@inproceedings{ZollerMaltretPoutrain1997, author = {Zoller, J. and Maltret, J.-L. and Poutrain, K.}, title = {Models generation : from urban simulation to virtual reality}, doi = {10.25643/bauhaus-universitaet.449}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-4498}, year = {1997}, abstract = {The aim of researches conducted within gamsau about urban simulation, in particular Remus project, is to allow rapid modeling of large and regular urban zones, for purpose of interactive navigation (like VRML) or for realistic rendering (ray-tracing methods). One of problems to be solved in this context is the multiplicity of data formats : inputs come from different sources, and outputs are for heterogeneous systems of visualization. Typically CSG and boundary representation must be generated, treated and converted during building of models. Furthermore, the generated models can be more or less refined, depending on requests and type of use. This paper describes the general context of data models conversion, problems concerning levels of detail and implementation done in Remus, based on object oriented approach.}, subject = {Stadtplanung}, language = {en} } @article{Zierold2003, author = {Zierold, Sabine}, title = {Das Virtuelle im Realen : der virtuelle Raum als Entgrenzung des physischen Raumes der Architektur}, doi = {10.25643/bauhaus-universitaet.1282}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20080318-13522}, year = {2003}, abstract = {Wissenschaftliches Kolloquium vom 24. bis 27. April 2003 in Weimar an der Bauhaus-Universit{\"a}t zum Thema: ‚MediumArchitektur - Zur Krise der Vermittlung'}, subject = {Raum}, language = {de} } @article{YabukiKotaniShitani2004, author = {Yabuki, Nobuyoshi and Kotani, Jun and Shitani, Tomoaki}, title = {A Steel Bridge Design System Architecture using VR-CAD and Web Service-based Multi-Agents}, doi = {10.25643/bauhaus-universitaet.214}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2146}, year = {2004}, abstract = {This paper presents a new design environment based on Multi-Agents and Virtual Reality (VR). In this research, a design system with a virtual reality function was developed. The virtual world was realized by using GL4Java, liquid crystal shutter glasses, sensor systems, etc. And the Multi-Agent CAD system with product models, which had been developed before, was integrated with the VR design system. A prototype system was developed for highway steel plate girder bridges, and was applied to a design problem. The application verified the effectiveness of the developed system.}, subject = {Mehragentensystem}, language = {en} } @phdthesis{Willenbacher2000, author = {Willenbacher, Susanne}, title = {Untersuchungen zu r{\"a}umlichen Benutzerschnittstellen am Beispiel der Pr{\"a}sentation von Stadtinformationen}, doi = {10.25643/bauhaus-universitaet.34}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20040218-363}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2000}, abstract = {Schwerpunkt der Arbeit ist die Auseinandersetzung mit den M{\"o}glichkeiten und Grenzen der Desktop-VR als neue Generation der Benutzerschnittstellen. Besondere Bedeutung bei dieser Art des Interface-Designs kommt den Metaphern zu. Ein großer Teil der Arbeit besch{\"a}ftigt sich mit der Klassifikation, der Auswahl und dem Einsatz passender Metaphern unter Ber{\"u}cksichtigung der in der Applikation darzustellenden Informationsinhalte. Aus der Kombination dieser beiden Merkmale (Art der Metapher, Informationsinhalt) ergeben sich vier verschiedene virtuelle Umgebungen, deren Eigenschaften und Besonderheiten konkretisiert und an Beispielen aus dem Anwendungsgebiet der Stadtinformationssysteme vorgestellt werden. Als praktischer Untersuchungsgegenstand dient das Anwendungsgebiet der Stadtinformationssysteme. Die theoretisch basierten Erkenntnisse und Schlußfolgerungen werden durch statistische Untersuchungen, in Form von Frageb{\"o}gen zu Stadtinformationssystemen, {\"u}berpr{\"u}ft und konkretisiert.}, subject = {Virtuelle Realit{\"a}t}, language = {de} } @phdthesis{Weissker, author = {Weißker, Tim}, title = {Group Navigation in Multi-User Virtual Reality}, doi = {10.25643/bauhaus-universitaet.4530}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211124-45305}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {148}, abstract = {Multi-user virtual reality systems enable collocated as well as distributed users to perform collaborative activities in immersive virtual environments. A common activity in this context is to move from one location to the next as a group to explore the environment together. The simplest solution to realize these multi-user navigation processes is to provide each participant with a technique for individual navigation. However, this approach entails some potentially undesirable consequences such as the execution of a similar navigation sequence by each participant, a regular need for coordination within the group, and, related to this, the risk of losing each other during the navigation process. To overcome these issues, this thesis performs research on group navigation techniques that move group members together through a virtual environment. The presented work was guided by four overarching research questions that address the quality requirements for group navigation techniques, the differences between collocated and distributed settings, the scalability of group navigation, and the suitability of individual and group navigation for various scenarios. This thesis approaches these questions by introducing a general conceptual framework as well as the specification of central requirements for the design of group navigation techniques. The design, implementation, and evaluation of corresponding group navigation techniques demonstrate the applicability of the proposed framework. As a first step, this thesis presents ideas for the extension of the short-range teleportation metaphor, also termed jumping, for multiple users. It derives general quality requirements for the comprehensibility of the group jumping process and introduces a corresponding technique for two collocated users. The results of two user studies indicate that sickness symptoms are not affected by user roles during group jumping and confirm improved planning accuracy for the navigator, increased spatial awareness for the passenger, and reduced cognitive load for both user roles. Next, this thesis explores the design space of group navigation techniques in distributed virtual environments. It presents a conceptual framework to systematize the design decisions for group navigation techniques based on Tuckman's model of small-group development and introduces the idea of virtual formation adjustments as part of the navigation process. A quantitative user study demonstrates that the corresponding extension of Multi-Ray Jumping for distributed dyads leads to more efficient travel sequences and reduced workload. The results of a qualitative expert review confirm these findings and provide further insights regarding the complementarity of individual and group navigation in distributed virtual environments. Then, this thesis investigates the navigation of larger groups of distributed users in the context of guided museum tours and establishes three central requirements for (scalable) group navigation techniques. These should foster the awareness of ongoing navigation activities as well as facilitate the predictability of their consequences for all group members (Comprehensibility), assist the group with avoiding collisions in the virtual environment (Obstacle Avoidance), and support placing the group in a meaningful spatial formation for the joint observation and discussion of objects (View Optimization). The work suggests a new technique to address these requirements and reports on its evaluation in an initial usability study with groups of five to ten (partially simulated) users. The results indicate easy learnability for navigators and high comprehensibility for passengers. Moreover, they also provide valuable insights for the development of group navigation techniques for even larger groups. Finally, this thesis embeds the previous contributions in a comprehensive literature overview and emphasizes the need to study larger, more heterogeneous, and more diverse group compositions including the related social factors that affect group dynamics. In summary, the four major research contributions of this thesis are as follows: - the framing of group navigation as a specific instance of Tuckman's model of small-group development - the derivation of central requirements for effective group navigation techniques beyond common quality factors known from single-user navigation - the introduction of virtual formation adjustments during group navigation and their integration into concrete group navigation techniques - evidence that appropriate pre-travel information and virtual formation adjustments lead to more efficient travel sequences for groups and lower workloads for both navigators and passengers Overall, the research of this thesis confirms that group navigation techniques are a valuable addition to the portfolio of interaction techniques in multi-user virtual reality systems. The conceptual framework, the derived quality requirements, and the development of novel group navigation techniques provide effective guidance for application developers and inform future research in this area.}, subject = {Virtuelle Realit{\"a}t}, language = {en} } @article{Vidler2003, author = {Vidler, Anthony}, title = {Virtual spaces, virtual subjects : anxiety and modernity}, doi = {10.25643/bauhaus-universitaet.1242}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20080228-13174}, year = {2003}, abstract = {Wissenschaftliches Kolloquium vom 24. bis 27. April 2003 in Weimar an der Bauhaus-Universit{\"a}t zum Thema: ‚MediumArchitektur - Zur Krise der Vermittlung'}, subject = {Architekturtheorie}, language = {en} } @phdthesis{Springer2008, author = {Springer, Jan P.}, title = {Multi-Frame Rate Rendering}, doi = {10.25643/bauhaus-universitaet.1371}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20081127-14395}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2008}, abstract = {Multi-frame rate rendering is a parallel rendering technique that renders interactive parts of a scene on one graphics card while the rest of the scene is rendered asynchronously on a second graphics card. The resulting color and depth images of both render processes are composited, by optical superposition or digital composition, and displayed. The results of a user study confirm that multi-frame rate rendering can significantly improve the interaction performance. Multi-frame rate rendering is naturally implemented on a graphics cluster. With the recent availability of multiple graphics cards in standalone systems the method can also be implemented on a single computer system where memory bandwidth is much higher compared to off-the-shelf networking technology. This decreases overall latency and further improves interactivity. Multi-frame rate rendering was also investigated on a single graphics processor by interleaving the rendering streams for the interactive elements and the rest of the scene. This approach enables the use of multi-frame rate rendering on low-end graphics systems such as laptops, mobile phones, and PDAs. Advanced multi-frame rate rendering techniques reduce the limitations of the basic approach. The interactive manipulation of light sources and their parameters affects the entire scene. A multi-GPU deferred shading method is presented that splits the rendering task into a rasterization and lighting pass and assigns the passes to the appropriate image generators such that light manipulations at high frame rates become possible. A parallel volume rendering technique allows the manipulation of objects inside a translucent volume at high frame rates. This approach is useful for example in medical applications, where small probes need to be positioned inside a computed-tomography image. Due to the asynchronous nature of multi-frame rate rendering artifacts may occur during migration of objects from the slow to the fast graphics card, and vice versa. Proper state management allows to almost completely avoid these artifacts. Multi-frame rate rendering significantly improves the interactive manipulation of objects and lighting effects. This leads to a considerable increase of the size for 3D scenes that can be manipulated compared to conventional methods.}, subject = {Virtuelle Realit{\"a}t}, language = {en} } @article{SemenovAlekseevaTarlapan2004, author = {Semenov, Vitaly and Alekseeva, Elena and Tarlapan, Oleg}, title = {Virtual Construction using Map-based Approach}, doi = {10.25643/bauhaus-universitaet.244}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2447}, year = {2004}, abstract = {The paper presents a general map-based approach to prototyping of products in virtual reality environments. Virtual prototyping of products is considered as a consistent simulation and visualization process mapping the source product model into its target visual representations. The approach enables to interrelate formally the product and visual information models with each other by defining mapping rules, to specify a prototyping scenario as a composition of map instances, and then to explore particular product models in virtual reality environments by interpreting the composed scenario. Having been realized, the proposed approach provides for the strongly formalized method and the common software framework to build virtual prototyping applications. As a result, the applications gain in expressiveness, reusability and reliability, as well as take on additional runtime flexibility...}, subject = {Produktmodell}, language = {en} } @phdthesis{Salzmann2010, author = {Salzmann, Holger}, title = {Collaboration in Co-located Automotive Applications}, doi = {10.25643/bauhaus-universitaet.1422}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20100712-15102}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2010}, abstract = {Virtual reality systems offer substantial potential in supporting decision processes based purely on computer-based representations and simulations. The automotive industry is a prime application domain for such technology, since almost all product parts are available as three-dimensional models. The consideration of ergonomic aspects during assembly tasks, the evaluation of humanmachine interfaces in the car interior, design decision meetings as well as customer presentations serve as but a few examples, wherein the benefit of virtual reality technology is obvious. All these tasks require the involvement of a group of people with different expertises. However, current stereoscopic display systems only provide correct 3D-images for a single user, while other users see a more or less distorted virtual model. This is a major reason why these systems still face limited acceptance in the automotive industry. They need to be operated by experts, who have an advanced understanding of the particular interaction techniques and are aware of the limitations and shortcomings of virtual reality technology. The central idea of this thesis is to investigate the utility of stereoscopic multi-user systems for various stages of the car development process. Such systems provide multiple users with individual and perspectively correct stereoscopic images, which are key features and serve as the premise for the appropriate support of collaborative group processes. The focus of the research is on questions related to various aspects of collaboration in multi-viewer systems such as verbal communication, deictic reference, embodiments and collaborative interaction techniques. The results of this endeavor provide scientific evidence that multi-viewer systems improve the usability of VR-applications for various automotive scenarios, wherein co-located group discussions are necessary. The thesis identifies and discusses the requirements for these scenarios as well as the limitations of applying multi-viewer technology in this context. A particularly important gesture in real-world group discussions is referencing an object by pointing with the hand and the accuracy which can be expected in VR is made evident. A novel two-user seating buck is introduced for the evaluation of ergonomics in a car interior and the requirements on avatar representations for users sitting in a car are identified. Collaborative assembly tasks require high precision. The novel concept of a two-user prop significantly increases the quality of such a simulation in a virtual environment and allows ergonomists to study the strain on workers during an assembly sequence. These findings contribute toward an increased acceptance of VR-technology for collaborative development meetings in the automotive industry and other domains.}, subject = {Virtuelle Realit{\"a}t}, language = {en} } @phdthesis{Regenbrecht2000, author = {Regenbrecht, Holger}, title = {Faktoren f{\"u}r Pr{\"a}senz in virtueller Architektur}, doi = {10.25643/bauhaus-universitaet.33}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20040216-359}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2000}, abstract = {Die Dissertation adressiert das Gebiet der Entwicklung von (r{\"a}umlicher) Pr{\"a}senz in computer-generierten virtuellen Umgebungen im speziellen und virtueller Architektur im besonderen. Der erste Teil motiviert die Arbeit, f{\"u}hrt in die Terminologie ein und beschreibt die grundlegenden Prinzipien der virtuellen Realit{\"a}t (VR) und von VR-basierter Architektur. Der Schwerpunkt liegt auf sogenannten immersiven VR-Systemen. Der folgende Teil erarbeitet den theoretischen Hintergrund der Entwickling von Pr{\"a}senz unter besonderer Beachtung philosophischer und kognitiver Ans{\"a}tze. Ein eigenes Kapitel widmet sich der Klassifikation von Pr{\"a}senz-Faktoren unter dem Gesichtspunkt der praktischen Gestaltung virtueller Architektur. Letztendlich werden verschiedene empirische Untersuchungen vorgestellt, die die entwickelten Ansaetze evaluieren und beschreiben. Die Ergebnisse werden im Kontext des architektonischen Gestaltens diskutiert.}, subject = {Architektur}, language = {de} }