@inproceedings{KorsunovYourievNikitinskiy2003, author = {Korsunov, Nikolay and Youriev, Alexander and Nikitinskiy, Dmitry}, title = {Use of neuron nets by definition deflected mode of constructions}, doi = {10.25643/bauhaus-universitaet.324}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-3247}, year = {2003}, abstract = {At present time neuronet's technologies have got a wide application in a different fields of technique. At the same time they give insufficient consideration to using neuron nets in the field of building. Use of approximating neuron nets will allow to definite the deflected mode of constructions elements using noticeably less computing facilities then by using universal methods, finite-element method for instance. Today neuron nets are used for calculation separate elements of building constructions. In this work use of neuron nets for calculation deflected mode of construction which consists of many elements is consider. The main idea of suggested analysis is using neuron nets for calculation internal intensities and transferences pieces of model which are selected by there functional destination. For example, a plate is destine for adoption intensity distributed among area, the purpose of core is taking up surface distributed intensity. Elements involved as intensity converter. Plate serve for intensities dispersion and their transfer. A template is associated with functional destination. A template regards as composition of model elements which has define functional destinations. A single template can incarnate several functional destinations. On receipt values of components transference the estimation of their permissibility is put into practice. In the case of detection a violation of permissible limit, in the component database is making a search for component with analogous functional destination, according to the type of violation. If such component is found than a change a previous component into new one is realized. Thus besides control a condition of construction by components there is a possibility to make a search for decisions of revealed problem....}, subject = {Baustatik}, language = {ru} } @article{BrombachBrunsBimber2008, author = {Brombach, Benjamin and Bruns, Erich and Bimber, Oliver}, title = {Subobject Detection through Spatial Relationships on Mobile Phones}, doi = {10.25643/bauhaus-universitaet.1353}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20081007-14296}, year = {2008}, abstract = {We present a novel image classification technique for detecting multiple objects (called subobjects) in a single image. In addition to image classifiers, we apply spatial relationships among the subobjects to verify and to predict locations of detected and undetected subobjects, respectively. By continuously refining the spatial relationships throughout the detection process, even locations of completely occluded exhibits can be determined. Finally, all detected subobjects are labeled and the user can select the object of interest for retrieving corresponding multimedia information. This approach is applied in the context of PhoneGuide, an adaptive museum guidance system for camera-equipped mobile phones. We show that the recognition of subobjects using spatial relationships is up to 68\% faster than related approaches without spatial relationships. Results of a field experiment in a local museum illustrate that unexperienced users reach an average recognition rate for subobjects of 85.6\% under realistic conditions.}, subject = {Objekterkennung}, language = {en} } @article{SadeghzadehMaddahAhmadietal., author = {Sadeghzadeh, Milad and Maddah, Heydar and Ahmadi, Mohammad Hossein and Khadang, Amirhosein and Ghazvini, Mahyar and Mosavi, Amir Hosein and Nabipour, Narjes}, title = {Prediction of Thermo-Physical Properties of TiO2-Al2O3/Water Nanoparticles by Using Artificial Neural Network}, series = {Nanomaterials}, volume = {2020}, journal = {Nanomaterials}, number = {Volume 10, Issue 4, 697}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/nano10040697}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200421-41308}, abstract = {In this paper, an artificial neural network is implemented for the sake of predicting the thermal conductivity ratio of TiO2-Al2O3/water nanofluid. TiO2-Al2O3/water in the role of an innovative type of nanofluid was synthesized by the sol-gel method. The results indicated that 1.5 vol.\% of nanofluids enhanced the thermal conductivity by up to 25\%. It was shown that the heat transfer coefficient was linearly augmented with increasing nanoparticle concentration, but its variation with temperature was nonlinear. It should be noted that the increase in concentration may cause the particles to agglomerate, and then the thermal conductivity is reduced. The increase in temperature also increases the thermal conductivity, due to an increase in the Brownian motion and collision of particles. In this research, for the sake of predicting the thermal conductivity of TiO2-Al2O3/water nanofluid based on volumetric concentration and temperature functions, an artificial neural network is implemented. In this way, for predicting thermal conductivity, SOM (self-organizing map) and BP-LM (Back Propagation-Levenberq-Marquardt) algorithms were used. Based on the results obtained, these algorithms can be considered as an exceptional tool for predicting thermal conductivity. Additionally, the correlation coefficient values were equal to 0.938 and 0.98 when implementing the SOM and BP-LM algorithms, respectively, which is highly acceptable. View Full-Text}, subject = {W{\"a}rmeleitf{\"a}higkeit}, language = {en} } @techreport{FoecklerZeidlerBimber2005, author = {F{\"o}ckler, Paul and Zeidler, Thomas and Bimber, Oliver}, title = {PhoneGuide: Museum Guidance Supported by On-Device Object Recognition on Mobile Phones}, doi = {10.25643/bauhaus-universitaet.650}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-6500}, year = {2005}, abstract = {We present PhoneGuide - an enhanced museum guidance approach that uses camera-equipped mobile phones and on-device object recognition. Our main technical achievement is a simple and light-weight object recognition approach that is realized with single-layer perceptron neuronal networks. In contrast to related systems which perform computational intensive image processing tasks on remote servers, our intention is to carry out all computations directly on the phone. This ensures little or even no network traffic and consequently decreases cost for online times. Our laboratory experiments and field surveys have shown that photographed museum exhibits can be recognized with a probability of over 90\%. We have evaluated different feature sets to optimize the recognition rate and performance. Our experiments revealed that normalized color features are most effective for our method. Choosing such a feature set allows recognizing an object below one second on up-to-date phones. The amount of data that is required for differentiating 50 objects from multiple perspectives is less than 6KBytes.}, subject = {Neuronales Netz}, language = {en} } @phdthesis{Goswami, author = {Goswami, Somdatta}, title = {Phase field modeling of fracture with isogeometric analysis and machine learning methods}, doi = {10.25643/bauhaus-universitaet.4384}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210304-43841}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {168}, abstract = {This thesis presents the advances and applications of phase field modeling in fracture analysis. In this approach, the sharp crack surface topology in a solid is approximated by a diffusive crack zone governed by a scalar auxiliary variable. The uniqueness of phase field modeling is that the crack paths are automatically determined as part of the solution and no interface tracking is required. The damage parameter varies continuously over the domain. But this flexibility comes with associated difficulties: (1) a very fine spatial discretization is required to represent sharp local gradients correctly; (2) fine discretization results in high computational cost; (3) computation of higher-order derivatives for improved convergence rates and (4) curse of dimensionality in conventional numerical integration techniques. As a consequence, the practical applicability of phase field models is severely limited. The research presented in this thesis addresses the difficulties of the conventional numerical integration techniques for phase field modeling in quasi-static brittle fracture analysis. The first method relies on polynomial splines over hierarchical T-meshes (PHT-splines) in the framework of isogeometric analysis (IGA). An adaptive h-refinement scheme is developed based on the variational energy formulation of phase field modeling. The fourth-order phase field model provides increased regularity in the exact solution of the phase field equation and improved convergence rates for numerical solutions on a coarser discretization, compared to the second-order model. However, second-order derivatives of the phase field are required in the fourth-order model. Hence, at least a minimum of C1 continuous basis functions are essential, which is achieved using hierarchical cubic B-splines in IGA. PHT-splines enable the refinement to remain local at singularities and high gradients, consequently reducing the computational cost greatly. Unfortunately, when modeling complex geometries, multiple parameter spaces (patches) are joined together to describe the physical domain and there is typically a loss of continuity at the patch boundaries. This decrease of smoothness is dictated by the geometry description, where C0 parameterizations are normally used to deal with kinks and corners in the domain. Hence, the application of the fourth-order model is severely restricted. To overcome the high computational cost for the second-order model, we develop a dual-mesh adaptive h-refinement approach. This approach uses a coarser discretization for the elastic field and a finer discretization for the phase field. Independent refinement strategies have been used for each field. The next contribution is based on physics informed deep neural networks. The network is trained based on the minimization of the variational energy of the system described by general non-linear partial differential equations while respecting any given law of physics, hence the name physics informed neural network (PINN). The developed approach needs only a set of points to define the geometry, contrary to the conventional mesh-based discretization techniques. The concept of `transfer learning' is integrated with the developed PINN approach to improve the computational efficiency of the network at each displacement step. This approach allows a numerically stable crack growth even with larger displacement steps. An adaptive h-refinement scheme based on the generation of more quadrature points in the damage zone is developed in this framework. For all the developed methods, displacement-controlled loading is considered. The accuracy and the efficiency of both methods are studied numerically showing that the developed methods are powerful and computationally efficient tools for accurately predicting fractures.}, subject = {Phasenfeldmodell}, language = {en} } @phdthesis{Unger2009, author = {Unger, J{\"o}rg F.}, title = {Neural networks in a multiscale approach for concrete}, doi = {10.25643/bauhaus-universitaet.1392}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20090626-14763}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2009}, abstract = {From a macroscopic point of view, failure within concrete structures is characterized by the initiation and propagation of cracks. In the first part of the thesis, a methodology for macroscopic crack growth simulations for concrete structures using a cohesive discrete crack approach based on the extended finite element method is introduced. Particular attention is turned to the investigation of criteria for crack initiation and crack growth. A drawback of the macroscopic simulation is that the real physical phenomena leading to the nonlinear behavior are only modeled phenomenologically. For concrete, the nonlinear behavior is characterized by the initiation of microcracks which coalesce into macroscopic cracks. In order to obtain a higher resolution of this failure zones, a mesoscale model for concrete is developed that models particles, mortar matrix and the interfacial transition zone (ITZ) explicitly. The essential features are a representation of particles using a prescribed grading curve, a material formulation based on a cohesive approach for the ITZ and a combined model with damage and plasticity for the mortar matrix. Compared to numerical simulations, the response of real structures exhibits a stochastic scatter. This is e.g. due to the intrinsic heterogeneities of the structure. For mesoscale models, these intrinsic heterogeneities are simulated by using a random distribution of particles and by a simulation of spatially variable material parameters using random fields. There are two major problems related to numerical simulations on the mesoscale. First of all, the material parameters for the constitutive description of the materials are often difficult to measure directly. In order to estimate material parameters from macroscopic experiments, a parameter identification procedure based on Bayesian neural networks is developed which is universally applicable to any parameter identification problem in numerical simulations based on experimental results. This approach offers information about the most probable set of material parameters based on experimental data and information about the accuracy of the estimate. Consequently, this approach can be used a priori to determine a set of experiments to be carried out in order to fit the parameters of a numerical model to experimental data. The second problem is the computational effort required for mesoscale simulations of a full macroscopic structure. For this purpose, a coupling between mesoscale and macroscale model is developed. Representative mesoscale simulations are used to train a metamodel that is finally used as a constitutive model in a macroscopic simulation. Special focus is placed on the ability of appropriately simulating unloading.}, subject = {Beton}, language = {en} } @techreport{BrunsBrombachBimber2007, author = {Bruns, Erich and Brombach, Benjamin and Bimber, Oliver}, title = {Mobile Phone Enabled Museum Guidance with Adaptive Classification}, doi = {10.25643/bauhaus-universitaet.940}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-9406}, year = {2007}, abstract = {Although audio guides are widely established in many museums, they suffer from several drawbacks compared to state-of-the-art multimedia technologies: First, they provide only audible information to museum visitors, while other forms of media presentation, such as reading text or video could be beneficial for museum guidance tasks. Second, they are not very intuitive. Reference numbers have to be manually keyed in by the visitor before information about the exhibit is provided. These numbers are either displayed on visible tags that are located near the exhibited objects, or are printed in brochures that have to be carried. Third, offering mobile guidance equipment to visitors leads to acquisition and maintenance costs that have to be covered by the museum. With our project PhoneGuide we aim at solving these problems by enabling the application of conventional camera-equipped mobile phones for museum guidance purposes. The advantages are obvious: First, today's off-the-shelf mobile phones offer a rich pallet of multimedia functionalities ---ranging from audio (over speaker or head-set) and video (graphics, images, movies) to simple tactile feedback (vibration). Second, integrated cameras, improvements in processor performance and more memory space enable supporting advanced computer vision algorithms. Instead of keying in reference numbers, objects can be recognized automatically by taking non-persistent photographs of them. This is more intuitive and saves museum curators from distributing and maintaining a large number of physical (visible or invisible) tags. Together with a few sensor-equipped reference tags only, computer vision based object recognition allows for the classification of single objects; whereas overlapping signal ranges of object-distinct active tags (such as RFID) would prevent the identification of individuals that are grouped closely together. Third, since we assume that museum visitors will be able to use their own devices, the acquisition and maintenance cost for museum-owned devices decreases.}, subject = {Objektverfolgung}, language = {en} } @inproceedings{SwaddiwudhipongThoLiu2004, author = {Swaddiwudhipong, Somsak and Tho, Kee Kiat and Liu, Zishun}, title = {Material characterization using artificial neural network}, doi = {10.25643/bauhaus-universitaet.155}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1550}, year = {2004}, abstract = {Indentation experiments have been carried out over the past century to determine hardness of materials. Modern indentation machines have the capability to continuously monitor load and displacement to high precision and accuracy. In recent years, research interests have focussed on methods to extract material properties from indentation load-displacement curves. Analytical methods to interpret the indentation load-displacement curves are difficult to formulate due to material and geometric nonlinearities as well as complex contact interactions. In the present study, an artificial neural network model was constructed for interpretation of indentation load-displacement curves. Large strain-large deformation finite element analyses were first carried out to simulate indentation experiments. The data from finite element analyses were then used to train the artificial neural network model. The artificial neural network model was able to accurately determine the material properties when presented with load-displacement curves which were not used in the training process. The proposed artificial neural network model is robust and directly relates the characteristics of the indentation loaddisplacement curve to the elasto-plastic material properties.}, subject = {Neuronales Netz}, language = {en} } @techreport{BrunsBrombachZeidleretal.2005, author = {Bruns, Erich and Brombach, Benjamin and Zeidler, Thomas and Bimber, Oliver}, title = {Enabling Mobile Phones To Support Large-Scale Museum Guidance}, doi = {10.25643/bauhaus-universitaet.677}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-6777}, year = {2005}, abstract = {We present a museum guidance system called PhoneGuide that uses widespread camera equipped mobile phones for on-device object recognition in combination with pervasive tracking. It provides additional location- and object-aware multimedia content to museum visitors, and is scalable to cover a large number of museum objects.}, subject = {Objektverfolgung}, language = {en} } @article{MosaviShamshirbandEsmaeilbeikietal., author = {Mosavi, Amir and Shamshirband, Shahaboddin and Esmaeilbeiki, Fatemeh and Zarehaghi, Davoud and Neyshabouri, Mohammadreza and Samadianfard, Saeed and Ghorbani, Mohammad Ali and Nabipour, Narjes and Chau, Kwok-Wing}, title = {Comparative analysis of hybrid models of firefly optimization algorithm with support vector machines and multilayer perceptron for predicting soil temperature at different depths}, series = {Engineering Applications of Computational Fluid Mechanics}, volume = {2020}, journal = {Engineering Applications of Computational Fluid Mechanics}, number = {Volume 14, Issue 1}, doi = {10.1080/19942060.2020.1788644}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200911-42347}, pages = {939 -- 953}, abstract = {This research aims to model soil temperature (ST) using machine learning models of multilayer perceptron (MLP) algorithm and support vector machine (SVM) in hybrid form with the Firefly optimization algorithm, i.e. MLP-FFA and SVM-FFA. In the current study, measured ST and meteorological parameters of Tabriz and Ahar weather stations in a period of 2013-2015 are used for training and testing of the studied models with one and two days as a delay. To ascertain conclusive results for validation of the proposed hybrid models, the error metrics are benchmarked in an independent testing period. Moreover, Taylor diagrams utilized for that purpose. Obtained results showed that, in a case of one day delay, except in predicting ST at 5 cm below the soil surface (ST5cm) at Tabriz station, MLP-FFA produced superior results compared with MLP, SVM, and SVM-FFA models. However, for two days delay, MLP-FFA indicated increased accuracy in predicting ST5cm and ST 20cm of Tabriz station and ST10cm of Ahar station in comparison with SVM-FFA. Additionally, for all of the prescribed models, the performance of the MLP-FFA and SVM-FFA hybrid models in the testing phase was found to be meaningfully superior to the classical MLP and SVM models.}, subject = {Bodentemperatur}, language = {en} }