@phdthesis{Pastohr2004, author = {Pastohr, Henry}, title = {Thermodynamische Modellierung eines Aufwindkraftwerkes}, doi = {10.25643/bauhaus-universitaet.81}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20040803-867}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2004}, abstract = {Die Energieversorgung auf der Erde wird zuk{\"u}nftig zu einem Problem. Bedingt ist dies durch eine fortschreitende Verknappung der nat{\"u}rlichen Ressourcen, wie Kohle, Gas und {\"O}l sowie einer Zunahme der CO2-Konzentration und anderer Schadstoffe in der Atmosph{\"a}re. Regenerative Energiequellen m{\"u}ssen genutzt werden, um den steigenden Energiebedarf zu sichern. Eine interessante M{\"o}glichkeit zur Nutzung der Solarenergie stellt das Aufwindkraftwerk dar. Das Aufwindkraftwerk besteht aus einem Kamin, um den ein Glasdachkollektor auf dem Erdboden angeordnet ist. Am Fuße des Kamins befinden sich Turbinen und Generatoren. Die einfallende Solarenergie wird haupts{\"a}chlich {\"u}ber die Wechselwirkung mit dem Erdreich in thermische Energie, in kinetische Energie, in Rotationsenergie und in elektrische Energie umgewandelt. Das Ziel der Arbeit bestand in der physikalisch-mathematischen Modellierung, der genaueren Erkennung des Wirkprinzips und der Diskussion der Anlagenparameter Leistung und Wirkungsgrad. Im Rahmen dieser Aufgabe wurden dazu station{\"a}re und instation{\"a}re Computational Fluid Dynamic (CFD) Modelle und station{\"a}re und instation{\"a}re vereinfachte Modelle entwickelt, diskutiert und miteinander verglichen. Grundlegend neue Erkenntnisse wurden bei den Verl{\"a}ufen der Temperaturen im Kollektor, insbesondere der Erdoberfl{\"a}chentemperatur erreicht. Parameteranpassungen im W{\"a}rme{\"u}bergangsmodell und Widerstandsmodell f{\"u}hrten f{\"u}r vier ausgew{\"a}hlte, station{\"a}re Sonnenenergien auf eine gute {\"U}bereinstimmung zwischen den Ergebnissen (Temperaturhub, Druckentnahme, Leistung und Wirkungsgrad) des station{\"a}ren, hybriden Modells und des station{\"a}ren CFD-Modells. Weiterhin stimmen die lokalen Gr{\"o}ßen W{\"a}rme{\"u}bergangskoeffizient, Erdoberfl{\"a}chentemperatur, Lufttemperatur und Glasdachtemperatur gut zwischen den Modellen {\"u}berein. Mit dem CFD Modell wurden der Prototyp und 3 Großkraftwerke berechnet. Mit dem entwickelten instation{\"a}ren FDM-Modell wurden erstmalig numerische Langzeitsimulationen (1 Jahr) durchgef{\"u}hrt. Zur {\"U}berpr{\"u}fung des Modells wurden die Ergebnisse mit Messwerten aus Manzanares verglichen, wobei eine gute {\"U}bereinstimmung erreicht werden konnte. Das Verst{\"a}ndnis f{\"u}r die stattfindenden thermodynamischen und str{\"o}mungsmechanischen Prozesse in einem Aufwindkraftwerk konnte durch die Arbeit maßgeblich verbessert werden.}, subject = {Aufwindkraftwerk}, language = {de} } @article{GuerlebeckLegatiukWebber, author = {G{\"u}rlebeck, Klaus and Legatiuk, Dmitrii and Webber, Kemmar}, title = {Operator Calculus Approach to Comparison of Elasticity Models for Modelling of Masonry Structures}, series = {Mathematics}, volume = {2022}, journal = {Mathematics}, number = {Volume 10, issue 10, article 1670}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/math10101670}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220721-46726}, pages = {1 -- 22}, abstract = {The solution of any engineering problem starts with a modelling process aimed at formulating a mathematical model, which must describe the problem under consideration with sufficient precision. Because of heterogeneity of modern engineering applications, mathematical modelling scatters nowadays from incredibly precise micro- and even nano-modelling of materials to macro-modelling, which is more appropriate for practical engineering computations. In the field of masonry structures, a macro-model of the material can be constructed based on various elasticity theories, such as classical elasticity, micropolar elasticity and Cosserat elasticity. Evidently, a different macro-behaviour is expected depending on the specific theory used in the background. Although there have been several theoretical studies of different elasticity theories in recent years, there is still a lack of understanding of how modelling assumptions of different elasticity theories influence the modelling results of masonry structures. Therefore, a rigorous approach to comparison of different three-dimensional elasticity models based on quaternionic operator calculus is proposed in this paper. In this way, three elasticity models are described and spatial boundary value problems for these models are discussed. In particular, explicit representation formulae for their solutions are constructed. After that, by using these representation formulae, explicit estimates for the solutions obtained by different elasticity theories are obtained. Finally, several numerical examples are presented, which indicate a practical difference in the solutions.}, subject = {Mauerwerk}, language = {en} }