@article{ZhangWangLahmeretal., author = {Zhang, Chao and Wang, Cuixia and Lahmer, Tom and He, Pengfei and Rabczuk, Timon}, title = {A dynamic XFEM formulation for crack identification}, series = {International Journal of Mechanics and Materials in Design}, journal = {International Journal of Mechanics and Materials in Design}, pages = {427 -- 448}, abstract = {A dynamic XFEM formulation for crack identification}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhangNanthakumarLahmeretal., author = {Zhang, Chao and Nanthakumar, S.S. and Lahmer, Tom and Rabczuk, Timon}, title = {Multiple cracks identification for piezoelectric structures}, series = {International Journal of Fracture}, journal = {International Journal of Fracture}, pages = {1 -- 19}, abstract = {Multiple cracks identification for piezoelectric structures}, subject = {Angewandte Mathematik}, language = {en} } @article{VuBacSilaniLahmeretal., author = {Vu-Bac, N. and Silani, Mohammad and Lahmer, Tom and Zhuang, Xiaoying and Rabczuk, Timon}, title = {A unified framework for stochastic predictions of Young's modulus of clay/epoxy nanocomposites (PCNs)}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {520 -- 535}, abstract = {A unified framework for stochastic predictions of Young's modulus of clay/epoxy nanocomposites (PCNs)}, subject = {Angewandte Mathematik}, language = {en} } @article{VuBacRafieeZhuangetal., author = {Vu-Bac, N. and Rafiee, Roham and Zhuang, Xiaoying and Lahmer, Tom and Rabczuk, Timon}, title = {Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters}, series = {Composites Part B: Engineering}, journal = {Composites Part B: Engineering}, pages = {446 -- 464}, abstract = {Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters}, subject = {Angewandte Mathematik}, language = {en} } @article{VuBacLahmerZhuangetal., author = {Vu-Bac, N. and Lahmer, Tom and Zhuang, Xiaoying and Nguyen-Thoi, T. and Rabczuk, Timon}, title = {A software framework for probabilistic sensitivity analysis for computationally expensive models}, series = {Advances in Engineering Software}, journal = {Advances in Engineering Software}, pages = {19 -- 31}, abstract = {A software framework for probabilistic sensitivity analysis for computationally expensive models}, subject = {Angewandte Mathematik}, language = {en} } @article{VuBacLahmerZhangetal., author = {Vu-Bac, N. and Lahmer, Tom and Zhang, Yancheng and Zhuang, Xiaoying and Rabczuk, Timon}, title = {Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs)}, series = {Composites Part B Engineering}, journal = {Composites Part B Engineering}, pages = {80 -- 95}, abstract = {Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs)}, subject = {Angewandte Mathematik}, language = {en} } @article{VuBacLahmerKeiteletal., author = {Vu-Bac, N. and Lahmer, Tom and Keitel, Holger and Zhao, Jun-Hua and Zhuang, Xiaoying and Rabczuk, Timon}, title = {Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations}, series = {Mechanics of Materials}, journal = {Mechanics of Materials}, pages = {70 -- 84}, abstract = {Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations}, subject = {Angewandte Mathematik}, language = {en} } @article{SteinLahmerBock, author = {Stein, Peter and Lahmer, Tom and Bock, Sebastian}, title = {Synthese und Analyse von gekoppelten Modellen im konstruktiven Ingenieurbau}, series = {Bautechnik}, journal = {Bautechnik}, pages = {8 -- 11}, abstract = {Synthese und Analyse von gekoppelten Modellen im konstruktiven Ingenieurbau}, subject = {Angewandte Mathematik}, language = {de} } @article{ReichertOlneyLahmer, author = {Reichert, Ina and Olney, Peter and Lahmer, Tom}, title = {Combined approach for optimal sensor placement and experimental verification in the context of tower-like structures}, series = {Journal of Civil Structural Health Monitoring}, volume = {2021}, journal = {Journal of Civil Structural Health Monitoring}, number = {volume 11}, publisher = {Heidelberg}, address = {Springer}, doi = {10.1007/s13349-020-00448-7}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210804-44701}, pages = {223 -- 234}, abstract = {When it comes to monitoring of huge structures, main issues are limited time, high costs and how to deal with the big amount of data. In order to reduce and manage them, respectively, methods from the field of optimal design of experiments are useful and supportive. Having optimal experimental designs at hand before conducting any measurements is leading to a highly informative measurement concept, where the sensor positions are optimized according to minimal errors in the structures' models. For the reduction of computational time a combined approach using Fisher Information Matrix and mean-squared error in a two-step procedure is proposed under the consideration of different error types. The error descriptions contain random/aleatoric and systematic/epistemic portions. Applying this combined approach on a finite element model using artificial acceleration time measurement data with artificially added errors leads to the optimized sensor positions. These findings are compared to results from laboratory experiments on the modeled structure, which is a tower-like structure represented by a hollow pipe as the cantilever beam. Conclusively, the combined approach is leading to a sound experimental design that leads to a good estimate of the structure's behavior and model parameters without the need of preliminary measurements for model updating.}, subject = {Strukturmechanik}, language = {en} } @article{NguyenVinhBakarMsekhetal., author = {Nguyen-Vinh, H. and Bakar, I. and Msekh, Mohammed Abdulrazzak and Song, Jeong-Hoon and Muthu, Jacob and Zi, Goangseup and Le, P. and Bordas, St{\´e}phane Pierre Alain and Simpson, R. and Natarajan, S. and Lahmer, Tom and Rabczuk, Timon}, title = {Extended Finite Element Method for Dynamic Fracture of Piezo-Electric Materials}, series = {Engineering Fracture Mechanics}, journal = {Engineering Fracture Mechanics}, doi = {10.1016/j.engfracmech.2012.04.025}, pages = {19 -- 31}, abstract = {We present an extended finite element formulation for dynamic fracture of piezo-electric materials. The method is developed in the context of linear elastic fracture mechanics. It is applied to mode I and mixed mode-fracture for quasi-steady cracks. An implicit time integration scheme is exploited. The results are compared to results obtained with the boundary element method and show excellent agreement.}, subject = {Angewandte Mathematik}, language = {en} }