@article{ZhaoWeiFanetal., author = {Zhao, Jun-Hua and Wei, Ning and Fan, Z. and Jiang, Jin-Wu and Rabczuk, Timon}, title = {Mechanical properties of three types of carbon allotropes}, series = {Nanotechnology}, journal = {Nanotechnology}, abstract = {Mechanical properties of three types of carbon allotropes}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhaoWangJiangetal., author = {Zhao, Jun-Hua and Wang, L. and Jiang, Jin-Wu and Wang, Z. and Guo, Wanlin and Rabczuk, Timon}, title = {A comparative study of two molecular mechanics models based on harmonic potentials}, series = {Journal of Applied Physics}, journal = {Journal of Applied Physics}, abstract = {A comparative study of two molecular mechanics models based on harmonic potentials}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhaoKouJiangetal., author = {Zhao, Jun-Hua and Kou, Liangzhi and Jiang, Jin-Wu and Rabczuk, Timon}, title = {Tension-induced phase transition of single-layer molybdenum disulphide (MoS2) at low temperatures}, series = {Nanotechnology}, journal = {Nanotechnology}, doi = {10.1088/0957-4484/25/29/295701}, abstract = {Tension-induced phase transition of single-layer molybdenum disulphide (MoS2) at low temperatures}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhaoJiangJiaetal., author = {Zhao, Jun-Hua and Jiang, Jin-Wu and Jia, Yue and Guo, Wanlin and Rabczuk, Timon}, title = {A theoretical analysis of cohesive energy between carbon nanotubes, graphene and substrates}, series = {Carbon}, journal = {Carbon}, doi = {10.1016/j.carbon.2013.01.041}, pages = {108 -- 119}, abstract = {Explicit solutions for the cohesive energy between carbon nanotubes, graphene and substrates are obtained through continuum modeling of the van der Waals interaction between them. The dependence of the cohesive energy on their size, spacing and crossing angles is analyzed. Checking against full atom molecular dynamics calculations and available experimental results shows that the continuum solution has high accuracy. The equilibrium distances between the nanotubes, graphene and substrates with minimum cohesive energy are also provided explicitly. The obtained analytical solution should be of great help for understanding the interaction between the nanostructures and substrates, and designing composites and nanoelectromechanical systems.}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhaoJiangWangetal., author = {Zhao, Jiyun and Jiang, Jin-Wu and Wang, L. and Guo, Wanlin and Rabczuk, Timon}, title = {Coarse-grained potentials of single-walled carbon nanotubes}, series = {Journal of the Mechanics and Physics of Solids}, journal = {Journal of the Mechanics and Physics of Solids}, abstract = {Coarse-grained potentials of single-walled carbon nanotubes}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhangZhaoWeietal., author = {Zhang, Yancheng and Zhao, Jiyun and Wei, Ning and Jiang, Jin-Wu and Rabczuk, Timon}, title = {Effects of the dispersion of polymer wrapped two neighbouring single walled carbon nanotubes (SWNTs) on nanoengineering load transfer}, series = {Composites Part B: Engineering}, journal = {Composites Part B: Engineering}, pages = {1714 -- 1721}, abstract = {Effects of the dispersion of polymer wrapped two neighbouring single walled carbon nanotubes (SWNTs) on nanoengineering load transfer}, subject = {Angewandte Mathematik}, language = {en} } @article{MortazaviPereiraJiangetal., author = {Mortazavi, Bohayra and Pereira, Luiz Felipe C. and Jiang, Jin-Wu and Rabczuk, Timon}, title = {Modelling heat conduction in polycrystalline hexagonal boron-nitride films}, series = {Scientific Reports}, journal = {Scientific Reports}, doi = {10.1038/srep13228}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170425-31534}, abstract = {We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets.}, subject = {W{\"a}rmeleitf{\"a}higkeit}, language = {en} } @article{JiangZhuangRabczuk, author = {Jiang, Jin-Wu and Zhuang, Xiaoying and Rabczuk, Timon}, title = {Orientation dependent thermal conductance in single-layer MoS 2}, series = {Scientific Reports}, journal = {Scientific Reports}, doi = {10.1038/srep02209}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170418-31417}, abstract = {We investigate the thermal conductivity in the armchair and zigzag MoS2 nanoribbons, by combining the non-equilibrium Green's function approach and the first-principles method. A strong orientation dependence is observed in the thermal conductivity. Particularly, the thermal conductivity for the armchair MoS2 nanoribbon is about 673.6 Wm-1 K-1 in the armchair nanoribbon, and 841.1 Wm-1 K-1 in the zigzag nanoribbon at room temperature. By calculating the Caroli transmission, we disclose the underlying mechanism for this strong orientation dependence to be the fewer phonon transport channels in the armchair MoS2 nanoribbon in the frequency range of [150, 200] cm-1. Through the scaling of the phonon dispersion, we further illustrate that the thermal conductivity calculated for the MoS2 nanoribbon is esentially in consistent with the superior thermal conductivity found for graphene.}, subject = {Mechanische Eigenschaft}, language = {en} } @article{JiangZhaoZhouetal., author = {Jiang, Jin-Wu and Zhao, Jun-Hua and Zhou, K. and Rabczuk, Timon}, title = {Superior thermal conductivity and extremely high mechanical strength in polyethylene chains from ab initio calculation}, series = {Journal of Applied Physics}, journal = {Journal of Applied Physics}, doi = {10.1063/1.4729489}, abstract = {The upper limit of the thermal conductivity and the mechanical strength are predicted for the polyethylene chain, by performing the ab initio calculation and applying the quantum mechanical non-equilibrium Green's function approach. Specially, there are two main findings from our calculation: (1) the thermal conductivity can reach a high value of 310 Wm-1 K-1 in a 100 nm polyethylene chain at room temperature and the thermal conductivity increases with the length of the chain; (2) the Young's modulus in the polyethylene chain is as high as 374.5 GPa, and the polyethylene chain can sustain 32.85\%±0.05\% (ultimate) strain before undergoing structural phase transition into gaseous ethylene.}, subject = {Angewandte Mathematik}, language = {en} } @article{JiangZhaoRabczuk, author = {Jiang, Jin-Wu and Zhao, Jun-Hua and Rabczuk, Timon}, title = {Size-Sensitive Young's Modulus of Kinked Silicon Nanowires}, series = {Nanotechnology}, journal = {Nanotechnology}, doi = {10.1088/0957-4484/24/18/185702}, abstract = {We perform both classical molecular dynamics simulations and beam model calculations to investigate the Young's modulus of kinked silicon nanowires (KSiNWs). The Young's modulus is found to be highly sensitive to the arm length of the kink and is essentially inversely proportional to the arm length. The mechanism underlying the size dependence is found to be the interplay between the kink angle potential and the arm length potential, where we obtain an analytic relationship between the Young's modulus and the arm length of the KSiNW. Our results provide insight into the application of this novel building block in nanomechanical devices.}, subject = {Angewandte Mathematik}, language = {en} }