@article{Volkova2004, author = {Volkova, Viktorija}, title = {The analysis of dynamic behaviour of pre-stressed systems under polyharmonic excitations}, doi = {10.25643/bauhaus-universitaet.265}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2656}, year = {2004}, abstract = {Pre-stressed structural elements are widely used in large-span structures. As a rule, they have higher stiffness characteristics. Pre-stressed rods can be applied as girders of different purpose, and as their separate parts, e.g. rods of trusses and frames. Among numerous ways of prestressing the compression of girders, trusses, and frames by tightenings from high-strength materials is under common application.}, subject = {Verkehrsplanung}, language = {en} } @article{Makanae2004, author = {Makanae, Koji}, title = {Highway Sequence Editor based on the Length-based Highway Product Model}, doi = {10.25643/bauhaus-universitaet.234}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2347}, year = {2004}, abstract = {The highway product model based on the length information of the centerline, and the application system is developed. This paper shows the schema and the modeling process of the product model, which includes geometric elements such as an alignment, lanes, sidewalks, shoulders and sprits, and accessories such as guard fences, plantings and signs. Furthermore, The Highway Sequence Editor (HSE) is developed as an application system to verify the model.}, subject = {Produktmodell}, language = {en} } @article{RombergNigglvanTreeck2004, author = {Romberg, Richard and Niggl, Andreas and van Treeck, Christoph}, title = {Structural Analysis based on the Product Model Standard IFC}, doi = {10.25643/bauhaus-universitaet.243}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2433}, year = {2004}, abstract = {In this paper we present a computer aided method supporting co-operation between different project partners, such as architects and engineers, on the basis of strictly three-dimensional models. The center of our software architecture is a product model, described by the Industry Foundation Classes (IFC) of the International Alliance for Interoperability (IAI). From this a geometrical model is extracted and automatically transferred to a computational model serving as a basis for various simulation tasks. In this paper the focus is set on the advantage of the fully three-dimensional structural analysis performed by p-version of the finite element analysis. Other simulation methods are discussed in a separate contribution of this Volume (Treeck 2004). The validity of this approach will be shown in a complex example.}, subject = {Produktmodell}, language = {en} } @article{StaubFrench2004, author = {Staub-French, Sheryl}, title = {Feature-based Product Modeling for Building Construction}, doi = {10.25643/bauhaus-universitaet.233}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2331}, year = {2004}, abstract = {Current building product models explicitly represent components, attributes of components, and relationships between components. These designer-focused product models, however, do not represent many of the design conditions that are important for construction, such as component similarity, uniformity, and penetrations. Current design and construction tools offer limited support for detecting these construction-specific design conditions. This paper describes the ontology we developed using the manufacturing concept of features to represent the design conditions that are important for construction. The feature ontology provides the blueprint for the additions and changes needed to transform a standard product model into a constructionspecific product model. The ontology formalizes three classes of features, defines the attributes and functions of each feature type, and represents the relationships between features explicitly. The descriptive semantics of the ontology allows practitioners to represent their varied preferences for naming features, specifying features that result from component intersections and the similarity of components, and grouping features that affect a specific construction domain. A software prototype that implements the ontology enables practitioners to transform designer-focused product models into feature-based product models that represent the construction perspective.}, subject = {Produktmodell}, language = {en} } @article{VogelBreitMaerki2004, author = {Vogel, Manfred and Breit, Manfred and M{\"a}rki, Fabian}, title = {Optimization of 4D Process Planning using Genetic Algorithms}, doi = {10.25643/bauhaus-universitaet.236}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2360}, year = {2004}, abstract = {The presented work focuses on the presentation of a discrete event simulator which can be used for automated sequencing and optimization of building processes. The sequencing is based on the commonly used component-activity-resource relations taking structural and process constraints into account. For the optimization a genetic algorithm approach was developed, implemented and successfully applied to several real life steel constructions. In this contribution we discuss the application of the discrete event simulator including its optimization capabilities on a 4D process model of a steel structure of an automobile recycling facility.}, subject = {Produktmodell}, language = {en} } @article{KoikeMorimotoNomura2004, author = {Koike, Hirotaka and Morimoto, Akinori and Nomura, Kazuhiro}, title = {Development of Urban Land Use Model to Compare Transit-Oriented and Automobile-Oriented Cities}, doi = {10.25643/bauhaus-universitaet.262}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2621}, year = {2004}, abstract = {This study is an attempt to develop a simple simulation model that can compare the differences between automobile-oriented and transit-oriented cities, and clarify the difference between city forms by transportation modes. Following a theoretical model development, a series of simulation runs are tried. The model allocates people who commute to CBD from residential zones along a transportation corridor. As a result of many simulation analyses, it is shown that automobiles need much more traffic space in comparison with the transit as is shown by the proposed traffic space ratio both in CBD and along the corridor.}, subject = {Verkehrsplanung}, language = {en} } @article{OsadaKoikeMorimoto2004, author = {Osada, Teppei and Koike, Hirotaka and Morimoto, Akinori}, title = {Research on Establishment of a Standard of Traffic Impact Assessment with Integrated Database System}, doi = {10.25643/bauhaus-universitaet.264}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2647}, year = {2004}, abstract = {Planning support systems, such as geographical information system (GIS) and traffic flow simulation models, are widely in use in recent urban planning research. In this paper we propose a method to apply traffic impact assessment (TIA) to large-scale, commercial developments. In TIA research we often encounter the problem of increasing amount of data that is necessary for detailed investigation and analysis, as the scale of commercial developments become larger and more complex. As a result, TIA presents two problems. The first problem is the difficulty of data acquisition. The second problem is the reliability of data. As a solution, we developed an integrated database system.}, subject = {Verkehrsplanung}, language = {en} } @article{BargstaedtBlickling2004, author = {Bargst{\"a}dt, Hans-Joachim and Blickling, Arno}, title = {Effective cost estimate and construction processes with 3D interactive technologies: Towards a virtual world of construction sites}, doi = {10.25643/bauhaus-universitaet.232}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2320}, year = {2004}, abstract = {The development of 3D technologies during the last decades in many different areas, leads us towards the complete 3D representation of planet earth on a high level of detail. On the lowest level we have geographical information systems (GIS) representing the outer layer of our planet as a 3D model. In the meantime these systems do not only give a geographical model but also present additional information like ownership, infrastructure and others that might be of interest for the construction business. In future these systems will serve as basis for virtual environments for planning and simulation of construction sites. In addition to this work is done on the integration of GIS systems with 3D city models in the area of urban planning and thus integration of different levels of detail. This article presents research work on the use of 3D models in construction on the next level of detail below the level of urban planning. The 3D city model is taken as basis for the 3D model of the construction site. In this virtual nD-world a contractor can organize and plan his resources, simulate different variants of construction processes and thus find out the most effective solution for the consideration of costs and time. On the basis of former researches the authors present a new approach for cost estimation and simulation using development technologies from game software.}, subject = {Produktmodell}, language = {en} } @article{BourikasJamesBahajetal., author = {Bourikas, Leonidas and James, Patrick A. B. and Bahaj, AbuBakr S. and Jentsch, Mark F. and Shen, Tianfeng and Chow, David H. C. and Darkwa, Jo}, title = {Transforming typical hourly simulation weather data files to represent urban locations by using a 3D urban unit representation with micro-climate simulations}, series = {Future Cities and Environment}, journal = {Future Cities and Environment}, doi = {10.1186/s40984-016-0020-4}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170418-31348}, abstract = {Urban and building energy simulation models are usually driven by typical meteorological year (TMY) weather data often in a TMY2 or EPW format. However, the locations where these historical datasets were collected (usually airports) generally do not represent the local, site specific micro-climates that cities develop. In this paper, a humid sub-tropical climate context has been considered. An idealised "urban unit model" of 250 m radius is being presented as a method of adapting commonly available weather data files to the local micro-climate. This idealised "urban unit model" is based on the main thermal and morphological characteristics of nine sites with residential/institutional (university) use in Hangzhou, China. The area of the urban unit was determined by the region of influence on the air temperature signal at the centre of the unit. Air temperature and relative humidity were monitored and the characteristics of the surroundings assessed (eg green-space, blue-space, built form). The "urban unit model" was then implemented into micro-climatic simulations using a Computational Fluid Dynamics - Surface Energy Balance analysis tool (ENVI-met, Version 4). The "urban unit model" approach used here in the simulations delivered results with performance evaluation indices comparable to previously published work (for air temperature; RMSE <1, index of agreement d > 0.9). The micro-climatic simulation results were then used to adapt the air temperature and relative humidity of the TMY file for Hangzhou to represent the local, site specific morphology under three different weather forcing cases, (ie cloudy/rainy weather (Group 1), clear sky, average weather conditions (Group 2) and clear sky, hot weather (Group 3)). Following model validation, two scenarios (domestic and non-domestic building use) were developed to assess building heating and cooling loads against the business as usual case of using typical meteorological year data files. The final "urban weather projections" obtained from the simulations with the "urban unit model" were used to compare the degree days amongst the reference TMY file, the TMY file with a bulk UHI offset and the TMY file adapted for the site-specific micro-climate (TMY-UWP). The comparison shows that Heating Degree Days (HDD) of the TMY file (1598 days) decreased by 6 \% in the "TMY + UHI" case and 13 \% in the "TMY-UWP" case showing that the local specific micro-climate is attributed with an additional 7 \% (ie from 6 to 13 \%) reduction in relation to the bulk UHI effect in the city. The Cooling Degree Days (CDD) from the "TMY + UHI" file are 17 \% more than the reference TMY (207 days) and the use of the "TMY-UWP" file results to an additional 14 \% increase in comparison with the "TMY + UHI" file (ie from 17 to 31 \%). This difference between the TMY-UWP and the TMY + UHI files is a reflection of the thermal characteristics of the specific urban morphology of the studied sites compared to the wider city. A dynamic thermal simulation tool (TRNSYS) was used to calculate the heating and cooling load demand change in a domestic and a non-domestic building scenario. The heating and cooling loads calculated with the adapted TMY-UWP file show that in both scenarios there is an increase by approximately 20 \% of the cooling load and a 20 \% decrease of the heating load. If typical COP values for a reversible air-conditioning system are 2.0 for heating and 3.5 for cooling then the total electricity consumption estimated with the use of the "urbanised" TMY-UWP file will be decreased by 11 \% in comparison with the "business as usual" (ie reference TMY) case. Overall, it was found that the proposed method is appropriate for urban and building energy performance simulations in humid sub-tropical climate cities such as Hangzhou, addressing some of the shortfalls of current simulation weather data sets such as the TMY.}, subject = {Mikroklima}, language = {en} } @article{BenzTarabenLichtenheldetal., author = {Benz, Alexander and Taraben, Jakob and Lichtenheld, Thomas and Morgenthal, Guido and V{\"o}lker, Conrad}, title = {Thermisch-energetische Geb{\"a}udesimulation auf Basis eines Bauwerksinformationsmodells}, series = {Bauphysik}, journal = {Bauphysik}, number = {40, Heft 2}, doi = {10.25643/bauhaus-universitaet.3835}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20181221-38354}, pages = {61 -- 67}, abstract = {F{\"u}r eine Absch{\"a}tzung des Heizw{\"a}rmebedarfs von Geb{\"a}uden und Quartieren k{\"o}nnen thermisch-energetische Simulationen eingesetzt werden. Grundlage dieser Simulationen sind geometrische und physikalische Geb{\"a}udemodelle. Die Erstellung des geometrischen Modells erfolgt in der Regel auf Basis von Baupl{\"a}nen oder Vor-Ort-Begehungen, was mit einem großen Recherche- und Modellierungsaufwand verbunden ist. Sp{\"a}tere bauliche Ver{\"a}nderungen des Geb{\"a}udes m{\"u}ssen h{\"a}ufig manuell in das Modell eingearbeitet werden, was den Arbeitsaufwand zus{\"a}tzlich erh{\"o}ht. Das physikalische Modell stellt die Menge an Parametern und Randbedingungen dar, welche durch Materialeigenschaften, Lage und Umgebungs-einfl{\"u}sse gegeben sind. Die Verkn{\"u}pfung beider Modelle wird innerhalb der entsprechenden Simulations-software realisiert und ist meist nicht in andere Softwareprodukte {\"u}berf{\"u}hrbar. Mithilfe des Building Information Modeling (BIM) k{\"o}nnen Simulationsdaten sowohl konsistent gespeichert als auch {\"u}ber Schnittstellen mit entsprechenden Anwendungen ausgetauscht werden. Hierf{\"u}r wird eine Methode vorgestellt, die thermisch-energetische Simulationen auf Basis des standardisierten {\"U}bergabe-formats Industry Foundation Classes (IFC) inklusive anschließender Auswertungen erm{\"o}glicht. Dabei werden geometrische und physikalische Parameter direkt aus einem {\"u}ber den gesamten Lebenszyklus aktuellen Geb{\"a}udemodell extrahiert und an die Simulation {\"u}bergeben. Dies beschleunigt den Simulations-prozess hinsichtlich der Geb{\"a}udemodellierung und nach sp{\"a}teren baulichen Ver{\"a}nderungen. Die erarbeite-te Methode beruht hierbei auf einfachen Modellierungskonventionen bei der Erstellung des Bauwerksinformationsmodells und stellt eine vollst{\"a}ndige {\"U}bertragbarkeit der Eingangs- und Ausgangswerte sicher. Thermal building simulation based on BIM-models. Thermal energetic simulations are used for the estimation of the heating demand of buildings and districts. These simulations are based on building models containing geometrical and physical information. The creation of geometrical models is usually based on existing construction plans or in situ assessments which demand a comparatively big effort of investigation and modeling. Alterations, which are later applied to the structure, request manual changes of the related model, which increases the effort additionally. The physical model represents the total amount of parameters and boundary conditions that are influenced by material properties, location and environmental influences on the building. The link between both models is realized within the correspondent simulation soft-ware and is usually not transferable to other software products. By Applying Building Information Modeling (BIM) simulation data is stored consistently and an exchange to other software is enabled. Therefore, a method which allows a thermal energetic simulation based on the exchange format Industry Foundation Classes (IFC) including an evaluation is presented. All geometrical and physical information are extracted directly from the building model that is kept up-to-date during its life cycle and transferred to the simulation. This accelerates the simulation process regarding the geometrical modeling and adjustments after later changes of the building. The developed method is based on simple conventions for the creation of the building model and ensures a complete transfer of all simulation data.}, subject = {Building Information Modeling}, language = {de} }