@article{JiangWangRabczuk, author = {Jiang, Jin-Wu and Wang, Bing-Shen and Rabczuk, Timon}, title = {Why twisting angles are diverse in graphene Moir'e patterns?}, series = {Journal of Applied Physics}, journal = {Journal of Applied Physics}, abstract = {Why twisting angles are diverse in graphene Moir'e patterns?}, subject = {Angewandte Mathematik}, language = {en} } @inproceedings{AhmadZabelKoenke, author = {Ahmad, Sofyan and Zabel, Volkmar and K{\"o}nke, Carsten}, title = {WAVELET-BASED INDICATORS FOR RESPONSE SURFACE MODELS IN DAMAGE IDENTIFICATION OF STRUCTURES}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2758}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170306-27588}, pages = {14}, abstract = {In this paper, wavelet energy damage indicator is used in response surface methodology to identify the damage in simulated filler beam railway bridge. The approximate model is addressed to include the operational and surrounding condition in the assessment. The procedure is split into two stages, the training and detecting phase. During training phase, a so-called response surface is built from training data using polynomial regression and radial basis function approximation approaches. The response surface is used to detect the damage in structure during detection phase. The results show that the response surface model is able to detect moderate damage in one of bridge supports while the temperatures and train velocities are varied.}, subject = {Angewandte Mathematik}, language = {en} } @article{DoeringHoffmeyerSeegeretal., author = {D{\"o}ring, R. and Hoffmeyer, J. and Seeger, T. and Vormwald, Michael}, title = {Verformungsverhalten und rechnerische Absch{\"a}tzung der Erm{\"u}dungslebensdauer metallischer Werkstoffe unter mehrachsig nichtproportionaler Beanspruchung}, series = {Materialwissenschaft und Werkstofftechnik}, journal = {Materialwissenschaft und Werkstofftechnik}, pages = {280 -- 288}, abstract = {Verformungsverhalten und rechnerische Absch{\"a}tzung der Erm{\"u}dungslebensdauer metallischer Werkstoffe unter mehrachsig nichtproportionaler Beanspruchung}, subject = {Angewandte Mathematik}, language = {de} } @article{LahmerIlgLerch, author = {Lahmer, Tom and Ilg, J. and Lerch, Reinhard}, title = {Variance-based sensitivity analyses of piezoelectric models}, series = {Computer Modeling in Engineering \& Sciences}, journal = {Computer Modeling in Engineering \& Sciences}, pages = {105 -- 126}, abstract = {Variance-based sensitivity analyses of piezoelectric models}, subject = {Angewandte Mathematik}, language = {en} } @article{IlyaniAkmarLahmerBordasetal., author = {Ilyani Akmar, A.B. and Lahmer, Tom and Bordas, St{\´e}phane Pierre Alain and Beex, L.A.A. and Rabczuk, Timon}, title = {Uncertainty quantification of dry woven fabrics: A sensitivity analysis on material properties}, series = {Composite Structures}, journal = {Composite Structures}, doi = {10.1016/j.compstruct.2014.04.014}, pages = {1 -- 17}, abstract = {Uncertainty quantification of dry woven fabrics: A sensitivity analysis on material properties}, subject = {Angewandte Mathematik}, language = {en} } @article{VuBacRafieeZhuangetal., author = {Vu-Bac, N. and Rafiee, Roham and Zhuang, Xiaoying and Lahmer, Tom and Rabczuk, Timon}, title = {Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters}, series = {Composites Part B: Engineering}, journal = {Composites Part B: Engineering}, pages = {446 -- 464}, abstract = {Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters}, subject = {Angewandte Mathematik}, language = {en} } @article{GoebelLahmerOsburg, author = {G{\"o}bel, Luise and Lahmer, Tom and Osburg, Andrea}, title = {Uncertainty analysis in multiscale modeling of concrete based on continuum micromechanics}, series = {European Journal of Mechanics-A/Solids}, journal = {European Journal of Mechanics-A/Solids}, abstract = {Uncertainty analysis in multiscale modeling of concrete based on continuum micromechanics}, subject = {Angewandte Mathematik}, language = {en} } @article{GhasemiRafieeZhuangetal., author = {Ghasemi, Hamid and Rafiee, Roham and Zhuang, Xiaoying and Muthu, Jacob and Rabczuk, Timon}, title = {Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {295 -- 305}, abstract = {Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling}, subject = {Angewandte Mathematik}, language = {en} } @inproceedings{JaouadiLahmer, author = {Jaouadi, Zouhour and Lahmer, Tom}, title = {Topology optimization of structures subjected to multiple load cases by introducing the Epsilon constraint method}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2804}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28042}, pages = {7}, abstract = {A topology optimization method has been developed for structures subjected to multiple load cases (Example of a bridge pier subjected to wind loads, traffic, superstructure...). We formulate the problem as a multi-criterial optimization problem, where the compliance is computed for each load case. Then, the Epsilon constraint method (method proposed by Chankong and Haimes, 1971) is adapted. The strategy of this method is based on the concept of minimizing the maximum compliance resulting from the critical load case while the other remaining compliances are considered in the constraints. In each iteration, the compliances of all load cases are computed and only the maximum one is minimized. The topology optimization process is switching from one load to another according to the variation of the resulting compliance. In this work we will motivate and explain the proposed methodology and provide some numerical examples.}, subject = {Angewandte Informatik}, language = {en} } @article{NanthakumarLahmerZhuangetal., author = {Nanthakumar, S.S. and Lahmer, Tom and Zhuang, Xiaoying and Park, Harold S. and Rabczuk, Timon}, title = {Topology optimization of piezoelectric nanostructures}, series = {Journal of the Mechanics and Physics of Solids}, journal = {Journal of the Mechanics and Physics of Solids}, pages = {316 -- 335}, abstract = {Topology optimization of piezoelectric nanostructures}, subject = {Angewandte Mathematik}, language = {en} }