@article{AbbaspourGilandehMolaeeSabzietal., author = {Abbaspour-Gilandeh, Yousef and Molaee, Amir and Sabzi, Sajad and Nabipour, Narjes and Shamshirband, Shahaboddin and Mosavi, Amir}, title = {A Combined Method of Image Processing and Artificial Neural Network for the Identification of 13 Iranian Rice Cultivars}, series = {agronomy}, volume = {2020}, journal = {agronomy}, number = {Volume 10, Issue 1, 117}, publisher = {MDPI}, doi = {10.3390/agronomy10010117}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200123-40695}, pages = {21}, abstract = {Due to the importance of identifying crop cultivars, the advancement of accurate assessment of cultivars is considered essential. The existing methods for identifying rice cultivars are mainly time-consuming, costly, and destructive. Therefore, the development of novel methods is highly beneficial. The aim of the present research is to classify common rice cultivars in Iran based on color, morphologic, and texture properties using artificial intelligence (AI) methods. In doing so, digital images of 13 rice cultivars in Iran in three forms of paddy, brown, and white are analyzed through pre-processing and segmentation of using MATLAB. Ninety-two specificities, including 60 color, 14 morphologic, and 18 texture properties, were identified for each rice cultivar. In the next step, the normal distribution of data was evaluated, and the possibility of observing a significant difference between all specificities of cultivars was studied using variance analysis. In addition, the least significant difference (LSD) test was performed to obtain a more accurate comparison between cultivars. To reduce data dimensions and focus on the most effective components, principal component analysis (PCA) was employed. Accordingly, the accuracy of rice cultivar separations was calculated for paddy, brown rice, and white rice using discriminant analysis (DA), which was 89.2\%, 87.7\%, and 83.1\%, respectively. To identify and classify the desired cultivars, a multilayered perceptron neural network was implemented based on the most effective components. The results showed 100\% accuracy of the network in identifying and classifying all mentioned rice cultivars. Hence, it is concluded that the integrated method of image processing and pattern recognition methods, such as statistical classification and artificial neural networks, can be used for identifying and classification of rice cultivars.}, subject = {Maschinelles Lernen}, language = {en} } @article{AmirinasabShamshirbandChronopoulosetal., author = {Amirinasab, Mehdi and Shamshirband, Shahaboddin and Chronopoulos, Anthony Theodore and Mosavi, Amir and Nabipour, Narjes}, title = {Energy-Efficient Method for Wireless Sensor Networks Low-Power Radio Operation in Internet of Things}, series = {electronics}, volume = {2020}, journal = {electronics}, number = {volume 9, issue 2, 320}, publisher = {MDPI}, doi = {10.3390/electronics9020320}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200213-40954}, pages = {20}, abstract = {The radio operation in wireless sensor networks (WSN) in Internet of Things (IoT)applications is the most common source for power consumption. Consequently, recognizing and controlling the factors affecting radio operation can be valuable for managing the node power consumption. Among essential factors affecting radio operation, the time spent for checking the radio is of utmost importance for monitoring power consumption. It can lead to false WakeUp or idle listening in radio duty cycles and ContikiMAC. ContikiMAC is a low-power radio duty-cycle protocol in Contiki OS used in WakeUp mode, as a clear channel assessment (CCA) for checking radio status periodically. This paper presents a detailed analysis of radio WakeUp time factors of ContikiMAC. Furthermore, we propose a lightweight CCA (LW-CCA) as an extension to ContikiMAC to reduce the Radio Duty-Cycles in false WakeUps and idle listening though using dynamic received signal strength indicator (RSSI) status check time. The simulation results in the Cooja simulator show that LW-CCA reduces about 8\% energy consumption in nodes while maintaining up to 99\% of the packet delivery rate (PDR).}, subject = {Internet der Dinge}, language = {en} } @article{DehghaniSalehiMosavietal., author = {Dehghani, Majid and Salehi, Somayeh and Mosavi, Amir and Nabipour, Narjes and Shamshirband, Shahaboddin and Ghamisi, Pedram}, title = {Spatial Analysis of Seasonal Precipitation over Iran: Co-Variation with Climate Indices}, series = {ISPRS, International Journal of Geo-Information}, volume = {2020}, journal = {ISPRS, International Journal of Geo-Information}, number = {Volume 9, Issue 2, 73}, publisher = {MDPI}, doi = {10.3390/ijgi9020073}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200128-40740}, pages = {23}, abstract = {Temporary changes in precipitation may lead to sustained and severe drought or massive floods in different parts of the world. Knowing the variation in precipitation can effectively help the water resources decision-makers in water resources management. Large-scale circulation drivers have a considerable impact on precipitation in different parts of the world. In this research, the impact of El Ni{\~n}o-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and North Atlantic Oscillation (NAO) on seasonal precipitation over Iran was investigated. For this purpose, 103 synoptic stations with at least 30 years of data were utilized. The Spearman correlation coefficient between the indices in the previous 12 months with seasonal precipitation was calculated, and the meaningful correlations were extracted. Then, the month in which each of these indices has the highest correlation with seasonal precipitation was determined. Finally, the overall amount of increase or decrease in seasonal precipitation due to each of these indices was calculated. Results indicate the Southern Oscillation Index (SOI), NAO, and PDO have the most impact on seasonal precipitation, respectively. Additionally, these indices have the highest impact on the precipitation in winter, autumn, spring, and summer, respectively. SOI has a diverse impact on winter precipitation compared to the PDO and NAO, while in the other seasons, each index has its special impact on seasonal precipitation. Generally, all indices in different phases may decrease the seasonal precipitation up to 100\%. However, the seasonal precipitation may increase more than 100\% in different seasons due to the impact of these indices. The results of this study can be used effectively in water resources management and especially in dam operation.}, subject = {Maschinelles Lernen}, language = {en} } @article{FaroughiKarimimoshaverArametal., author = {Faroughi, Maryam and Karimimoshaver, Mehrdad and Aram, Farshid and Solgi, Ebrahim and Mosavi, Amir and Nabipour, Narjes and Chau, Kwok-Wing}, title = {Computational modeling of land surface temperature using remote sensing data to investigate the spatial arrangement of buildings and energy consumption relationship}, series = {Engineering Applications of Computational Fluid Mechanics}, volume = {2020}, journal = {Engineering Applications of Computational Fluid Mechanics}, number = {Volume 14, No. 1}, publisher = {Taylor \& Francis}, doi = {https://doi.org/10.1080/19942060.2019.1707711}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200110-40585}, pages = {254 -- 270}, abstract = {The effect of urban form on energy consumption has been the subject of various studies around the world. Having examined the effect of buildings on energy consumption, these studies indicate that the physical form of a city has a notable impact on the amount of energy consumed in its spaces. The present study identified the variables that affected energy consumption in residential buildings and analyzed their effects on energy consumption in four neighborhoods in Tehran: Apadana, Bimeh, Ekbatan-phase I, and Ekbatan-phase II. After extracting the variables, their effects are estimated with statistical methods, and the results are compared with the land surface temperature (LST) remote sensing data derived from Landsat 8 satellite images taken in the winter of 2019. The results showed that physical variables, such as the size of buildings, population density, vegetation cover, texture concentration, and surface color, have the greatest impacts on energy usage. For the Apadana neighborhood, the factors with the most potent effect on energy consumption were found to be the size of buildings and the population density. However, for other neighborhoods, in addition to these two factors, a third factor was also recognized to have a significant effect on energy consumption. This third factor for the Bimeh, Ekbatan-I, and Ekbatan-II neighborhoods was the type of buildings, texture concentration, and orientation of buildings, respectively.}, subject = {Fernerkung}, language = {en} } @article{HassannatajJoloudariHassannatajJoloudariSaadatfaretal., author = {Hassannataj Joloudari, Javad and Hassannataj Joloudari, Edris and Saadatfar, Hamid and GhasemiGol, Mohammad and Razavi, Seyyed Mohammad and Mosavi, Amir and Nabipour, Narjes and Shamshirband, Shahaboddin and Nadai, Laszlo}, title = {Coronary Artery Disease Diagnosis: Ranking the Significant Features Using a Random Trees Model}, series = {International Journal of Environmental Research and Public Health, IJERPH}, volume = {2020}, journal = {International Journal of Environmental Research and Public Health, IJERPH}, number = {Volume 17, Issue 3, 731}, publisher = {MDPI}, doi = {10.3390/ijerph17030731}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200213-40819}, pages = {24}, abstract = {Heart disease is one of the most common diseases in middle-aged citizens. Among the vast number of heart diseases, coronary artery disease (CAD) is considered as a common cardiovascular disease with a high death rate. The most popular tool for diagnosing CAD is the use of medical imaging, e.g., angiography. However, angiography is known for being costly and also associated with a number of side effects. Hence, the purpose of this study is to increase the accuracy of coronary heart disease diagnosis through selecting significant predictive features in order of their ranking. In this study, we propose an integrated method using machine learning. The machine learning methods of random trees (RTs), decision tree of C5.0, support vector machine (SVM), and decision tree of Chi-squared automatic interaction detection (CHAID) are used in this study. The proposed method shows promising results and the study confirms that the RTs model outperforms other models.}, subject = {Maschinelles Lernen}, language = {en} } @article{HomaeiSoleimaniShamshirbandetal., author = {Homaei, Mohammad Hossein and Soleimani, Faezeh and Shamshirband, Shahaboddin and Mosavi, Amir and Nabipour, Narjes and Varkonyi-Koczy, Annamaria R.}, title = {An Enhanced Distributed Congestion Control Method for Classical 6LowPAN Protocols Using Fuzzy Decision System}, series = {IEEE Access}, journal = {IEEE Access}, number = {volume 8}, publisher = {IEEE}, doi = {10.1109/ACCESS.2020.2968524}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200213-40805}, pages = {20628 -- 20645}, abstract = {The classical Internet of things routing and wireless sensor networks can provide more precise monitoring of the covered area due to the higher number of utilized nodes. Because of the limitations in shared transfer media, many nodes in the network are prone to the collision in simultaneous transmissions. Medium access control protocols are usually more practical in networks with low traffic, which are not subjected to external noise from adjacent frequencies. There are preventive, detection and control solutions to congestion management in the network which are all the focus of this study. In the congestion prevention phase, the proposed method chooses the next step of the path using the Fuzzy decision-making system to distribute network traffic via optimal paths. In the congestion detection phase, a dynamic approach to queue management was designed to detect congestion in the least amount of time and prevent the collision. In the congestion control phase, the back-pressure method was used based on the quality of the queue to decrease the probability of linking in the pathway from the pre-congested node. The main goals of this study are to balance energy consumption in network nodes, reducing the rate of lost packets and increasing quality of service in routing. Simulation results proved the proposed Congestion Control Fuzzy Decision Making (CCFDM) method was more capable in improving routing parameters as compared to recent algorithms.}, subject = {Internet der dinge}, language = {en} } @article{KargarSamadianfardParsaetal., author = {Kargar, Katayoun and Samadianfard, Saeed and Parsa, Javad and Nabipour, Narjes and Shamshirband, Shahaboddin and Mosavi, Amir and Chau, Kwok-Wing}, title = {Estimating longitudinal dispersion coefficient in natural streams using empirical models and machine learning algorithms}, series = {Engineering Applications of Computational Fluid Mechanics}, volume = {2020}, journal = {Engineering Applications of Computational Fluid Mechanics}, number = {Volume 14, No. 1}, publisher = {Taylor \& Francis}, doi = {10.1080/19942060.2020.1712260}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200128-40775}, pages = {311 -- 322}, abstract = {The longitudinal dispersion coefficient (LDC) plays an important role in modeling the transport of pollutants and sediment in natural rivers. As a result of transportation processes, the concentration of pollutants changes along the river. Various studies have been conducted to provide simple equations for estimating LDC. In this study, machine learning methods, namely support vector regression, Gaussian process regression, M5 model tree (M5P) and random forest, and multiple linear regression were examined in predicting the LDC in natural streams. Data sets from 60 rivers around the world with different hydraulic and geometric features were gathered to develop models for LDC estimation. Statistical criteria, including correlation coefficient (CC), root mean squared error (RMSE) and mean absolute error (MAE), were used to scrutinize the models. The LDC values estimated by these models were compared with the corresponding results of common empirical models. The Taylor chart was used to evaluate the models and the results showed that among the machine learning models, M5P had superior performance, with CC of 0.823, RMSE of 454.9 and MAE of 380.9. The model of Sahay and Dutta, with CC of 0.795, RMSE of 460.7 and MAE of 306.1, gave more precise results than the other empirical models. The main advantage of M5P models is their ability to provide practical formulae. In conclusion, the results proved that the developed M5P model with simple formulations was superior to other machine learning models and empirical models; therefore, it can be used as a proper tool for estimating the LDC in rivers.}, subject = {Maschinelles Lernen}, language = {en} } @article{MosaviShamshirbandEsmaeilbeikietal., author = {Mosavi, Amir and Shamshirband, Shahaboddin and Esmaeilbeiki, Fatemeh and Zarehaghi, Davoud and Neyshabouri, Mohammadreza and Samadianfard, Saeed and Ghorbani, Mohammad Ali and Nabipour, Narjes and Chau, Kwok-Wing}, title = {Comparative analysis of hybrid models of firefly optimization algorithm with support vector machines and multilayer perceptron for predicting soil temperature at different depths}, series = {Engineering Applications of Computational Fluid Mechanics}, volume = {2020}, journal = {Engineering Applications of Computational Fluid Mechanics}, number = {Volume 14, Issue 1}, doi = {10.1080/19942060.2020.1788644}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200911-42347}, pages = {939 -- 953}, abstract = {This research aims to model soil temperature (ST) using machine learning models of multilayer perceptron (MLP) algorithm and support vector machine (SVM) in hybrid form with the Firefly optimization algorithm, i.e. MLP-FFA and SVM-FFA. In the current study, measured ST and meteorological parameters of Tabriz and Ahar weather stations in a period of 2013-2015 are used for training and testing of the studied models with one and two days as a delay. To ascertain conclusive results for validation of the proposed hybrid models, the error metrics are benchmarked in an independent testing period. Moreover, Taylor diagrams utilized for that purpose. Obtained results showed that, in a case of one day delay, except in predicting ST at 5 cm below the soil surface (ST5cm) at Tabriz station, MLP-FFA produced superior results compared with MLP, SVM, and SVM-FFA models. However, for two days delay, MLP-FFA indicated increased accuracy in predicting ST5cm and ST 20cm of Tabriz station and ST10cm of Ahar station in comparison with SVM-FFA. Additionally, for all of the prescribed models, the performance of the MLP-FFA and SVM-FFA hybrid models in the testing phase was found to be meaningfully superior to the classical MLP and SVM models.}, subject = {Bodentemperatur}, language = {en} } @article{MousaviSteinkeJuniorTeixeiraetal., author = {Mousavi, Seyed Nasrollah and Steinke J{\´u}nior, Renato and Teixeira, Eder Daniel and Bocchiola, Daniele and Nabipour, Narjes and Mosavi, Amir and Shamshirband, Shahaboddin}, title = {Predictive Modeling the Free Hydraulic Jumps Pressure through Advanced Statistical Methods}, series = {Mathematics}, volume = {2020}, journal = {Mathematics}, number = {Volume 8, Issue 3, 323}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/math8030323}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200402-41140}, pages = {16}, abstract = {Pressure fluctuations beneath hydraulic jumps potentially endanger the stability of stilling basins. This paper deals with the mathematical modeling of the results of laboratory-scale experiments to estimate the extreme pressures. Experiments were carried out on a smooth stilling basin underneath free hydraulic jumps downstream of an Ogee spillway. From the probability distribution of measured instantaneous pressures, pressures with different probabilities could be determined. It was verified that maximum pressure fluctuations, and the negative pressures, are located at the positions near the spillway toe. Also, minimum pressure fluctuations are located at the downstream of hydraulic jumps. It was possible to assess the cumulative curves of pressure data related to the characteristic points along the basin, and different Froude numbers. To benchmark the results, the dimensionless forms of statistical parameters include mean pressures (P*m), the standard deviations of pressure fluctuations (σ*X), pressures with different non-exceedance probabilities (P*k\%), and the statistical coefficient of the probability distribution (Nk\%) were assessed. It was found that an existing method can be used to interpret the present data, and pressure distribution in similar conditions, by using a new second-order fractional relationships for σ*X, and Nk\%. The values of the Nk\% coefficient indicated a single mean value for each probability.}, subject = {Maschinelles Lernen}, language = {en} } @article{NabipourDehghaniMosavietal., author = {Nabipour, Narjes and Dehghani, Majid and Mosavi, Amir and Shamshirband, Shahaboddin}, title = {Short-Term Hydrological Drought Forecasting Based on Different Nature-Inspired Optimization Algorithms Hybridized With Artificial Neural Networks}, series = {IEEE Access}, volume = {2020}, journal = {IEEE Access}, number = {volume 8}, publisher = {IEEE}, doi = {10.1109/ACCESS.2020.2964584}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200213-40796}, pages = {15210 -- 15222}, abstract = {Hydrological drought forecasting plays a substantial role in water resources management. Hydrological drought highly affects the water allocation and hydropower generation. In this research, short term hydrological drought forecasted based on the hybridized of novel nature-inspired optimization algorithms and Artificial Neural Networks (ANN). For this purpose, the Standardized Hydrological Drought Index (SHDI) and the Standardized Precipitation Index (SPI) were calculated in one, three, and six aggregated months. Then, three states where proposed for SHDI forecasting, and 36 input-output combinations were extracted based on the cross-correlation analysis. In the next step, newly proposed optimization algorithms, including Grasshopper Optimization Algorithm (GOA), Salp Swarm algorithm (SSA), Biogeography-based optimization (BBO), and Particle Swarm Optimization (PSO) hybridized with the ANN were utilized for SHDI forecasting and the results compared to the conventional ANN. Results indicated that the hybridized model outperformed compared to the conventional ANN. PSO performed better than the other optimization algorithms. The best models forecasted SHDI1 with R2 = 0.68 and RMSE = 0.58, SHDI3 with R 2 = 0.81 and RMSE = 0.45 and SHDI6 with R 2 = 0.82 and RMSE = 0.40.}, subject = {Maschinelles Lernen}, language = {en} }