@inproceedings{YahiaouiHensenSoethout2004, author = {Yahiaoui, Azzedine and Hensen, Jan and Soethout, Luc}, title = {Developing CORBA-based distributed control and building performance environments by run-time coupling}, doi = {10.25643/bauhaus-universitaet.134}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1347}, year = {2004}, abstract = {Communication software and distributed applications for control and building performance simulation software must be reliable, efficient, flexible, and reusable. This paper reports on progress of a project, which aims to achieve better integrated building and systems control modeling in building performance simulation by run-time coupling of distributed computer programs. These requirements motivate the use of the Common Object Request Broker Architecture (CORBA), which offers sufficient advantage than communication within simple abstraction. However, set up highly available applications with CORBA is hard. Neither control modeling software nor building performance environments have simple interface with CORBA objects. Therefore, this paper describes an architectural solution to distributed control and building performance software tools with CORBA objects. Then, it explains how much the developement of CORBA based distributed building control simulation applications is difficult. The paper finishes by giving some recommendations.}, subject = {Ingenieurbau}, language = {en} } @inproceedings{VilceanuAbrahamczykMorgenthal, author = {V{\^i}lceanu, Victor and Abrahamczyk, Lars and Morgenthal, Guido}, title = {Nonlinear Analysis of Structures: Wind Induced Vibrations}, doi = {10.25643/bauhaus-universitaet.4033}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20191122-40337}, pages = {183}, abstract = {The proceedings at hand are the result of the International Master Course Module: "Nonlinear Analysis of Structures: Wind Induced Vibrations" held at the Faculty of Civil Engineering at Bauhaus-University Weimar, Germany in the summer semester 2019 (April - August). This material summarizes the results of the project work done throughout the semester, provides an overview of the topic, as well as impressions from the accompanying programme. Wind Engineering is a particular field of Civil Engineering that evaluates the resistance of structures caused by wind loads. Bridges, high-rise buildings, chimneys and telecommunication towers might be susceptible to wind vibrations due to their increased flexibility, therefore a special design is carried for this aspect. Advancement in technology and scientific studies permit us doing research at small scale for more accurate analyses. Therefore scaled models of real structures are built and tested for various construction scenarios. These models are placed in wind tunnels where experiments are conducted to determine parameters such as: critical wind speeds for bridge decks, static wind coefficients and forces for buildings or bridges. The objective of the course was to offer insight to the students into the assessment of long-span cable-supported bridges and high-rise buildings under wind excitation. The participating students worked in interdisciplinary teams to increase their knowledge in the understanding and influences on the behaviour of wind-sensitive structures.}, subject = {Ingenieurbau}, language = {en} } @inproceedings{vanRooyenOlivier2004, author = {van Rooyen, G.C. and Olivier, A. H.}, title = {Notes on structural analysis in a distributed collaboratory}, doi = {10.25643/bauhaus-universitaet.145}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1451}, year = {2004}, abstract = {The worldwide growth of communication networks and associated technologies provide the basic infrastructure for new ways of executing the engineering process. Collaboration amongst team members seperated in time and location is of particular importance. Two broad themes can be recognized in research pertaining to distributed collaboration. One theme focusses on the technical and technological aspects of distributed work, while the other emphasises human aspects thereof. The case of finite element structural analysis in a distributed collaboratory is examined in this paper. An approach is taken which has its roots in human aspects of the structural analysis task. Based on experience of how structural engineers currently approach and execute this task while utilising standard software designed for use on local workstations only, criteria are stated for a software architechture that could support collaborative structural analysis. Aspects of a pilot application and the results of qualitative performance measurements are discussed.}, subject = {Ingenieurbau}, language = {en} } @inproceedings{SchleyMejstrikHolz2004, author = {Schley, Frank and Mejstrik, Marcus and Holz, K.-Peter}, title = {Network Based Co-operation Platform for Geotechnical Engineering}, doi = {10.25643/bauhaus-universitaet.143}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1431}, year = {2004}, abstract = {This paper describes an approach to support co-operation of experts in heterogeneous geotechnical engineering project environments during both regular execution and handling of exceptional situations. A co-operation platform is introduced which is based on a generalized information model mapping key information about the construction project, the construction process as well as the organization structure. Several tools are provided to operate the information model in a network based environment.}, subject = {Ingenieurbau}, language = {en} } @inproceedings{RueppelMeissnerGreb2004, author = {Rueppel, Uwe and Meißner, Udo F. and Greb, Steffen}, title = {A Petri Net based Method for Distributed Process Modelling in Structural Engineering}, doi = {10.25643/bauhaus-universitaet.133}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1338}, year = {2004}, abstract = {The contribution introduces a method for the distributed process modelling in order to support the process orientation in Structural Engineering, i.e., the modelling, analysis and management of planning processes. The approach is based on the Petri Net theory for the modelling of planning processes and workflows in Structural Engineering. Firstly, a central and coarse process model serves as a pre-structuring system for the detailed modelling of the technical planning activities. Secondly, the involved planning participants generate distributed process models with detailed technical workflow information. Finally, these distributed process models will be combined in the central workflow net. The final net is of great importance for the process orientation in Structural Engineering, i.e., the identification, publication, analysis, optimization and finally the management of planning processes.}, subject = {Ingenieurbau}, language = {en} } @inproceedings{Palm2004, author = {Palm, Johan}, title = {Integrated Engineering Workflow focused on the Structural Engineering in the Industrial Environment}, doi = {10.25643/bauhaus-universitaet.162}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1625}, year = {2004}, abstract = {The engineering and construction industry has been slow to exploit the full potential of information technology. The industry is highly fragmented, price sensitive, risk-adverse, and profit margins are small. Each project is unique with a small amount of technological innovation opportunities to capitalise on from one project to the next. Technological innovations that have been taking place are just simulating the old traditional paper workflow. Engineering information in digital form is being conveyed using traditional paper representations, which have to be interpreted by humans before the information can be used in other applications, thereby creating 'islands of information'. It can be seen that poorly implemented IT strategies are duplicating paperwork, rather than reducing or eliminating it (Crowley et al., 2000). This paper will introduce the Integrated Engineering Workflow (IEW) concept to re-organise a structural discipline working on multi-disciplinary projects so as to maximise the advantages offered by new information technology.}, subject = {Baubetrieb}, language = {en} } @inproceedings{Olivier2004, author = {Olivier, A. H.}, title = {An application-centred framework for distributed engineering applications}, doi = {10.25643/bauhaus-universitaet.135}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1353}, year = {2004}, abstract = {The conceptual structure of an application that can support the structural analysis task in a distributed collaboratory is described in (van Rooyen and Olivier 2004). The application described there has a standalone component for executing the finite element method on a local workstation in the absence of network access. This application is comparable to current, local workstation based finite element packages. However, it differs fundamentally from standard packages since the application itself, and its objects, are adapted to support distributed execution of the analysis task. Basic aspects of an object-oriented framework for the development of applications which can be used in similar distributed collaboratories are described in this paper. An important feature of this framework is its application-centred design. This means that an application can contain any number of engineering models, where the models are formed by the collection of objects according to semantic views within the application. This is achieved through very flexible classes Application and Model, which are described in detail. The advantages of the application-centred design approach is demonstrated with reference to the design of steel structures, where the finite element analysis model, member design model and connection design model interact to provide the required functionality.}, subject = {Ingenieurbau}, language = {en} } @inproceedings{MundaniBungartz2004, author = {Mundani, Ralf-Peter and Bungartz, Hans-Joachim}, title = {Octrees for Cooperative Work in a Network-Based Environment}, doi = {10.25643/bauhaus-universitaet.146}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1460}, year = {2004}, abstract = {Assuring global consistency in a cooperative working environment is the main focus of many nowaday research projects in the field of civil engineering and others. In this paper, a new approach based on octrees will be discussed. It will be shown that by the usage of octrees not only the management and control of processes in a network-based working environment can be optimised but also an efficient integration platform for processes from various disciplines - such as architecture and civil engineering - can be provided. By means of an octree-based collision detection resp. consistency assurance a client-server-architecture will be described as well as sophisticated information services for a further support of cooperative work.}, subject = {Ingenieurbau}, language = {en} } @inproceedings{MilesJoitaBurnap2004, author = {Miles, John and Joita, Liviu and Burnap, Peter}, title = {Collaborative Engineering: Virtual Teams in a Grid Environment Supporting Consortia in the Construction Industry}, doi = {10.25643/bauhaus-universitaet.136}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1362}, year = {2004}, abstract = {In the AEC (Architecture / Engineering / Construction) industry a number of individuals and organisations collaborate and work jointly on a construction project. The resulting consortium has large pool of expertise and experience and can be defined as a Virtual Organisation (VO) formed for the duration of the project. VOs are electronically networked organisations where IT and web based communication technology play an important role in coordinating various activities of these organisations. This paper describes the design, development and implementation of a Grid enabled application called the Product Supplier Catalogue Database (PSCD) which supports collaborative working in consortia. As part of the Grid-enabling process, specialised metadata is being developed to enable PSCD to effectively utilise Grid middleware such as Globus and Java CoG toolkits. We also describe our experience whilst designing, developing and deploying the security service of the application using the Globus Security Interface (GSI).}, subject = {Ingenieurbau}, language = {en} } @inproceedings{MeissnerRueppelTheiss2004, author = {Meißner, Udo F. and Rueppel, Uwe and Theiss, Mirko}, title = {Network-Based Fire Engineering Supported by Agents}, doi = {10.25643/bauhaus-universitaet.144}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1447}, year = {2004}, abstract = {Building design in Civil Engineering is characterized by the cooperation of experts in multiple disciplines. Close cooperation of engineers in different fields is the basis of high product quality, short development periods and a minimum of investment costs. For each building the engineers have to create a new fire engineering model. The consistent realization of the fire engineering model in all details has high demands on communication, collaboration and building models. Thereby, to preserve the related design models consistent to each other and compatible with the rules of fire engineering is a complex task. In addition, regulations and guidelines vary according to the building location, so the knowledge base must be integrated dynamically into the planning process. This contribution covers the integration of engineers and design models into a cooperation network on the basis of mobile agents. The distributed models of architectural design, structural planning and fire engineering are supported. These models are implemented as XML-based models which can be accessed by mobile agents for information retrieval and for processing tasks. Agents are provided to all planners, they are enabled to check up the distributed design models with the knowledge base of the fire protection regulations,. With the use of such an agent each planner is supported to check up his planning for accordance with the fire protection requirements. The fire-engineering-agent analyzes the design and detects inconsistencies by processing fire protection requirements and design model facts in a rule-based expert system. The possibility to check the planning information at an early state in the sense of compatibility to the fire protection regulations enables a comprehensive diagnosis of the design and the reduction of planning errors.}, subject = {Ingenieurbau}, language = {en} }