@article{AlsaadHartmannHilbeletal., author = {Alsaad, Hayder and Hartmann, Maria and Hilbel, Rebecca and V{\"o}lker, Conrad}, title = {ENVI-met validation data accompanied with simulation data of the impact of facade greening on the urban microclimate}, series = {Data in Brief}, volume = {2022}, journal = {Data in Brief}, number = {Volume 42, article 108200}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.dib.2022.108200}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220511-46455}, pages = {1 -- 13}, abstract = {This dataset consists mainly of two subsets. The first subset includes measurements and simulation data conducted to validate the simulation tool ENVI-met. The measurements were conducted at the campus of the Bauhaus-University Weimar in Weimar, Germany and consisted of recording exterior air temperature, globe temperature, relative humidity, and wind velocity at 1.5 m at four points on four different days. After the measurements, the geometry of the campus was modelled and meshed; the simulations were conducted using the weather data of the measurements days with the aim of investigating the accuracy of the model. The second data subset consists of ENVI-met simulation data of the potential of facade greening in improving the outdoor environment and the indoor air temperature during heatwaves in Central European cities. The data consist of the boundary conditions and the simulation output of two simulation models: with and without facade greening. The geometry of the models corresponded to a residential buildings district in Stuttgart, Germany. The simulation output consisted of exterior air temperature, mean radiant temperature, relative humidity, and wind velocity at 12 different probe points in the model in addition to the indoor air temperature of an exemplary building. The dataset presents both vertical profiles of the probed parameters as well as the time series output of the five-day simulation duration. Both data subsets correspond to the investigations presented in the co-submitted article [1].}, subject = {Messung}, language = {en} } @article{AlsaadVoelker, author = {Alsaad, Hayder and V{\"o}lker, Conrad}, title = {Der K{\"u}hlungseffekt der personalisierten L{\"u}ftung}, series = {Bauphysik}, volume = {2020}, journal = {Bauphysik}, number = {volume 42, issue 5}, publisher = {Ernst \& Sohn bei John Wiley \& Sons}, address = {Hoboken}, doi = {10.25643/bauhaus-universitaet.4272}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20201020-42723}, pages = {218 -- 225}, abstract = {Personalisierte L{\"u}ftung (PL) kann die thermische Behaglichkeit sowie die Qualit{\"a}t der eingeatmeten Atemluft verbessern, in dem jedem Arbeitsplatz Frischluft separat zugef{\"u}hrt wird. In diesem Beitrag wird die Wirkung der PL auf die thermische Behaglichkeit der Nutzer unter sommerlichen Randbedingungen untersucht. Hierf{\"u}r wurden zwei Ans{\"a}tze zur Bewertung des K{\"u}hlungseffekts der PL untersucht: basierend auf (1) der {\"a}quivalenten Temperatur und (2) dem thermischen Empfinden. Grundlage der Auswertung sind in einer Klimakammer gemessene sowie numerisch simulierte Daten. Vor der Durchf{\"u}hrung der Simulationen wurde das numerische Modell zun{\"a}chst anhand der gemessenen Daten validiert. Die Ergebnisse zeigen, dass der Ansatz basierend auf dem thermischen Empfinden zur Evaluierung des K{\"u}hlungseffekts der PL sinnvoller sein kann, da bei diesem die komplexen physiologischen Faktoren besser ber{\"u}cksichtigt werden.}, subject = {L{\"u}ftung}, language = {de} } @article{BenzTarabenLichtenheldetal., author = {Benz, Alexander and Taraben, Jakob and Lichtenheld, Thomas and Morgenthal, Guido and V{\"o}lker, Conrad}, title = {Thermisch-energetische Geb{\"a}udesimulation auf Basis eines Bauwerksinformationsmodells}, series = {Bauphysik}, journal = {Bauphysik}, number = {40, Heft 2}, doi = {10.25643/bauhaus-universitaet.3835}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20181221-38354}, pages = {61 -- 67}, abstract = {F{\"u}r eine Absch{\"a}tzung des Heizw{\"a}rmebedarfs von Geb{\"a}uden und Quartieren k{\"o}nnen thermisch-energetische Simulationen eingesetzt werden. Grundlage dieser Simulationen sind geometrische und physikalische Geb{\"a}udemodelle. Die Erstellung des geometrischen Modells erfolgt in der Regel auf Basis von Baupl{\"a}nen oder Vor-Ort-Begehungen, was mit einem großen Recherche- und Modellierungsaufwand verbunden ist. Sp{\"a}tere bauliche Ver{\"a}nderungen des Geb{\"a}udes m{\"u}ssen h{\"a}ufig manuell in das Modell eingearbeitet werden, was den Arbeitsaufwand zus{\"a}tzlich erh{\"o}ht. Das physikalische Modell stellt die Menge an Parametern und Randbedingungen dar, welche durch Materialeigenschaften, Lage und Umgebungs-einfl{\"u}sse gegeben sind. Die Verkn{\"u}pfung beider Modelle wird innerhalb der entsprechenden Simulations-software realisiert und ist meist nicht in andere Softwareprodukte {\"u}berf{\"u}hrbar. Mithilfe des Building Information Modeling (BIM) k{\"o}nnen Simulationsdaten sowohl konsistent gespeichert als auch {\"u}ber Schnittstellen mit entsprechenden Anwendungen ausgetauscht werden. Hierf{\"u}r wird eine Methode vorgestellt, die thermisch-energetische Simulationen auf Basis des standardisierten {\"U}bergabe-formats Industry Foundation Classes (IFC) inklusive anschließender Auswertungen erm{\"o}glicht. Dabei werden geometrische und physikalische Parameter direkt aus einem {\"u}ber den gesamten Lebenszyklus aktuellen Geb{\"a}udemodell extrahiert und an die Simulation {\"u}bergeben. Dies beschleunigt den Simulations-prozess hinsichtlich der Geb{\"a}udemodellierung und nach sp{\"a}teren baulichen Ver{\"a}nderungen. Die erarbeite-te Methode beruht hierbei auf einfachen Modellierungskonventionen bei der Erstellung des Bauwerksinformationsmodells und stellt eine vollst{\"a}ndige {\"U}bertragbarkeit der Eingangs- und Ausgangswerte sicher. Thermal building simulation based on BIM-models. Thermal energetic simulations are used for the estimation of the heating demand of buildings and districts. These simulations are based on building models containing geometrical and physical information. The creation of geometrical models is usually based on existing construction plans or in situ assessments which demand a comparatively big effort of investigation and modeling. Alterations, which are later applied to the structure, request manual changes of the related model, which increases the effort additionally. The physical model represents the total amount of parameters and boundary conditions that are influenced by material properties, location and environmental influences on the building. The link between both models is realized within the correspondent simulation soft-ware and is usually not transferable to other software products. By Applying Building Information Modeling (BIM) simulation data is stored consistently and an exchange to other software is enabled. Therefore, a method which allows a thermal energetic simulation based on the exchange format Industry Foundation Classes (IFC) including an evaluation is presented. All geometrical and physical information are extracted directly from the building model that is kept up-to-date during its life cycle and transferred to the simulation. This accelerates the simulation process regarding the geometrical modeling and adjustments after later changes of the building. The developed method is based on simple conventions for the creation of the building model and ensures a complete transfer of all simulation data.}, subject = {Building Information Modeling}, language = {de} } @article{BenzTarabenLichtenheldetal., author = {Benz, Alexander and Taraben, Jakob and Lichtenheld, Thomas and Morgenthal, Guido and V{\"o}lker, Conrad}, title = {Thermisch-energetische Geb{\"a}udesimulation auf Basis eines Bauwerksinformationsmodells}, series = {Bauphysik}, journal = {Bauphysik}, number = {40, Heft 2}, doi = {10.25643/bauhaus-universitaet.3819}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20181102-38190}, pages = {61 -- 67}, abstract = {F{\"u}r eine Absch{\"a}tzung des Heizw{\"a}rmebedarfs von Geb{\"a}uden und Quartieren k{\"o}nnen thermisch-energetische Simulationen eingesetzt werden. Grundlage dieser Simulationen sind geometrische und physikalische Geb{\"a}udemodelle. Die Erstellung des geometrischen Modells erfolgt in der Regel auf Basis von Baupl{\"a}nen oder Vor-Ort-Begehungen, was mit einem großen Recherche- und Modellierungsaufwand verbunden ist. Sp{\"a}tere bauliche Ver{\"a}nderungen des Geb{\"a}udes m{\"u}ssen h{\"a}ufig manuell in das Modell eingearbeitet werden, was den Arbeitsaufwand zus{\"a}tzlich erh{\"o}ht. Das physikalische Modell stellt die Menge an Parametern und Randbedingungen dar, welche durch Materialeigenschaften, Lage und Umgebungs-einfl{\"u}sse gegeben sind. Die Verkn{\"u}pfung beider Modelle wird innerhalb der entsprechenden Simulations-software realisiert und ist meist nicht in andere Softwareprodukte {\"u}berf{\"u}hrbar. Mithilfe des Building Information Modeling (BIM) k{\"o}nnen Simulationsdaten sowohl konsistent gespeichert als auch {\"u}ber Schnittstellen mit entsprechenden Anwendungen ausgetauscht werden. Hierf{\"u}r wird eine Methode vorgestellt, die thermisch-energetische Simulationen auf Basis des standardisierten {\"U}bergabe-formats Industry Foundation Classes (IFC) inklusive anschließender Auswertungen erm{\"o}glicht. Dabei werden geometrische und physikalische Parameter direkt aus einem {\"u}ber den gesamten Lebenszyklus aktuellen Geb{\"a}udemodell extrahiert und an die Simulation {\"u}bergeben. Dies beschleunigt den Simulations-prozess hinsichtlich der Geb{\"a}udemodellierung und nach sp{\"a}teren baulichen Ver{\"a}nderungen. Die erarbeite-te Methode beruht hierbei auf einfachen Modellierungskonventionen bei der Erstellung des Bauwerksinformationsmodells und stellt eine vollst{\"a}ndige {\"U}bertragbarkeit der Eingangs- und Ausgangswerte sicher. Thermal building simulation based on BIM-models. Thermal energetic simulations are used for the estimation of the heating demand of buildings and districts. These simulations are based on building models containing geometrical and physical information. The creation of geometrical models is usually based on existing construction plans or in situ assessments which demand a comparatively big effort of investigation and modeling. Alterations, which are later applied to the structure, request manual changes of the related model, which increases the effort additionally. The physical model represents the total amount of parameters and boundary conditions that are influenced by material properties, location and environmental influences on the building. The link between both models is realized within the correspondent simulation soft-ware and is usually not transferable to other software products. By Applying Building Information Modeling (BIM) simulation data is stored consistently and an exchange to other software is enabled. Therefore, a method which allows a thermal energetic simulation based on the exchange format Industry Foundation Classes (IFC) including an evaluation is presented. All geometrical and physical information are extracted directly from the building model that is kept up-to-date during its life cycle and transferred to the simulation. This accelerates the simulation process regarding the geometrical modeling and adjustments after later changes of the building. The developed method is based on simple conventions for the creation of the building model and ensures a complete transfer of all simulation data.}, subject = {Geb{\"a}udeh{\"u}lle}, language = {de} } @article{BourikasJamesBahajetal., author = {Bourikas, Leonidas and James, Patrick A. B. and Bahaj, AbuBakr S. and Jentsch, Mark F. and Shen, Tianfeng and Chow, David H. C. and Darkwa, Jo}, title = {Transforming typical hourly simulation weather data files to represent urban locations by using a 3D urban unit representation with micro-climate simulations}, series = {Future Cities and Environment}, journal = {Future Cities and Environment}, doi = {10.1186/s40984-016-0020-4}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170418-31348}, abstract = {Urban and building energy simulation models are usually driven by typical meteorological year (TMY) weather data often in a TMY2 or EPW format. However, the locations where these historical datasets were collected (usually airports) generally do not represent the local, site specific micro-climates that cities develop. In this paper, a humid sub-tropical climate context has been considered. An idealised "urban unit model" of 250 m radius is being presented as a method of adapting commonly available weather data files to the local micro-climate. This idealised "urban unit model" is based on the main thermal and morphological characteristics of nine sites with residential/institutional (university) use in Hangzhou, China. The area of the urban unit was determined by the region of influence on the air temperature signal at the centre of the unit. Air temperature and relative humidity were monitored and the characteristics of the surroundings assessed (eg green-space, blue-space, built form). The "urban unit model" was then implemented into micro-climatic simulations using a Computational Fluid Dynamics - Surface Energy Balance analysis tool (ENVI-met, Version 4). The "urban unit model" approach used here in the simulations delivered results with performance evaluation indices comparable to previously published work (for air temperature; RMSE <1, index of agreement d > 0.9). The micro-climatic simulation results were then used to adapt the air temperature and relative humidity of the TMY file for Hangzhou to represent the local, site specific morphology under three different weather forcing cases, (ie cloudy/rainy weather (Group 1), clear sky, average weather conditions (Group 2) and clear sky, hot weather (Group 3)). Following model validation, two scenarios (domestic and non-domestic building use) were developed to assess building heating and cooling loads against the business as usual case of using typical meteorological year data files. The final "urban weather projections" obtained from the simulations with the "urban unit model" were used to compare the degree days amongst the reference TMY file, the TMY file with a bulk UHI offset and the TMY file adapted for the site-specific micro-climate (TMY-UWP). The comparison shows that Heating Degree Days (HDD) of the TMY file (1598 days) decreased by 6 \% in the "TMY + UHI" case and 13 \% in the "TMY-UWP" case showing that the local specific micro-climate is attributed with an additional 7 \% (ie from 6 to 13 \%) reduction in relation to the bulk UHI effect in the city. The Cooling Degree Days (CDD) from the "TMY + UHI" file are 17 \% more than the reference TMY (207 days) and the use of the "TMY-UWP" file results to an additional 14 \% increase in comparison with the "TMY + UHI" file (ie from 17 to 31 \%). This difference between the TMY-UWP and the TMY + UHI files is a reflection of the thermal characteristics of the specific urban morphology of the studied sites compared to the wider city. A dynamic thermal simulation tool (TRNSYS) was used to calculate the heating and cooling load demand change in a domestic and a non-domestic building scenario. The heating and cooling loads calculated with the adapted TMY-UWP file show that in both scenarios there is an increase by approximately 20 \% of the cooling load and a 20 \% decrease of the heating load. If typical COP values for a reversible air-conditioning system are 2.0 for heating and 3.5 for cooling then the total electricity consumption estimated with the use of the "urbanised" TMY-UWP file will be decreased by 11 \% in comparison with the "business as usual" (ie reference TMY) case. Overall, it was found that the proposed method is appropriate for urban and building energy performance simulations in humid sub-tropical climate cities such as Hangzhou, addressing some of the shortfalls of current simulation weather data sets such as the TMY.}, subject = {Mikroklima}, language = {en} } @article{vanTreeckRank2004, author = {van Treeck, Christoph and Rank, Ernst}, title = {Analysis of building structure and topology based on Graph Theory}, doi = {10.25643/bauhaus-universitaet.230}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2308}, year = {2004}, abstract = {Individual views on a building product of people involved in the design process imply different models for planning and calculation. In order to interpret these geometrical, topological and semantical data of a building model we identify a structural component graph, a graph of room faces, a room graph and a relational object graph as aids and we explain algorithms to derive these relations. The application of the technique presented is demonstrated by the analysis and discretization of a sample model in the scope of building energy simulation.}, subject = {Produktmodell}, language = {en} } @article{GaoWuRen2004, author = {Gao, Zuoren and Wu, Weiyu and Ren, Aizhu}, title = {Physically Based Modeling and Multi-Physical Simulation System for Wood Structure Fire Performance}, doi = {10.25643/bauhaus-universitaet.238}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2381}, year = {2004}, abstract = {This research is devoted to promoting the performance-based engineering in wood structure fire. It looks into the characteristic of the material, structural composing and collapse detecting to find out the main factors in the wood structure collapse in fire. The aim of the research is to provide an automatic simulation platform for the complicated circulation. A physically based model for slim member for beams and columns and a frame of multi-physical simulation are provided to implement the system. The physically based model contains material model, structural mechanics model, material mechanics model, as well as geometry model for the compositive simulation. The multi-physical simulation is built on the model and has the capacity to carry out a simulation combining structural, fire (thermal, CFD) and material degradation simulation. The structural and fire simulation rely on two sophisticated software respectively, ANSYS (an FEA software) and FDS (with a core of CFD). Researchers of the paper develop system by themselves to combine the two existing ones. The system has the capability to calculate the wood char to find out the loss of cross-section and to detect the collapse caused in different ways. The paper gives a sample of Chinese traditional house to show how this simulation system works.}, subject = {Produktmodell}, language = {en} } @article{KangMiranda2004, author = {Kang, Shihchung and Miranda, Eduardo}, title = {Automated Simulation of the Erection Activities in Virtual Construction}, doi = {10.25643/bauhaus-universitaet.231}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2310}, year = {2004}, abstract = {The goal of the research is the development of a computer system to plan, simulate and visualize erection processes in construction. In the research construction cranes are treated as robots with predefined degrees of freedom and crane-specific motion planning techniques are developed to generate time-optimized and collision-free paths for each piece to be erected in the project. Using inverse kinematics and structural dynamics simulation, the computer system then computes the crane motions and velocities necessary to achieve the previously calculated paths. The main benefits of the research are the accurate planning and scheduling of crane operations leading to optimization of crane usage and project schedules, as well as improving overall crane safety in the project. This research is aimed at the development of systems that will allow computer-assisted erection of civil infrastructure and ultimately to achieve fully-automated erection processes using robotic cranes...}, subject = {Produktmodell}, language = {en} } @article{NeubergFankEkkerlein2004, author = {Neuberg, Frank and Fank, Ernst and Ekkerlein, Christian}, title = {Integrated Life Cycle Simulation and Assessment of Buildings}, doi = {10.25643/bauhaus-universitaet.235}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2351}, year = {2004}, abstract = {Buildings require both for construction and, due to their comparatively long life cycle for maintenance, significant raw material and energy resources. So far available knowledge about resource consumption during an entire life cycle of a building is still quite rare, because various criteria affect each other and/or overlay mutually. In this contribution a model based software concept is presented using an integrated approach for life cycle simulation and assessment of buildings. The essential point of the development consists of connecting an IFC compliant product model of a building via the Internet with data bases for the resource and energy requirement of building materials. Furthermore, numerical simulations allow calculating and minimizing the energy consumption, the resource requirement, the waste streams and also the noxious emissions. In the context of this paper we present the first release of software programs for architects and engineers, which help them to evaluate their design decisions objectively in early planning steps. Additionally the usage of the software is demonstrated by a test case study for a real world building. By applying this software in practice a substantial contribution for saving energy and natural resources can be provided in the sense of sustainable and ecological building design.}, subject = {Produktmodell}, language = {en} } @article{SemenovAlekseevaTarlapan2004, author = {Semenov, Vitaly and Alekseeva, Elena and Tarlapan, Oleg}, title = {Virtual Construction using Map-based Approach}, doi = {10.25643/bauhaus-universitaet.244}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2447}, year = {2004}, abstract = {The paper presents a general map-based approach to prototyping of products in virtual reality environments. Virtual prototyping of products is considered as a consistent simulation and visualization process mapping the source product model into its target visual representations. The approach enables to interrelate formally the product and visual information models with each other by defining mapping rules, to specify a prototyping scenario as a composition of map instances, and then to explore particular product models in virtual reality environments by interpreting the composed scenario. Having been realized, the proposed approach provides for the strongly formalized method and the common software framework to build virtual prototyping applications. As a result, the applications gain in expressiveness, reusability and reliability, as well as take on additional runtime flexibility...}, subject = {Produktmodell}, language = {en} }