@article{ZhuangHuangLiangetal., author = {Zhuang, Xiaoying and Huang, Runqiu and Liang, Chao and Rabczuk, Timon}, title = {A coupled thermo-hydro-mechanical model of jointed hard rock for compressed air energy storage}, series = {Mathematical Problems in Engineering}, journal = {Mathematical Problems in Engineering}, doi = {10.1155/2014/179169}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170428-31726}, abstract = {Renewable energy resources such as wind and solar are intermittent, which causes instability when being connected to utility grid of electricity. Compressed air energy storage (CAES) provides an economic and technical viable solution to this problem by utilizing subsurface rock cavern to store the electricity generated by renewable energy in the form of compressed air. Though CAES has been used for over three decades, it is only restricted to salt rock or aquifers for air tightness reason. In this paper, the technical feasibility of utilizing hard rock for CAES is investigated by using a coupled thermo-hydro-mechanical (THM) modelling of nonisothermal gas flow. Governing equations are derived from the rules of energy balance, mass balance, and static equilibrium. Cyclic volumetric mass source and heat source models are applied to simulate the gas injection and production. Evaluation is carried out for intact rock and rock with discrete crack, respectively. In both cases, the heat and pressure losses using air mass control and supplementary air injection are compared.}, subject = {Energiespeicherung}, language = {en} } @article{VuBacNguyenXuanChenetal., author = {Vu-Bac, N. and Nguyen-Xuan, Hung and Chen, Lei and Lee, C.K. and Zi, Goangseup and Zhuang, Xiaoying and Liu, G.R. and Rabczuk, Timon}, title = {A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics}, series = {Journal of Applied Mathematics}, journal = {Journal of Applied Mathematics}, doi = {10.1155/2013/978026}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170426-31676}, abstract = {This paper presents a novel numerical procedure based on the combination of an edge-based smoothed finite element (ES-FEM) with a phantom-node method for 2D linear elastic fracture mechanics. In the standard phantom-node method, the cracks are formulated by adding phantom nodes, and the cracked element is replaced by two new superimposed elements. This approach is quite simple to implement into existing explicit finite element programs. The shape functions associated with discontinuous elements are similar to those of the standard finite elements, which leads to certain simplification with implementing in the existing codes. The phantom-node method allows modeling discontinuities at an arbitrary location in the mesh. The ES-FEM model owns a close-to-exact stiffness that is much softer than lower-order finite element methods (FEM). Taking advantage of both the ES-FEM and the phantom-node method, we introduce an edge-based strain smoothing technique for the phantom-node method. Numerical results show that the proposed method achieves high accuracy compared with the extended finite element method (XFEM) and other reference solutions.}, subject = {Finite-Elemente-Methode}, language = {en} } @article{TalebiZiSilanietal., author = {Talebi, Hossein and Zi, Goangseup and Silani, Mohammad and Samaniego, Esteban and Rabczuk, Timon}, title = {A simple circular cell method for multilevel finite element analysis}, series = {Journal of Applied Mathematics}, journal = {Journal of Applied Mathematics}, doi = {10.1155/2012/526846}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170426-31639}, abstract = {A simple multiscale analysis framework for heterogeneous solids based on a computational homogenization technique is presented. The macroscopic strain is linked kinematically to the boundary displacement of a circular or spherical representative volume which contains the microscopic information of the material. The macroscopic stress is obtained from the energy principle between the macroscopic scale and the microscopic scale. This new method is applied to several standard examples to show its accuracy and consistency of the method proposed.}, subject = {Finite-Elemente-Methode}, language = {en} } @inproceedings{NguyenThanhRabczuk, author = {Nguyen-Thanh, Nhon and Rabczuk, Timon}, title = {A SMOOTHED FINITE ELEMENT METHOD FOR THE STATIC AND FREE VIBRATION ANALYSIS OF SHELLS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2877}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28777}, pages = {24}, abstract = {A four-node quadrilateral shell element with smoothed membrane-bending based on Mindlin-Reissner theory is proposed. The element is a combination of a plate bending and membrane element. It is based on mixed interpolation where the bending and membrane stiffness matrices are calculated on the boundaries of the smoothing cells while the shear terms are approximated by independent interpolation functions in natural coordinates. The proposed element is robust, computationally inexpensive and free of locking. Since the integration is done on the element boundaries for the bending and membrane terms, the element is more accurate than the MITC4 element for distorted meshes. This will be demonstrated for several numerical examples.}, subject = {Angewandte Informatik}, language = {en} } @article{RafieeRabczukMilanietal., author = {Rafiee, Roham and Rabczuk, Timon and Milani, Abbas S. and Tserpes, Konstantinos I.}, title = {Advances in Characterization and Modeling of Nanoreinforced Composites}, series = {JOURNAL OF NANOMATERIALS}, journal = {JOURNAL OF NANOMATERIALS}, doi = {10.1155/2016/9481053}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170411-31134}, abstract = {This special issue deals with a range of recently developed characterization and modeling techniques employed to better understand and predict the response of nanoreinforced composites at different scales.}, subject = {Physikalische Eigenschaft}, language = {en} } @article{MosaviNajafiFaizollahzadehArdabilietal., author = {Mosavi, Amir and Najafi, Bahman and Faizollahzadeh Ardabili, Sina and Shamshirband, Shahaboddin and Rabczuk, Timon}, title = {An Intelligent Artificial Neural Network-Response Surface Methodology Method for Accessing the Optimum Biodiesel and Diesel Fuel Blending Conditions in a Diesel Engine from the Viewpoint of Exergy and Energy Analysis}, series = {Energies}, volume = {2018}, journal = {Energies}, number = {11, 4}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/en11040860}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20180507-37467}, pages = {18}, abstract = {Biodiesel, as the main alternative fuel to diesel fuel which is produced from renewable and available resources, improves the engine emissions during combustion in diesel engines. In this study, the biodiesel is produced initially from waste cooking oil (WCO). The fuel samples are applied in a diesel engine and the engine performance has been considered from the viewpoint of exergy and energy approaches. Engine tests are performed at a constant 1500 rpm speed with various loads and fuel samples. The obtained experimental data are also applied to develop an artificial neural network (ANN) model. Response surface methodology (RSM) is employed to optimize the exergy and energy efficiencies. Based on the results of the energy analysis, optimal engine performance is obtained at 80\% of full load in presence of B10 and B20 fuels. However, based on the exergy analysis results, optimal engine performance is obtained at 80\% of full load in presence of B90 and B100 fuels. The optimum values of exergy and energy efficiencies are in the range of 25-30\% of full load, which is the same as the calculated range obtained from mathematical modeling.}, subject = {Biodiesel}, language = {en} } @article{GuoZhuangChenetal., author = {Guo, Hongwei and Zhuang, Xiaoying and Chen, Pengwan and Alajlan, Naif and Rabczuk, Timon}, title = {Analysis of three-dimensional potential problems in non-homogeneous media with physics-informed deep collocation method using material transfer learning and sensitivity analysis}, series = {Engineering with Computers}, volume = {2022}, journal = {Engineering with Computers}, doi = {10.1007/s00366-022-01633-6}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220811-46764}, pages = {1 -- 22}, abstract = {In this work, we present a deep collocation method (DCM) for three-dimensional potential problems in non-homogeneous media. This approach utilizes a physics-informed neural network with material transfer learning reducing the solution of the non-homogeneous partial differential equations to an optimization problem. We tested different configurations of the physics-informed neural network including smooth activation functions, sampling methods for collocation points generation and combined optimizers. A material transfer learning technique is utilized for non-homogeneous media with different material gradations and parameters, which enhance the generality and robustness of the proposed method. In order to identify the most influential parameters of the network configuration, we carried out a global sensitivity analysis. Finally, we provide a convergence proof of our DCM. The approach is validated through several benchmark problems, also testing different material variations.}, subject = {Deep learning}, language = {en} } @article{ChakrabortyAnitescuZhuangetal., author = {Chakraborty, Ayan and Anitescu, Cosmin and Zhuang, Xiaoying and Rabczuk, Timon}, title = {Domain adaptation based transfer learning approach for solving PDEs on complex geometries}, series = {Engineering with Computers}, volume = {2022}, journal = {Engineering with Computers}, doi = {10.1007/s00366-022-01661-2}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220811-46776}, pages = {1 -- 20}, abstract = {In machine learning, if the training data is independently and identically distributed as the test data then a trained model can make an accurate predictions for new samples of data. Conventional machine learning has a strong dependence on massive amounts of training data which are domain specific to understand their latent patterns. In contrast, Domain adaptation and Transfer learning methods are sub-fields within machine learning that are concerned with solving the inescapable problem of insufficient training data by relaxing the domain dependence hypothesis. In this contribution, this issue has been addressed and by making a novel combination of both the methods we develop a computationally efficient and practical algorithm to solve boundary value problems based on nonlinear partial differential equations. We adopt a meshfree analysis framework to integrate the prevailing geometric modelling techniques based on NURBS and present an enhanced deep collocation approach that also plays an important role in the accuracy of solutions. We start with a brief introduction on how these methods expand upon this framework. We observe an excellent agreement between these methods and have shown that how fine-tuning a pre-trained network to a specialized domain may lead to an outstanding performance compare to the existing ones. As proof of concept, we illustrate the performance of our proposed model on several benchmark problems.}, subject = {Maschinelles Lernen}, language = {en} } @article{RabczukZhuangOterkus, author = {Rabczuk, Timon and Zhuang, Xiaoying and Oterkus, Erkan}, title = {Editorial: Computational modeling based on nonlocal theory}, series = {Engineering with Computers}, volume = {2023}, journal = {Engineering with Computers}, number = {Volume 39, issue 3}, publisher = {Springer}, address = {London}, doi = {https://doi.org/10.1007/s00366-022-01775-7}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230517-63658}, pages = {1}, abstract = {Nonlocal theories concern the interaction of objects, which are separated in space. Classical examples are Coulomb's law or Newton's law of universal gravitation. They had signficiant impact in physics and engineering. One classical application in mechanics is the failure of quasi-brittle materials. While local models lead to an ill-posed boundary value problem and associated mesh dependent results, nonlocal models guarantee the well-posedness and are furthermore relatively easy to implement into commercial computational software.}, subject = {Computersimulation}, language = {en} } @article{AmaniSaboorBagherzadehRabczuk, author = {Amani, Jafar and Saboor Bagherzadeh, Amir and Rabczuk, Timon}, title = {Error estimate and adaptive refinement in mixed discrete least squares meshless method}, series = {Mathematical Problems in Engineering}, journal = {Mathematical Problems in Engineering}, doi = {10.1155/2014/721240}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170413-31181}, abstract = {The node moving and multistage node enrichment adaptive refinement procedures are extended in mixed discrete least squares meshless (MDLSM) method for efficient analysis of elasticity problems. In the formulation of MDLSM method, mixed formulation is accepted to avoid second-order differentiation of shape functions and to obtain displacements and stresses simultaneously. In the refinement procedures, a robust error estimator based on the value of the least square residuals functional of the governing differential equations and its boundaries at nodal points is used which is inherently available from the MDLSM formulation and can efficiently identify the zones with higher numerical errors. The results are compared with the refinement procedures in the irreducible formulation of discrete least squares meshless (DLSM) method and show the accuracy and efficiency of the proposed procedures. Also, the comparison of the error norms and convergence rate show the fidelity of the proposed adaptive refinement procedures in the MDLSM method.}, subject = {Elastizit{\"a}t}, language = {en} }