages of the application-centred design approach is demonstrated with reference to the design of steel structures, where the finite element analysis model, member design model and connection design model interact to provide the required functionality.}, subject = {Ingenieurbau}, language = {en} } @article{vanTreeckRank2004, author = {van Treeck, Christoph and Rank, Ernst}, title = {Analysis of building structure and topology based on Graph Theory}, doi = {10.25643/bauhaus-universitaet.230}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2308}, year = {2004}, abstract = {Individual views on a building product of people involved in the design process imply different models for planning and calculation. In order to interpret these geometrical, topological and semantical data of a building model we identify a structural component graph, a graph of room faces, a room graph and a relational object graph as aids and we explain algorithms to derive these relations. The application of the technique presented is demonstrated by the analysis and discretization of a sample model in the scope of building energy simulation.}, subject = {Produktmodell}, language = {en} } @inproceedings{Hartmann2004, author = {Hartmann, Ulrich C.}, title = {Collaboration in AEC Design : Web-enabling Applications using Peer-to-Peer Office Communicator}, doi = {10.25643/bauhaus-universitaet.138}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1386}, year = {2004}, abstract = {A market analysis conducted by Gartner Dataquest in August 2001 has shown the typical characteristics of the AEC design process. High volatility in membership of AEC design groups and members dispersed over several external offices is the common collaboration scenario. Membership is most times short lived, compared to the overall duration of the process. A technical solution has to take that into account by making joining and leaving a collaborative work group very easy. The modelling of roles of collaboration between group members must be based on a commonly understood principle like the publisher / subscriber model, where the individual that is responsible for the distribution of vital information is clear. Security issues and trust in the confidentiality of the system is a central concern for the acceptance of the system. Therefore, keeping the subset of data that will be published under the absolute control of the publisher is a must. This is not the case with server-based scenarios, sometimes even due to psychological reasons. A loosely bound Peer-to-Peer network offers advantages over a server-based solution, because of less administrative overhead and simple installation procedures. In a peer-to-peer environment, a publish/subscribe role model can be more easily implemented. The publish/subscribe model matches the way AEC processes are modelled in real world scenarios today, where legal proof of information exchange between external offices is of high importance. Workflow management systems for small to midsize companies of the AEC industry may adopt the peer-to-peer approach to collaboration in the future. Further investigations are being made on the research level (WINDS) by integrating the viewer and redlining application Collaborate! into a collaborative environment.}, subject = {Ingenieurbau}, language = {en} } @inproceedings{MilesJoitaBurnap2004, author = {Miles, John and Joita, Liviu and Burnap, Peter}, title = {Collaborative Engineering: Virtual Teams in a Grid Environment Supporting Consortia in the Construction Industry}, doi = {10.25643/bauhaus-universitaet.136}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1362}, year = {2004}, abstract = {In the AEC (Architecture / Engineering / Construction) industry a number of individuals and organisations collaborate and work jointly on a construction project. The resulting consortium has large pool of expertise and experience and can be defined as a Virtual Organisation (VO) formed for the duration of the project. VOs are electronically networked organisations where IT and web based communication technology play an important role in coordinating various activities of these organisations. This paper describes the design, development and implementation of a Grid enabled application called the Product Supplier Catalogue Database (PSCD) which supports collaborative working in consortia. As part of the Grid-enabling process, specialised metadata is being developed to enable PSCD to effectively utilise Grid middleware such as Globus and Java CoG toolkits. We also describe our experience whilst designing, developing and deploying the security service of the application using the Globus Security Interface (GSI).}, subject = {Ingenieurbau}, language = {en} } @inproceedings{LaehrBletzinger2004, author = {L{\"a}hr, Andr{\´e} and Bletzinger, Kai-Uwe}, title = {Design of an Analysis Environment for Planning Decision Support}, doi = {10.25643/bauhaus-universitaet.1370}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1370}, year = {2004}, abstract = {In this contribution, the design of an analysis environment is presented, that supports an analyst to come to a decision within a gradual collaborative planning process. An analyst represents a project manager, planner or any other person, involved in the planning process. Today, planning processes are managed by several geographically distributed planners and project managers. Thus, complexity of such a process rises even more. Prediction of consequences of many planning decisions is not possible, in particular since assessment of a planning advance is not trivial. There have to be considered several viewpoints, that depend on individual perceptions. In the following, methods are presented to realize planning decision support.}, subject = {Ingenieurbau}, language = {en} } @inproceedings{YahiaouiHensenSoethout2004, author = {Yahiaoui, Azzedine and Hensen, Jan and Soethout, Luc}, title = {Developing CORBA-based distributed control and building performance environments by run-time coupling}, doi = {10.25643/bauhaus-universitaet.134}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1347}, year = {2004}, abstract = {Communication software and distributed applications for control and building performance simulation software must be reliable, efficient, flexible, and reusable. This paper reports on progress of a project, which aims to achieve better integrated building and systems control modeling in building performance simulation by run-time coupling of distributed computer programs. These requirements motivate the use of the Common Object Request Broker Architecture (CORBA), which offers sufficient advantage than communication within simple abstraction. However, set up highly available applications with CORBA is hard. Neither control modeling software nor building performance environments have simple interface with CORBA objects. Therefore, this paper describes an architectural solution to distributed control and building performance software tools with CORBA objects. Then, it explains how much the developement of CORBA based distributed building control simulation applications is difficult. The paper finishes by giving some recommendations.}, subject = {Ingenieurbau}, language = {en} } @article{SchleicherRieche1997, author = {Schleicher, W. and Rieche, M.}, title = {Die Anwendung der computergest{\"u}tzten Tragwerksplanung von konstruktiven Ingenieurbauwerken im Zuge des Verkehrsprojektes Inter-City-Express 97}, doi = {10.25643/bauhaus-universitaet.498}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-4989}, year = {1997}, abstract = {Die Entwicklung Berlins zur neuen Hauptstadt des vereinigten Deutschlands erfordert den umfangreichen Ausbau der innerst{\"a}dtischen Verkehrswege und eine umfassende Einbindung in das bundesweite Verkehrsnetz. Der Ausbau der Inter-City-Express-Strecke zwischen Hannover und Berlin bedingte eine Umplanung großer Streckenabschnitte der Deutschen Bahn AG. Im Zeitalter der computergest{\"u}tzten Informationsverarbeitung sind gerade auf dem Gebiet der Tragwerksplanung konstruktiver Ingenieurbauten vielf{\"a}ltige M{\"o}glichkeiten gegeben. So ist bei der Planung von Br{\"u}ckenneubauten eine durchgehende computergest{\"u}tzte Konstruktion und Tragwerksplanung vom Vorentwurf bis hin zur Fertigung m{\"o}glich. Weiterhin gestatten besondere Berechnungsmethoden bei speziellen Belastungsarten eine exaktere Schnittkraft- und Spannungsermittlung und dadurch eine dem wirklichen Tragverhalten entsprechende genauere Nachweisf{\"u}hrung. An Beispielen aus dem konstruktiven Ingenieurbau im Zuge der Sanierung der Berliner Stadtbahn wird die Anwendung moderner Rechentechnik und computergest{\"u}tzter Konstruktionsmethoden und Berechnungsverfahren diskutiert. Die Berliner Stadtbahn wird in weiten Abschnitten {\"u}ber gemauerte Ziegelsteinviadukte gef{\"u}hrt. Das Konzept der Sanierungsmaßnahmen sah neben der Anordnung einer lastverteilenden Platte einen Gleisaufbau als Feste Fahrbahn vor. Zus{\"a}tzlich wurden die Gleisabst{\"a}nde den heutigen Bundesbahnvorschriften angepaßt. Aus diesem Grund wurde eine genaue Nachrechnung der Stadbahnviadukte unter Ber{\"u}cksichtigung der verschiedensten Parameter (z.B. Fugen in der lastverteilenden Platte, Rißbildung im Mauerwerk, Schubverformungen in Fugen zwischen Beton und Mauerwerk bei {\"U}berschreitung von Grenzwerten) erforderlich. Die zwischen dem Berliner Hauptbahnhof und dem Bahnhof Jannowitzbr{\"u}cke befindliche Eisenbahn{\"u}berf{\"u}hrung {\"u}ber die Holzmarktstraße wurden abgebrochen. Das neue Bauwerk besteht aus einer zweifeldrigen, schiefwinkligen Deckbr{\"u}cke f{\"u}r 4 Gleise. Auf Grund der komplizierten geometrischen Randbedingungen erfolgte eine durchg{\"a}ngige computergest{\"u}tzte Erstellung der Ausf{\"u}hrungsunterlagen. Die Hauptabmessungen der Konstruktion wurden mit Hilfe von Vermessungsdaten bestimmt, die im CAD-Programm verarbeitet wurden. Die CAD-Daten bildeten die geometrischen Eingangsgr{\"o}ßen f{\"u}r das Berechnungsprogramm. Die Querschnittsdimensionierung der Berechnung ging dann in die CAD-Bearbeitung ein. Die Koordinaten f{\"u}r die Werkstattfertigung sowie f{\"u}r die Montage auf der Baustelle ergaben sich ebenfalls aus den Berechnungsergebnissen.}, subject = {Ingenieurbau}, language = {de} } @inproceedings{GebbekenBaumhauerIonita2004, author = {Gebbeken, Norbert and Baumhauer, Andreas and Ionita, Mihai}, title = {Increasing the Reliability and Performance through Automatization and Parallel Working}, doi = {10.25643/bauhaus-universitaet.139}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1397}, year = {2004}, abstract = {Re-examination of the behaviour of structures can be necessary due to deterioration or changes in the traffic situation during their lifetime. The Finite Element Method (FEM) is widely used in order to accomplish numerical analysis. Considering the development of computer performance, more detailed FEM models can be analyzed, even on site, with mobile computers. To compensate the increasing amount of data needed for the model input, measures need to be taken to save time, by distributing the work. In order to provide consistency to the model, fedback data must be checked upon reception. A local wireless computer network of ultra-portable devices linked together with a computer can provide the coordination necessary for efficient parallel working. Based on a digital model consisting of all data gathered, structural modelling and numerical analysis are performed automatically. Thus, the user is released from the work that can be automatized and the time needed for the overall analysis of a structure is decreased.}, subject = {Ingenieurbau}, language = {en} } @inproceedings{Palm2004, author = {Palm, Johan}, title = {Integrated Engineering Workflow focused on the Structural Engineering in the Industrial Environment}, doi = {10.25643/bauhaus-universitaet.162}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1625}, year = {2004}, abstract = {The engineering and construction industry has been slow to exploit the full potential of information technology. The industry is highly fragmented, price sensitive, risk-adverse, and profit margins are small. Each project is unique with a small amount of technological innovation opportunities to capitalise on from one project to the next. Technological innovations that have been taking place are just simulating the old traditional paper workflow. Engineering information in digital form is being conveyed using traditional paper representations, which have to be interpreted by humans before the information can be used in other applications, thereby creating 'islands of information'. It can be seen that poorly implemented IT strategies are duplicating paperwork, rather than reducing or eliminating it (Crowley et al., 2000). This paper will introduce the Integrated Engineering Workflow (IEW) concept to re-organise a structural discipline working on multi-disciplinary projects so as to maximise the advantages offered by new information technology.}, subject = {Baubetrieb}, language = {en} }