@phdthesis{Le, author = {Le, Ha Thanh}, title = {Behaviour of Rice Husk Ash in Self-Compacting High Performance Concrete}, publisher = {Bauhaus-Universit{\"a}t Weimar, F.A. Finger- Institut f{\"u}r Baustoffkunde, Professur Werkstoffe des Bauens}, address = {Weimar}, isbn = {978-3-00-048928-0}, doi = {10.25643/bauhaus-universitaet.2373}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20150310-23730}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {181}, abstract = {The main objective of this thesis is to investigate the characteristics of rice husk ash RHA) and then its behaviour in self-compacting high performance concrete (SCHPC) with respects to rheological properties, hydration and microstructure development and alkali silica reaction, in comparison with silica fume (SF). The main results show that the RHA is a macro-mesoporous amorphous siliceous material with a very high silica content comparable with SF. The pore size distribution is the most important parameter of RHA besides amorphous silica content. This parameter affects pore volume, specific surface area, and thus the water demand and the pozzolanic reactivity of RHA and its behaviour in SCHPC. The incorporation of RHA decreases filling and passing abilities, but significantly increases plastic viscosity and segregation resistance of SCHPC. Therefore, RHA can be used as a viscosity modifying admixture for SCHPC. The incorporation of RHA increases the superplasticizer adsorption, the superplasticizer saturation dosage, yield stress and plastic viscosity of mortar. Fresh mortar formulated from SCHPC is a shear-thickening material. The incorporation of RHA/SF ecreases the shearthickening degree. The incorporation of RHA/SF increases the degree of cement hydration. SF appears more effective at 3 days possibly due to the better nucleation site effect, whereas RHA dominates at the later ages possibly due to the internal water curing effect. The incorporation of RHA/SF increases the degree of C3S hydration, particularly the C3S hydration rate from 3 to 14 days. The pozzolanic reaction takes place outside and inside RHA particles. The internal pozzolanic eaction products consolidate the pores inside RHA particles rather than contribute to the pore refinement in the cement matrix. In the presence of the high alkali concentration, RHA particles act as microreactive aggregates and react with alkali hydroxide to generate the expansive alkali silica reaction products. Increasing the particle size and temperature increases the alkali silica reactivity of RHA. The mechanism for the successive pozzolanic and alkali silica reactions of RHA is theorized. Additionally, a new simple mix design method is proposed for SCHPC containing various supplementary cementitious materials, i.e. RHA, SF, fly ash and limestone powder.}, subject = {Werkstoffkunde}, language = {en} } @article{LeNguyenLudwig, author = {Le, Ha Thanh and Nguyen, Sang Thanh and Ludwig, Horst-Michael}, title = {A Study on High Performance Fine-Grained Concrete Containing Rice Husk Ash}, series = {International Journal of Concrete Structures and Materials}, journal = {International Journal of Concrete Structures and Materials}, doi = {10.1007/s40069-014-0078-z}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170425-31477}, pages = {301 -- 307}, abstract = {Rice husk ash (RHA) is classified as a highly reactive pozzolan. It has a very high silica content similar to that of silica fume (SF). Using less-expensive and locally available RHA as a mineral admixture in concrete brings ample benefits to the costs, the technical properties of concrete as well as to the environment. An experimental study of the effect of RHA blending on workability, strength and durability of high performance fine-grained concrete (HPFGC) is presented. The results show that the addition of RHA to HPFGC improved significantly compressive strength, splitting tensile strength and chloride penetration resistance. Interestingly, the ratio of compressive strength to splitting tensile strength of HPFGC was lower than that of ordinary concrete, especially for the concrete made with 20 \% RHA. Compressive strength and splitting tensile strength of HPFGC containing RHA was similar and slightly higher, respectively, than for HPFGC containing SF. Chloride penetration resistance of HPFGC containing 10-15 \% RHA was comparable with that of HPFGC containing 10 \% SF.}, subject = {Hochfester Beton}, language = {en} }