@misc{Kavrakov, type = {Master Thesis}, author = {Kavrakov, Igor}, title = {Structural Optimization of Composite Cross-Sections and Elements using Energy Methods}, doi = {10.25643/bauhaus-universitaet.3959}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20190815-39593}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {96}, abstract = {Structural optimization has gained considerable attention in the design of structural engineering structures, especially in the preliminary phase. This study introduces an unconventional approach for structural optimization by utilizing the Energy method with Integral Material Behavior (EIM), based on the Lagrange's principle of minimum potential energy. An automated two-level optimization search process is proposed, which integrates the EIM, as an alternative method for nonlinear structural analysis, and the bilevel optimization. The proposed procedure secures the equilibrium through minimizing the potential energy on one level, and on a higher level, a design objective function. For this, the most robust strategy of bilevel optimization, the nested method is used. The function of the potential energy is investigated along with its instabilities for physical nonlinear analysis through principle examples, by which the advantages and limitations using this method are reviewed. Furthermore, optimization algorithms are discussed. A numerical fully functional code is developed for nonlinear cross section, element and 2D frame analysis, utilizing different finite elements and is verified against existing EIM programs. As a proof of concept, the method is applied on selected examples using this code on cross section and element level. For the former one a comparison is made with standard procedure, by employing the equilibrium equations within the constrains. The validation of the element level was proven by a theoretical solution of an arch bridge and finally, a truss bridge is optimized. Most of the principle examples are chosen to be adequate for the everyday engineering practice, to demonstrate the effectiveness of the proposed method. This study implies that with further development, this method could become just as competitive as the conventional structural optimization techniques using the Finite Element Method.}, subject = {Strukturoptimierung}, language = {en} } @misc{Nikulla2008, author = {Nikulla, Susanne}, title = {Untersuchung des dynamischen Verhaltens von Eisenbahnbr{\"u}cken bei wechselnden Umweltbedingungen}, doi = {10.25643/bauhaus-universitaet.1356}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20081020-14324}, year = {2008}, abstract = {Im Zuge des Ausbaus von Eisenbahnstrecken f{\"u}r den Hochgeschwindigkeitsverkehr muss sichergestellt werden, dass keine Resonanz zwischen den periodisch einwirkenden Radlasten und den Br{\"u}ckeneigenfrequenzen entsteht. Bei der Untersuchung einzelner Bauwerke wurden teilweise recht große Schwankungen des dynamischen Verhaltens im Verlauf der Jahreszeiten festgestellt. Um diese Beobachtungen zu pr{\"a}zisieren, wurden an zwei ausgew{\"a}hlten Walztr{\"a}ger-in-Beton-Br{\"u}cken {\"u}ber den Zeitraum von 15 Monaten Beschleunigungsmessungen durchgef{\"u}hrt. Die gewonnenen Daten wurden mit der Stochastic Subspace Methode, die im ersten Teil der Arbeit n{\"a}her erl{\"a}utert wird, ausgewertet. Es konnte f{\"u}r alle Eigenmoden ein Absinken der Eigenfrequenz bei steigender Temperatur beobachtet werden. Um die Ursachen hierf{\"u}r genauer zu untersuchen, wurde f{\"u}r eine der beiden Br{\"u}cken ein Finite-Elemente-Modell mit dem Programm SLang erstellt. Mittels einer Sensitivit{\"a}tsanalyse wurden die f{\"u}r das Schwingverhalten maßgebenden Systemeigenschaften identifiziert. Die anschließend durchgef{\"u}hrte Strukturoptimierung unter Nutzung des genetischen Algorithmus sowie des adaptiven Antwortfl{\"a}chenverfahrens konnte die Temperaturabh{\"a}ngigkeit einzelner Materialparameter aufzeigen, die zumindest eine Ursache f{\"u}r Schwankungen der Eigenfrequenzen darstellen.}, subject = {Dynamik}, language = {de} }