@article{KatranuschkovGehreScherer2004, author = {Katranuschkov, Peter and Gehre, Alexander and Scherer, Raimar J.}, title = {User Requirements Capture in Distributed Project Environments: A Process-centred Approach}, doi = {10.25643/bauhaus-universitaet.202}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2029}, year = {2004}, abstract = {Efforts to define standards for representing AEC/FM data have been fairly successful. However defining a standard reference process model has not met with the same success. Yet almost every conceptual modelling or software development project starts by defining the business processes to be supported and the related requirements to be satisfied. This paper describes a new process-centred methodology for user requirements capture developed in the ICCI project (IST-2001-33022). Its essence is in recognising user requirements and use cases in the context of the real construction process, identifying the actors and roles for each individual activity and associating these activities with information, communication and standardisation requirements on the basis of a formalised specification, named the Process Matrix. In the paper we outline the history of process matrix development, introduce the basic structure of the matrix and show how it can be further extended and refined. We present also a web-based software implementation of the developed approach, describe how it has been used in ICCI and outline further perspectives.}, subject = {Informationstechnik}, language = {en} } @article{GanevMarinov1997, author = {Ganev, T. and Marinov, M.}, title = {Towards Optimal Designing of thin elastic Plates with a specific free Oscillations Frequency}, doi = {10.25643/bauhaus-universitaet.537}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-5375}, year = {1997}, abstract = {Thin elastic plates are the basic constructional elements and are very often subjected to dynamic effects especially in the machine-building structures. Their saving design of resonance conditions of operation is an extremely complicated task which cannot be solved analytically. In the present report an efficient and sufficiently general method for optimal design of thin plates is worked out on the basis of energy resonance method of Wilder, the method of the finite elements for dynamic research and the methods of parameter optimization. By means of these methods various limitations and requirements put by the designer to the plates can be taken into account. A programme module for numerical investigation of the weight variation of the plate depending on the taken variable of the designed thickness at different supporting conditions is developed. The reasons for the considerable quantity and quality difference between the obtained optimal designs are also analysed.}, subject = {Platte}, language = {en} } @article{AzizAnumbaMiles2004, author = {Aziz, Zeeshan and Anumba, Chimay and Miles, John}, title = {Towards a Semantic Grid Computing Platform for Disaster Management in Built Environment}, doi = {10.25643/bauhaus-universitaet.208}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2084}, year = {2004}, abstract = {Current disaster management procedures rely primarily on heuristics which result in their strategies being very cautious and sub-optimum in terms of saving life, minimising damage and returning the building to its normal function. Also effective disaster management demands decentralized, dynamic, flexible, short term and across domain resource sharing, which is not well supported by existing distributing computing infrastructres. The paper proposes a conceptual framework for emergency management in the built environment, using Semantic Grid as an integrating platform for different technologies. The framework supports a distributed network of specialists in built environment, including structural engineers, building technologists, decision analysts etc. It brings together the necessary technology threads, including the Semantic Web (to provide a framework for shared definitions of terms, resources and relationships), Web Services (to provide dynamic discovery and integration) and Grid Computing (for enhanced computational power, high speed access, collaboration and security control) to support rapid formation of virtual teams for disaster management. The proposed framework also make an extensive use of modelling and simulation (both numerical and using visualisations), data mining (to find resources in legacy data sets) and visualisation. It also include a variety of hardware instruments with access to real time data. Furthermore the whole framework is centred on collaborative working by the virtual team. Although focus of this paper is on disaster management, many aspects of the discussed Grid and Visualisation technologies will be useful for any other forms of collaboration. Conclusions are drawn about the possible future impact on the built environment.}, subject = {Mehragentensystem}, language = {en} } @article{MinchTrochanowski1997, author = {Minch, M. J. and Trochanowski, A.}, title = {The numerical Modelling and Analysis of RC cracked Structures}, doi = {10.25643/bauhaus-universitaet.527}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-5278}, year = {1997}, abstract = {The purpose of this paper is to review model for finite element techniques for non-linear crack analysis of reinforced concrete beams and slabs. The non-linear behaviour of concrete and steel were described. Some calculations of >self-stress< for concrete and reinforced concrete beam was made. Current computational aspects are discussed. Several remarks for future studies are also given. The numerical model of the concrete and reinforced concrete was described. The paper shows the results of calculations on a reinforced concrete plane stress panel with cracks. The non-linear, numerical model of calculations of reinforced concrete was assumed. Using finite elements method some calculations were made. The results of calculations like displacements, stresses and cracking are shown on diagrams. They were compared with experimental results and other finding. Some conclusions about the described model and results of calculation are shown.}, subject = {Tragwerk}, language = {en} } @article{TolokTolokGomenyuk1997, author = {Tolok, V. A. and Tolok, A. V. and Gomenyuk, S. I.}, title = {The instrumental System of Mechanics Problems Analysis of the deformed Solid Body}, doi = {10.25643/bauhaus-universitaet.536}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-5361}, year = {1997}, abstract = {In the abstract proposed is the Instrumental System of mechanics problems analysis of the deformed solid body. It supplies the researcher with the possibility to describe the input data on the object under analyses and the problem scheme based upon the variational principles within one task. The particular feature of System is possibility to describe the information concerning the object of any geometrical shape and the computation sheme according to the program defined for purpose. The Methods allow to compute the tasks with indefinite functional and indefinite geometry of the object (or the set of objects). The System provides the possibility to compute the tasks with indefinite sheme based upon the Finite Element Method (FEM). The restrictions of the System usage are therefore determined by the restrictions of the FEM itself. It contrast to other known programms using FEM (ANSYS, LS-DYNA and etc) described system possesses more universality in defining input data and choosing computational scheme. Builtin is an original Subsytem of Numerical Result Analuses. It possesses the possibility to visualise all numerical results, build the epures of the unknown variables, etc. The Subsystem is approved while solving two- and three-dimensional problems of Elasticiti and Plasticity, under the conditions of Geometrical Unlinearity. Discused are Contact Problems of Statics and Dynamics.}, subject = {Festk{\"o}rpermechanik}, language = {en} } @article{KazakevitchVolkova1997, author = {Kazakevitch, M. I. and Volkova, Viktorija}, title = {The exact Solution of the free pre-stressed Bar-Oscillations}, doi = {10.25643/bauhaus-universitaet.535}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-5356}, year = {1997}, abstract = {In this paper the results of the investigations of the free oscillations of the pre-stressed flexible structure elements are presented . Two cases of the central preliminary stress are investigated : without intermediate fastening of the tie to the flexible element and with the intermediate fastening in the middle of the element length. The given physical model can be applied to the flexible sloping shells and arches, membranes, large space antenna fields (besides flexible elements). The peculiarity of these systems is the possibility of the non-adjacent equilibrium form existence at the definite relations of the physical parameters . The transition from one stable equilibrium form to another, non-adjacent form, may be treated as jump. In this case they are called systems with buckling or the systems with two potential «gaps». These systems commenced the new section of the mathematical physics - the theory of chaos and strange attractors. The analysis of the solutions confirms the received for the first time by the author and given in effect of the oscillation period doubling of the system during the transition from the «small» oscillations relatively center to the >large< relatively all three equilibrium conditions. The character of the frequency (period) dependence on the free oscillation amplitudes of the non-linear system also confirms the received earlier result of the duality of the system behaviour : >small< oscillations possess the qualities of soft system; >large< oscillations possess the qualities of rigid system. The >small< oscillation natural frequency changing, depending on the oscillation amplitudes, is in the internal . Here the frequency takes zero value at the amplitude values Aa and Ad (or Aa and Ae ); the frequency takes maximum value at the amplitude value near point b .The >large< oscillation natural frequency changes in the interval . Here is also observed . The influence of the tie intermediate fastening doesn't introduce qualitative changes in the behaviour of the investigated system. It only increases ( four times ) the critical value of the preliminary tension force}, subject = {Bauteil}, language = {en} } @article{StrukeljSkrinar1997, author = {Strukelj, A. and Skrinar, Matjaz}, title = {The Evaluation of the Dynamical Soil-Bridge Interaction}, doi = {10.25643/bauhaus-universitaet.539}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-5397}, year = {1997}, abstract = {In the design of a structure, the implementation of reliable soil-foundation-structure interaction into the analysis process plays a very important role. The paper presents a determination of parameters of a suitably chosen soil-foundation model and their influence on the structure response. Since the mechanical data for the structure can be determined with satisfactory accuracy, the properties of the soil-foundation model were identified using measured dynamic response of the real structure. A simple model describing soil-foundation structure was incorporated into the classical 3-D finite element analysis of the structure with commercial software. Results obtained from the measured data on the pier were afterwards compared with those obtained with the finite model of the pier-foundation-soil structure. On the basis of this comparison the coefficients describing the properties in the soil-foundation model were adjusted until the calculated dynamic response coincided with the measured ones. In this way, the difference between both results was reduced to 1\%. Full-scale tests measuring eigenmotion of the bridge were performed through all erection stages of the new bridge in Maribor. In this way an effective and experimentally verified 3-D model for a complex dynamic analysis of the bridge under the earthquake loading was obtained. The significant advantage of the obtained model is that it was updated on the basis of the dynamic measurements thus improving the model on the basis of in-situ geomechanical measurements. The model is very accurate in describing the upper structure and economical in describing the soil mass thus representing an optimal solution regarding computational efforts.}, subject = {Boden-Bauwerk-Wechselwirkung}, language = {en} } @article{KazakevitchKulyabkoDubichvost1997, author = {Kazakevitch, M. I. and Kulyabko, V. V. and Dubichvost, A. A.}, title = {The discrete dynamic Models of the Interaction of complex - composite Structures with the dynamic Loads}, doi = {10.25643/bauhaus-universitaet.521}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-5219}, year = {1997}, abstract = {In the given paper the generalized formulation of the problem of computer modelling of the complex-composite structure interaction with different types of dynamic loads and effects is discussed. Here the analysis is given as for the usage of some universal computing systems for the solution of such problems. Also if is shown that the quantification of the dynamic models of the complex-composite systems with the variable structure, depending on the character and intensivity of the effects, is necessary. The different variants of the joint and the space structure element modelling are gested. It allows to consider the complex modes of the joint bending-torsional oscillations of such structures as bridges, towers, high-rise buildings. The peculiarities of the modelling and testing of some problems of the objects aerodynamics and the interaction of the frameworks constructions with shock and movable loads are considered. In this paper the examples of the complex-composite structure dynamic analysis are shown. It is achieved by means of some special methods of the input of the real inducements and loads of the exploitated analog-object into the computing model. The suggested models found a wide use both at the design of new structures and the dynamic monitoring of the exploitated structures.}, subject = {Verbundtragwerk}, language = {en} } @article{Volkova2004, author = {Volkova, Viktorija}, title = {The analysis of dynamic behaviour of pre-stressed systems under polyharmonic excitations}, doi = {10.25643/bauhaus-universitaet.265}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2656}, year = {2004}, abstract = {Pre-stressed structural elements are widely used in large-span structures. As a rule, they have higher stiffness characteristics. Pre-stressed rods can be applied as girders of different purpose, and as their separate parts, e.g. rods of trusses and frames. Among numerous ways of prestressing the compression of girders, trusses, and frames by tightenings from high-strength materials is under common application.}, subject = {Verkehrsplanung}, language = {en} } @article{KeJianMing2004, author = {Ke, Chen and Jian Ming, Lu}, title = {Study of Analysis System for Bridge Test}, doi = {10.25643/bauhaus-universitaet.254}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2547}, year = {2004}, abstract = {Analysis System for Bridge Test (Chinese name abbr.: QLJC) is an application software specially designed for bridge test to analyze the static and dynamic character of bridge structures, calculate efficiency ratio of load test, pick up the results of observation points and so on. In this paper, research content, system design, calculation theory, characteristics and practical application of QLJC is introduced in detail.}, subject = {Finite-Elemente-Methode}, language = {en} }