@article{BuschowWellbrock, author = {Buschow, Christopher and Wellbrock, Christian-Mathias}, title = {"Spotify for News"? User Perception of Subscription-Based Content Platforms for News Media}, series = {Journalism and Media}, volume = {2022}, journal = {Journalism and Media}, number = {2023, 4}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/journalmedia4010001}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230124-48740}, pages = {1 -- 15}, abstract = {Subscription-based news platforms (such as "Apple News+" or "Readly") that bundle content from different publishers into one comprehensive package and offer it to media users at a fixed monthly rate are a new way of accessing and consuming digital journalism. These services have received little attention in journalism studies, although they differ greatly from traditional media products and distribution channels. This article empirically investigates the perception of journalism platforms based on eight qualitative focus group discussions with 55 German news consumers. Results show that the central characteristics these platforms should fulfill in order to attract users are strikingly similar to the characteristics of media platforms from the music and video industries, in particular regarding price points, contract features, and modes of usage. Against this background, the potential and perspectives of a subscription-based news platform for journalism's societal role are discussed.}, subject = {Journalistik}, language = {en} } @article{SimonRitz, author = {Simon-Ritz, Frank}, title = {Zwischen Residenzkultur und Bratwursttradition: Th{\"u}ringer UNESCO-Initiativen}, series = {Palmbaum: Literarisches Journal aus Th{\"u}ringen}, volume = {2022}, journal = {Palmbaum: Literarisches Journal aus Th{\"u}ringen}, number = {Heft 1}, publisher = {Quartus Verlag}, address = {Bucha bei Jena}, doi = {10.25643/bauhaus-universitaet.4628}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220413-46282}, pages = {4}, abstract = {Der Essay, der in H. 1/2022 des "Palmbaum: literarisches Journal aus Th{\"u}ringen" erschienen ist, besch{\"a}ftigt sich mit dem Begriff des "kulturellen Erbes", der verschiedenen UNESCO-Programmen zugrundeliegt.}, subject = {Kultur}, language = {de} } @article{RoskammVollmer, author = {Roskamm, Nikolai and Vollmer, Lisa}, title = {Was ist Stadt? Was ist Kritik? Einf{\"u}hrung in die Debatte zum Jubil{\"a}umsheft von sub\urban}, series = {sub\urban. zeitschrift f{\"u}r kritische stadtforschung}, journal = {sub\urban. zeitschrift f{\"u}r kritische stadtforschung}, number = {Band 10, Nr. 1,}, publisher = {Sub\urban e.V.}, address = {Leipzig}, doi = {10.36900/suburban.v10i1.798}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220811-46847}, pages = {127 -- 130}, abstract = {Im Heft zum zehnj{\"a}hrigen Jubil{\"a}um von sub\urban mit dem Themenschwerpunkt „sub\x: Verortungen, Entortungen" ver{\"o}ffentlichen wir eine Debatte, die von den bisherigen in unserer Zeitschrift in dieser Rubrik gef{\"u}hrten textlichen Diskussionen abweicht. Im Vorfeld der Planungen f{\"u}r unsere Jubil{\"a}umsausgabe haben wir die aktuellen Mitglieder unseres wissenschaftlichen Beirats darum gebeten, zwei grundlegende Fragen von kritischer Stadtforschung in kurzen Beitr{\"a}gen zu diskutieren: Was ist Stadt? Was ist Kritik?}, subject = {Stadt}, language = {de} } @article{AicherBoermelLondongetal., author = {Aicher, Andreas and B{\"o}rmel, Melanie and Londong, J{\"o}rg and Beier, Silvio}, title = {Vertical green system for gray water treatment: Analysis of the VertiKKA-module in a field test}, series = {Frontiers in Environmental Science}, volume = {2022}, journal = {Frontiers in Environmental Science}, number = {Volume 10 (2022), article 976005}, publisher = {Frontiers Media}, address = {Lausanne}, doi = {10.3389/fenvs.2022.976005}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230124-48840}, pages = {1 -- 7}, abstract = {This work presents a modular Vertical Green System (VGS) for gray water treatment, developed at the Bauhaus-Universit{\"a}t Weimar. The concept was transformed into a field study with four modules built and tested with synthetic gray water. Each module set contains a small and larger module with the same treatment substrate and was fed hourly. A combination of lightweight structural material and biochar of agricultural residues and wood chips was used as the treatment substrate. In this article, we present the first 18 weeks of operation. Regarding the treatment efficiency, the parameters chemical oxygen demand (COD), total phosphorous (TP), ortho-phosphate (ortho-P), total bound nitrogen (TNb), ammonium nitrogen (NH4-N), and nitrate nitrogen (NO3-N) were analyzed and are presented in this work. The results of the modules with agricultural residues are promising. Up to 92\% COD reduction is stated in the data. The phosphate and nitrogen fractions are reduced significantly in these modules. By contrast, the modules with wood chips reduce only 67\% of the incoming COD and respectively less regarding phosphates and the nitrogen fraction.}, subject = {Grauwasser}, language = {en} } @article{KraazKoopWunschetal., author = {Kraaz, Luise and Koop, Maria and Wunsch, Maximilian and Plank-Wiedenbeck, Uwe}, title = {The Scaling Potential of Experimental Knowledge in the Case of the Bauhaus.MobilityLab, Erfurt (Germany)}, series = {Urban Planning}, volume = {2022}, journal = {Urban Planning}, number = {Volume 7, Issue 3}, doi = {10.17645/up.v7i3.5329}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230509-63633}, pages = {274 -- 284}, abstract = {Real-world labs hold the potential to catalyse rapid urban transformations through real-world experimentation. Characterised by a rather radical, responsive, and location-specific nature, real-world labs face constraints in the scaling of experimental knowledge. To make a significant contribution to urban transformation, the produced knowledge must go beyond the level of a building, street, or small district where real-world experiments are conducted. Thus, a conflict arises between experimental boundaries and the stimulation of broader implications. The challenges of scaling experimental knowledge have been recognised as a problem, but remain largely unexplained. Based on this, the article will discuss the applicability of the "typology of amplification processes" by Lam et al. (2020) to explore and evaluate the potential of scaling experimental knowledge from real-world labs. The application of the typology is exemplified in the case of the Bauhaus.MobilityLab. The Bauhaus.MobilityLab takes a unique approach by testing and developing cross-sectoral mobility, energy, and logistics solutions with a distinct focus on scaling knowledge and innovation. For this case study, different qualitative research techniques are combined according to "within-method triangulation" and synthesised in a strengths, weaknesses, opportunities, and threats (SWOT) analysis. The analysis of the Bauhaus.MobilityLab proves that the "typology of amplification processes" is useful as a systematic approach to identifying and evaluating the potential of scaling experimental knowledge.}, subject = {Stadtplanung}, language = {en} } @article{RabczukGuoZhuangetal., author = {Rabczuk, Timon and Guo, Hongwei and Zhuang, Xiaoying and Chen, Pengwan and Alajlan, Naif}, title = {Stochastic deep collocation method based on neural architecture search and transfer learning for heterogeneous porous media}, series = {Engineering with Computers}, volume = {2022}, journal = {Engineering with Computers}, publisher = {Springer}, address = {London}, doi = {10.1007/s00366-021-01586-2}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220209-45835}, pages = {1 -- 26}, abstract = {We present a stochastic deep collocation method (DCM) based on neural architecture search (NAS) and transfer learning for heterogeneous porous media. We first carry out a sensitivity analysis to determine the key hyper-parameters of the network to reduce the search space and subsequently employ hyper-parameter optimization to finally obtain the parameter values. The presented NAS based DCM also saves the weights and biases of the most favorable architectures, which is then used in the fine-tuning process. We also employ transfer learning techniques to drastically reduce the computational cost. The presented DCM is then applied to the stochastic analysis of heterogeneous porous material. Therefore, a three dimensional stochastic flow model is built providing a benchmark to the simulation of groundwater flow in highly heterogeneous aquifers. The performance of the presented NAS based DCM is verified in different dimensions using the method of manufactured solutions. We show that it significantly outperforms finite difference methods in both accuracy and computational cost.}, subject = {Maschinelles Lernen}, language = {en} } @article{PatzeltErfurtLudwig, author = {Patzelt, Max and Erfurt, Doreen and Ludwig, Horst-Michael}, title = {Quantification of cracks in concrete thin sections considering current methods of image analysis}, series = {Journal of Microscopy}, volume = {2022}, journal = {Journal of Microscopy}, number = {Volume 286, Issue 2}, doi = {10.1111/jmi.13091}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220811-46754}, pages = {154 -- 159}, abstract = {Image analysis is used in this work to quantify cracks in concrete thin sections via modern image processing. Thin sections were impregnated with a yellow epoxy resin, to increase the contrast between voids and other phases of the concrete. By the means of different steps of pre-processing, machine learning and python scripts, cracks can be quantified in an area of up to 40 cm2. As a result, the crack area, lengths and widths were estimated automatically within a single workflow. Crack patterns caused by freeze-thaw damages were investigated. To compare the inner degradation of the investigated thin sections, the crack density was used. Cracks in the thin sections were measured manually in two different ways for validation of the automatic determined results. On the one hand, the presented work shows that the width of cracks can be determined pixelwise, thus providing the plot of a width distribution. On the other hand, the automatically measured crack length differs in comparison to the manually measured ones.}, subject = {Beton}, language = {en} } @article{GuerlebeckLegatiukWebber, author = {G{\"u}rlebeck, Klaus and Legatiuk, Dmitrii and Webber, Kemmar}, title = {Operator Calculus Approach to Comparison of Elasticity Models for Modelling of Masonry Structures}, series = {Mathematics}, volume = {2022}, journal = {Mathematics}, number = {Volume 10, issue 10, article 1670}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/math10101670}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220721-46726}, pages = {1 -- 22}, abstract = {The solution of any engineering problem starts with a modelling process aimed at formulating a mathematical model, which must describe the problem under consideration with sufficient precision. Because of heterogeneity of modern engineering applications, mathematical modelling scatters nowadays from incredibly precise micro- and even nano-modelling of materials to macro-modelling, which is more appropriate for practical engineering computations. In the field of masonry structures, a macro-model of the material can be constructed based on various elasticity theories, such as classical elasticity, micropolar elasticity and Cosserat elasticity. Evidently, a different macro-behaviour is expected depending on the specific theory used in the background. Although there have been several theoretical studies of different elasticity theories in recent years, there is still a lack of understanding of how modelling assumptions of different elasticity theories influence the modelling results of masonry structures. Therefore, a rigorous approach to comparison of different three-dimensional elasticity models based on quaternionic operator calculus is proposed in this paper. In this way, three elasticity models are described and spatial boundary value problems for these models are discussed. In particular, explicit representation formulae for their solutions are constructed. After that, by using these representation formulae, explicit estimates for the solutions obtained by different elasticity theories are obtained. Finally, several numerical examples are presented, which indicate a practical difference in the solutions.}, subject = {Mauerwerk}, language = {en} } @article{MoscosoKraus, author = {Moscoso, Caridad and Kraus, Matthias}, title = {On the Verification of Beams Subjected to Lateral Torsional Buckling by Simplified Plastic Structural Analysis}, series = {ce/papers}, volume = {2022}, journal = {ce/papers}, number = {Volume 5, Issue 4}, publisher = {Ernst \& Sohn}, address = {Berlin}, doi = {10.1002/cepa.1835}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230124-48782}, pages = {914 -- 923}, abstract = {Plastic structural analysis may be applied without any difficulty and with little effort for structural member verifications with regard to lateral torsional buckling of doubly symmetric rolled I sections. Suchlike analyses can be performed based on the plastic zone theory, specifically using finite beam elements with seven degrees of freedom and 2nd order theory considering material nonlinearity. The existing Eurocode enables these approaches and the coming-up generation will provide corresponding regulations in EN 1993-1-14. The investigations allow the determination of computationally accurate limit loads, which are determined in the present paper for selected structural systems with different sets of parameters, such as length, steel grade and cross section types. The results are compared to approximations gained by more sophisticated FEM analyses (commercial software Ansys Workbench applying solid elements) for reasons of verification/validation. In this course, differences in the results of the numerical models are addressed and discussed. In addition, results are compared to resistances obtained by common design regulations based on reduction factors χlt including regulations of EN 1993-1-1 (including German National Annex) as well as prEN 1993-1-1: 2020-08 (proposed new Eurocode generation). Concluding, correlations of results and their advantages as well as disadvantages are discussed.}, subject = {Stahl}, language = {en} } @article{ArnoldKraus, author = {Arnold, Robert and Kraus, Matthias}, title = {On the nonstationary identification of climate-influenced loads for the semi-probabilistic approach using measured and projected data}, series = {Cogent Engineering}, volume = {2022}, journal = {Cogent Engineering}, number = {Volume 9, issue 1, article 2143061}, editor = {Pham, Duc}, publisher = {Taylor \& Francis}, address = {London}, doi = {10.1080/23311916.2022.2143061}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20221117-47363}, pages = {1 -- 26}, abstract = {A safe and economic structural design based on the semi-probabilistic concept requires statistically representative safety elements, such as characteristic values, design values, and partial safety factors. Regarding climate loads, the safety levels of current design codes strongly reflect experiences based on former measurements and investigations assuming stationary conditions, i.e. involving constant frequencies and intensities. However, due to climate change, occurrence of corresponding extreme weather events is expected to alter in the future influencing the reliability and safety of structures and their components. Based on established approaches, a systematically refined data-driven methodology for the determination of design parameters considering nonstationarity as well as standardized targets of structural reliability or safety, respectively, is therefore proposed. The presented procedure picks up fundamentals of European standardization and extends them with respect to nonstationarity by applying a shifting time window method. Taking projected snow loads into account, the application of the method is exemplarily demonstrated and various influencing parameters are discussed.}, subject = {Reliabilit{\"a}t}, language = {en} }