@inproceedings{Bannwart1997, author = {Bannwart, E.}, title = {"CyberCity" - die Stadt im Kopf}, doi = {10.25643/bauhaus-universitaet.424}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-4247}, year = {1997}, abstract = {>CyberCity< ist ein Konzept, das durch ein virtuelles Abbild der r{\"a}umlichen Realit{\"a}t einer Stadt (Berlin) eine uns bekannte Wahrnehmungsumgebung als Orientierungs- und Navigationserleichterung bereitstellt, um {\"u}ber diesen virtuellen Browser m{\"o}glichst schnell und anschaulich an eine gew{\"u}nschte Information zu kommen. Dieses Umgebungsmodell ist auch als Simulationsmodell f{\"u}r die Visualisierung stadtr{\"a}umlicher Beurteilungen neuer Projekte, verkehrstechnischer Massnahmen und {\"o}kologischer Belastungen geeignet. Insbesondere ist es als Orientierungsumgebung f{\"u}r die Telepr{\"a}senz {\"u}ber die Kommunikationsnetze gedacht, die {\"u}ber die virtuellen Repr{\"a}sentanten (Avatare) eine besondere gesellschaftliche Brisanz erh{\"a}lt.}, subject = {Stadtplanung}, language = {de} } @phdthesis{Kunert, author = {Kunert, Andr{\´e}}, title = {3D Interaction Techniques in Multi-User Virtual Reality : towards scalable templates and implementation patterns for cooperative interfaces}, doi = {10.25643/bauhaus-universitaet.4296}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20201204-42962}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {147}, abstract = {Multi-user projection systems provide a coherent 3D interaction space for multiple co-located users that facilitates mutual awareness, full-body interaction, and the coordination of activities. The users perceive the shared scene from their respective viewpoints and can directly interact with the 3D content. This thesis reports on novel interaction patterns for collaborative 3D interaction for local and distributed user groups based on such multi-user projection environments. A particular focus of our developments lies in the provision of multiple independent interaction territories in our workspaces and their tight integration into collaborative workflows. The motivation for such multi-focus workspaces is grounded in research on social cooperation patterns, specifically in the requirement for supporting phases of loose and tight collaboration and the emergence of dedicated orking territories for private usage and public exchange. We realized independent interaction territories in the form of handheld virtual viewing windows and multiple co-located hardware displays in a joint workspace. They provide independent views of a shared virtual environment and serve as access points for the exploration and manipulation of the 3D content. Their tight integration into our workspace supports fluent transitions between individual work and joint user engagement. The different affordances of various displays in an exemplary workspace consisting of a large 3D wall, a 3D tabletop, and handheld virtual viewing windows, promote different usage scenarios, for instance for views from an egocentric perspective, miniature scene representations, close-up views, or storage and transfer areas. This work shows that this versatile workspace can make the cooperation of multiple people in joint tasks more effective, e.g. by parallelizing activities, distributing subtasks, and providing mutual support. In order to create, manage, and share virtual viewing windows, this thesis presents the interaction technique of Photoportals, a tangible interface based on the metaphor of digital photography. They serve as configurable viewing territories and enable the individual examination of scene details as well as the immediate sharing of the prepared views. Photoportals are specifically designed to complement other interface facets and provide extended functionality for scene navigation, object manipulation, and for the creation of temporal recordings of activities in the virtual scene. A further objective of this work is the realization of a coherent interaction space for direct 3D input across the independent interaction territories in multi-display setups. This requires the simultaneous consideration of user input in several potential interaction windows as well as configurable disambiguation schemes for the implicit selection of distinct interaction contexts. We generalized the required implementation structures into a high-level software pattern and demonstrated its versatility by means of various multi-context 3D interaction tools. Additionally, this work tackles specific problems related to group navigation in multiuser projection systems. Joint navigation of a collocated group of users can lead to unintentional collisions when passing narrow scene sections. In this context, we suggest various solutions that prevent individual collisions during group navigation and discuss their effect on the perceived integrity of the travel group and the 3D scene. For collaboration scenarios involving distributed user groups, we furthermore explored different configurations for joint and individual travel. Last but not least, this thesis provides detailed information and implementation templates for the realization of the proposed interaction techniques and collaborative workspaces in scenegraph-based VR systems. These contributions to the abstraction of specific interaction patterns, such as group navigation and multi-window interaction, facilitate their reuse in other virtual reality systems and their adaptation to further collaborative scenarios.}, subject = {Virtuelle Realit{\"a}t}, language = {en} } @article{YabukiKotaniShitani2004, author = {Yabuki, Nobuyoshi and Kotani, Jun and Shitani, Tomoaki}, title = {A Steel Bridge Design System Architecture using VR-CAD and Web Service-based Multi-Agents}, doi = {10.25643/bauhaus-universitaet.214}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2146}, year = {2004}, abstract = {This paper presents a new design environment based on Multi-Agents and Virtual Reality (VR). In this research, a design system with a virtual reality function was developed. The virtual world was realized by using GL4Java, liquid crystal shutter glasses, sensor systems, etc. And the Multi-Agent CAD system with product models, which had been developed before, was integrated with the VR design system. A prototype system was developed for highway steel plate girder bridges, and was applied to a design problem. The application verified the effectiveness of the developed system.}, subject = {Mehragentensystem}, language = {en} } @article{Picon2003, author = {Picon, Antoine}, title = {Architecture and the virtual : towards a new materiality?}, doi = {10.25643/bauhaus-universitaet.1236}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20080227-13031}, year = {2003}, abstract = {Wissenschaftliches Kolloquium vom 24. bis 27. April 2003 in Weimar an der Bauhaus-Universit{\"a}t zum Thema: ‚MediumArchitektur - Zur Krise der Vermittlung'}, subject = {Architektur}, language = {en} } @article{KangMiranda2004, author = {Kang, Shihchung and Miranda, Eduardo}, title = {Automated Simulation of the Erection Activities in Virtual Construction}, doi = {10.25643/bauhaus-universitaet.231}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2310}, year = {2004}, abstract = {The goal of the research is the development of a computer system to plan, simulate and visualize erection processes in construction. In the research construction cranes are treated as robots with predefined degrees of freedom and crane-specific motion planning techniques are developed to generate time-optimized and collision-free paths for each piece to be erected in the project. Using inverse kinematics and structural dynamics simulation, the computer system then computes the crane motions and velocities necessary to achieve the previously calculated paths. The main benefits of the research are the accurate planning and scheduling of crane operations leading to optimization of crane usage and project schedules, as well as improving overall crane safety in the project. This research is aimed at the development of systems that will allow computer-assisted erection of civil infrastructure and ultimately to achieve fully-automated erection processes using robotic cranes...}, subject = {Produktmodell}, language = {en} } @phdthesis{Salzmann2010, author = {Salzmann, Holger}, title = {Collaboration in Co-located Automotive Applications}, doi = {10.25643/bauhaus-universitaet.1422}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20100712-15102}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2010}, abstract = {Virtual reality systems offer substantial potential in supporting decision processes based purely on computer-based representations and simulations. The automotive industry is a prime application domain for such technology, since almost all product parts are available as three-dimensional models. The consideration of ergonomic aspects during assembly tasks, the evaluation of humanmachine interfaces in the car interior, design decision meetings as well as customer presentations serve as but a few examples, wherein the benefit of virtual reality technology is obvious. All these tasks require the involvement of a group of people with different expertises. However, current stereoscopic display systems only provide correct 3D-images for a single user, while other users see a more or less distorted virtual model. This is a major reason why these systems still face limited acceptance in the automotive industry. They need to be operated by experts, who have an advanced understanding of the particular interaction techniques and are aware of the limitations and shortcomings of virtual reality technology. The central idea of this thesis is to investigate the utility of stereoscopic multi-user systems for various stages of the car development process. Such systems provide multiple users with individual and perspectively correct stereoscopic images, which are key features and serve as the premise for the appropriate support of collaborative group processes. The focus of the research is on questions related to various aspects of collaboration in multi-viewer systems such as verbal communication, deictic reference, embodiments and collaborative interaction techniques. The results of this endeavor provide scientific evidence that multi-viewer systems improve the usability of VR-applications for various automotive scenarios, wherein co-located group discussions are necessary. The thesis identifies and discusses the requirements for these scenarios as well as the limitations of applying multi-viewer technology in this context. A particularly important gesture in real-world group discussions is referencing an object by pointing with the hand and the accuracy which can be expected in VR is made evident. A novel two-user seating buck is introduced for the evaluation of ergonomics in a car interior and the requirements on avatar representations for users sitting in a car are identified. Collaborative assembly tasks require high precision. The novel concept of a two-user prop significantly increases the quality of such a simulation in a virtual environment and allows ergonomists to study the strain on workers during an assembly sequence. These findings contribute toward an increased acceptance of VR-technology for collaborative development meetings in the automotive industry and other domains.}, subject = {Virtuelle Realit{\"a}t}, language = {en} } @inproceedings{BargstaedtAilland2011, author = {Bargst{\"a}dt, Hans-Joachim and Ailland, Karin}, title = {CONVR 2011 : Proceedings of the 11th International Conference on Construction Applications of Virtual Reality}, isbn = {978-3-86068-458-0}, doi = {10.25643/bauhaus-universitaet.1468}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111102-15603}, year = {2011}, abstract = {Proceedings of the 11th International Conference on Construction Applications of Virtual Reality}, subject = {Plant Simulation }, language = {en} } @article{Zierold2003, author = {Zierold, Sabine}, title = {Das Virtuelle im Realen : der virtuelle Raum als Entgrenzung des physischen Raumes der Architektur}, doi = {10.25643/bauhaus-universitaet.1282}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20080318-13522}, year = {2003}, abstract = {Wissenschaftliches Kolloquium vom 24. bis 27. April 2003 in Weimar an der Bauhaus-Universit{\"a}t zum Thema: ‚MediumArchitektur - Zur Krise der Vermittlung'}, subject = {Raum}, language = {de} } @article{BargstaedtBlickling2005, author = {Bargst{\"a}dt, Hans-Joachim and Blickling, Arno}, title = {Determination of process durations on virtual construction sites}, doi = {10.25643/bauhaus-universitaet.620}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-6207}, year = {2005}, abstract = {The paper analyses the application of 3D gaming technologies in the simulation of processes associated with human resources and machinery on construction sites in order to determine process costs. It addresses the problem of detailing in process simulation. The authors outline special boundary conditions for the simulation of cost-relevant resource processes on virtual construction sites. The approach considers different needs for detailing in process simulation during the planning and building phase. For simulation of process costs on a construction site (contractors view) the level of detail has to be set to high. A prototype for determination of process durations (and hereby process costs) developed at the Bauhaus University Weimar is presented as a result of ongoing researches on detailing in process simulation. It shows the method of process cost determination on a high level of detail (game between excavator and truck) through interaction with the virtual environment of the site.}, subject = {Prozesssimulation}, language = {en} } @phdthesis{Jakob2004, author = {Jakob, Patrick}, title = {Die Bedeutung von klassischen Elementen in virtueller Architektur - Untersucht am Beispiel der Wand}, doi = {10.25643/bauhaus-universitaet.651}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20050708-6849}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2004}, abstract = {Die Dissertation exploriert und evaluiert die Definition einer Entsprechung der architektonischen Kategorie der Wand f{\"u}r virtuelle Architekturen. Es wird der Frage nachgegangen, inwieweit eine architektonische Strukturierung in der virtuellen Architektur fortzuf{\"u}hren ist, um Handlungs- und Kommunikationsstrukturen zu sichern. Der erste Teil motiviert die Arbeit und vermittelt die Grundlagen und Termini, die in einem direkten Zusammenhang mit der virtuellen Architektur verwendet werden. Der folgende Teil konzentriert sich ausschließlich auf die reale Architektur. Ausgehend vom Element der Wand wird, in einer analytischen und architekturtheoretischen Betrachtung, ein Modell von Raumkategorien entwickelt, welches im Hinblick auf die virtuelle Architektur von besonderer Bedeutung ist. Die aus der Analyse gewonnen Erkenntnisse in Form von Raumkategorien werden im dritten Teil aus der realen in die virtuelle Architektur {\"u}bertragen. Das folgende Kapitel beschreibt drei Experimente, die Fra-gen, Hypothesen und Ans{\"a}tze aus den vorangegangenen Kapiteln empirisch evaluieren. Im abschließenden Kapitel werden die Erkenntnisse der experimentellen Untersuchung im Kontext des architektonischen Gestaltens von virtuellen Architekturen diskutiert.}, subject = {Virtuelle Realit{\"a}t}, language = {de} }