@phdthesis{Danckwerth, author = {Danckwerth, Julia}, title = {Strategien der Sichtbarkeit und Sichtbarmachung von ‚Wearable Enhancement' im Bereich Smart Health}, doi = {10.25643/bauhaus-universitaet.4576}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220202-45768}, school = {Bauhaus-Universit{\"a}t Weimar}, abstract = {Die vorliegende Forschungsarbeit befasst sich mit der Entwicklung und Gestaltung von k{\"o}rpernahen, tragbaren Artefakten f{\"u}r den digitalisierten Gesundheitsbereich. Unter dem entwickelten Begriff des Wearable Enhancements werden die verschiedenen Termini aus smarten Textilien, Fashion Technologies, Wearable Technologies sowie elektronischen Textilien zusammengefasst und zwei zentrale Forschungsfragen untersucht. Wie kann Wearable Enhancement im Bereich Smart Health ethisch, sozial und ökologisch entwickelt und gestaltet werden? Inwiefern können textile Schnittstellen die Wahrnehmung und die Wahrnehmbarkeit des Körpers verändern? Mit der ersten Forschungsfrage sollen vorrangig Ansätze und Strategien der Sichtbarkeit f{\"u}r die Entwicklung und Gestaltung diskutiert werden, welche Aussagen f{\"u}r die Designpraxis, den Gestaltungs- und Designforschungsprozess sowie die Designlösungen selbst generieren sollen. Die zweite Forschungsfrage zielt darauf, Formen der Sichtbarmachung von sowie f{\"u}r Wearable Enhancement zu untersuchen. Anhand von drei konkreten Fallstudien werden wesentliche Aspekte der Rezeption, Perzeption, Konstruktion, Konfiguration und Konzeption von soziotechnischen Artefakten zur Funktionssteigerung des menschlichen K{\"o}rpers untersucht und verschiedene Formen der Sichtbarkeit und Sichtbarmachung entwickelt. In der Arbeit wird ein dual-angelegter transdisziplin{\"a}rer Designforschungsansatz entwickelt und praktiziert, welcher sowohl die menschlichen Bed{\"u}rfnisse der Nutzer*innen als auch die Weiterentwicklung von Technologien ber{\"u}cksichtigt. Auf dieser Grundlage wird versucht Anregungen f{\"u}r ein zukunftsf{\"a}higes und zugleich verantwortungsorientiertes Design zu geben.}, subject = {Design}, language = {de} } @phdthesis{Arganaraz, author = {Arga{\~n}araz, Cecilia Magdalena}, title = {Tiempos imaginados y espacios {\´a}ridos: controversias en torno al agua en el Valle de Catamarca (siglos XIX-XX)}, doi = {10.25643/bauhaus-universitaet.4681}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220803-46817}, school = {Bauhaus-Universit{\"a}t Weimar}, abstract = {The thesis addresses journalistic, administrative and judicial historical documentation to analyze the links between aridity and geographical imaginaries in the province of Catamarca (Argentina), from a historical point of view. The research aims to contribute to the understanding of the "non-hegemonic" versions of Modernity, its territoriality and the productions of geographic imaginaries that they involve. To provide a broad purpose, it raises as an object of study the ways in which "modern" practices, actors, links, discourses and expectations about the territory are mobilized when they are located in a space in "other" water conditions. those that are intended to "civilize" it. The general objective of the research is to analyze time-space controversies around water in the city and valley of Catamarca towards 19th and 20th centuries. The specific objectives derived are a) analyzing how various actors are related to waters behavior - in other words, the local water regime - in Catamarca and the meanings built around it. b) to analyze the controversies about the place of Catamarca and its water regime in the local and national geographic imaginary. c) analyze controversies in which the relationships between actors and materialities involved in modernization projects are put into discussion. These concerns by the experience of the actors and by the historical-spatial imagination of the territory, combined, led to the construction of an interdisciplinary methodology based on tools from anthropology, sociology, geography and history.}, subject = {Anthologie}, language = {es} } @phdthesis{Drescher, author = {Drescher, Marcel}, title = {Open Innovation in KMU - Eine empirische Analyse der offenen Innovationsaktivit{\"a}ten im Kontext der Entrepreneurial Orientation}, doi = {10.25643/bauhaus-universitaet.4946}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230314-49463}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {211}, abstract = {Open Innovation in kleinen und mittleren Unternehmen (KMU) hat sich stark ausdifferenziert. Dabei zeigt die Empirie, dass KMU unterschiedliche Wege in der offenen Entwicklung von Innovationen begehen. Um die bestehende Literatur zu erweitern, wurden mit dieser Dissertation die Ziele verfolgt 1) offene Innovationsaktivit{\"a}ten in KMU aus einer Prozessperspektive aufzudecken und genau zu beschreiben und 2) zu erkl{\"a}ren, warum sich die {\"O}ffnung von Innovationsprozessen in KMU unterscheidet. Daf{\"u}r wurde auf eine multiple Fallstudienanalyse zur{\"u}ckgegriffen. Untersuchungsobjekte waren kleine etablierte High-Tech Unternehmen aus den neuen Bundesl{\"a}ndern. Die Ergebnisse zeigen sechs Prozessmodelle der offenen Innovationsentwicklung, beschrieben als Open Innovation Muster. Deskriptionen dieser Muster unter Ber{\"u}cksichtigung von formenden Innovationsaktivit{\"a}ten, ausgetauschtem Wissen, beteiligten externen Akteuren und Gr{\"u}nden f{\"u}r und gegen Open Innovation vermitteln ein {\"u}ber den bisherigen Forschungsstand hinausgehendes Verst{\"a}ndnis von Open Innovation in KMU. Zudem zeigen die Ergebnisse, dass die Entrepreneurial Orientation erkl{\"a}rt, warum KMU bei der Ausgestaltung von offenen Innovationsprozessen unterschiedlich vorgehen. In der Dissertation wird detailliert dargelegt, welche Open Innovation Muster sich anhand der Entrepreneurial Orientation von KMU (nicht-entrepreneurial bis entrepreneurial) zeigen. Die Ergebnisse liefern sowohl wissenschaftliche Implikationen, als auch Handlungsempfehlungen f{\"u}r die Unternehmenspraxis.}, subject = {Open Innovation}, language = {de} } @phdthesis{Riechert, author = {Riechert, Christin}, title = {Hydratation und Eigenschaften von Gips-Zement-Puzzolan-Bindemitteln mit alumosilikatischen Puzzolanen}, isbn = {978-3-00-073003-0}, doi = {10.25643/bauhaus-universitaet.4707}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220825-47076}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {148}, abstract = {Reine Calciumsulfatbindemittel weisen eine hohe L{\"o}slichkeit auf. Feuchteinwirkung f{\"u}hrt zudem zu starken Festigkeitsverlusten. Aus diesem Grund werden diese Bindemittel ausschließlich f{\"u}r Baustoffe und -produkte im Innenbereich ohne permanenten Feuchtebeanspruchung eingesetzt. Eine M{\"o}glichkeit, die Feuchtebest{\"a}ndigkeit zu erh{\"o}hen, ist die Beimischung puzzolanischer und zement{\"a}rer Komponenten. Diese Mischsysteme werden Gips-Zement-Puzzolan-Bindemittel (kurz: GZPB) genannt. Mischungen aus Calciumsulfaten und Portlandzementen allein sind aufgrund der treibenden Ettringitbildung nicht raumbest{\"a}ndig. Durch die Zugabe von puzzolanischen Stoffen k{\"o}nnen aber Bedingungen im hydratisierenden System geschaffen werden, welche eine rissfreie Erh{\"a}rtung erm{\"o}glichen. Hierf{\"u}r ist eine exakte Rezeptierung der GZPB notwendig, um die GZPB-typischen, ettringitbedingten Dehnungen zeitlich zu begrenzen. Insbesondere bei alumosilikatischen Puzzolanen treten w{\"a}hrend der Hydratation gegen{\"u}ber rein silikatischen Puzzolanen deutlich h{\"o}here Expansionen auf, wodurch die Gefahr einer potenziellen Rissbildung steigt. F{\"u}r die Erstellung geeigneter GZPB-Zusammensetzungen bedarf es daher einer Methodik, um raumbest{\"a}ndig erh{\"a}rtende Systeme sicher von destruktiven Mischungen unterscheiden zu k{\"o}nnen. Sowohl f{\"u}r die Rezeptierung als auch f{\"u}r die Anwendung der GZPB existieren in Deutschland keinerlei Normen. Dar{\"u}ber hinaus sind die Hydratationsvorg{\"a}nge sowie die entstehenden Produkte nicht konsistent beschrieben. Auch auf die Besonderheiten der GZPB mit alumosilikatischen Puzzolanen wird in der Literatur nur unzureichend eingegangen. Ziel war es daher, ein grundlegendes Verst{\"a}ndnis der Hydratation sowie eine sichere Methodik zur Rezeptierung raumbest{\"a}ndig und rissfrei erh{\"a}rtender GZPB, insbesondere in Hinblick auf die Verwendung alumosilikatischer Puzzolane, zu erarbeiten. Dar{\"u}ber hinaus sollte systematisch der Einfluss der Einzelkomponenten auf Hydratation und Eigenschaften dieser Bindemittelsysteme untersucht werden. Dies soll erm{\"o}glichen, die GZPB f{\"u}r ein breites Anwendungsspektrum als Bindemittel zu etablieren, und somit vorteilhafte Eigenschaften der Calciumsulfate (geringe Schwindneigung, geringe CO2-Emission etc.) mit der Leistungs-f{\"a}higkeit von Zementen (Wasserbest{\"a}ndigkeit, Festigkeit, Dauerhaftigkeit etc.) zu verbinden. Als Ausgangsstoffe der Untersuchungen zu den GZPB wurden Stuckgips und Alpha-Halbhydrat als Calciumsulfatbindemittel in unterschiedlichen Anteilen im GZPB verwendet. Die Puzzolan-Zement-Verh{\"a}ltnisse wurden ebenfalls variiert. Als Puzzolan kam f{\"u}r den Großteil der Untersuchungen ein alumosilikatisches Metakaolin zum Einsatz. Als kalkspendende Komponente diente ein reiner Portlandzement. Das Untersuchungsprogramm gliederte sich in 4 Teile. Zuerst wurde anhand von CaO- und pH-Wert-Messungen in Suspensionen sowie dem L{\"a}ngen{\"a}nderungsverhalten von Bindemittelleimen verschiedener Zusammensetzungen eine Vorauswahl geeigneter GZPB-Rezepturen ermittelt. Danach erfolgten, ebenfalls an Bindemittelleimen, Untersuchungen zu den Eigenschaften der als geeignet eingesch{\"a}tzten GZPB-Mischungen. Hierzu z{\"a}hlten Langzeitbetrachtungen zur rissfreien Erh{\"a}rtung bei unterschiedlichen Umgebungsbedingungen sowie die Festigkeitsentwicklung im trockenen und feuchten Zustand. Im n{\"a}chsten Schritt wurde anhand zweier exemplarischer GZPB-Zusammensetzungen (mit silikatischen und alumosilikatischen Puzzolan) die prinzipiell m{\"o}gliche Phasenzusammensetzung unter Variation des Puzzolan-Zement-Verh{\"a}ltnisses (P/Z-Verh{\"a}ltnis) und des Calciumsulfatanteils im thermodynamischen Gleichgewichtszustand berechnet. Hier wurde im Besonderen auf Unterschiede der silikatischen und alumosilikatischen Puzzolane eingegangen. Im letzten Teil der Untersuchungen wurden die Hydratationskinetik der GZPB sowie die Gef{\"u}geentwicklung n{\"a}her betrachtet. Hierf{\"u}r wurden die Porenl{\"o}sungen chemisch analysiert und S{\"a}ttigungsindizes berechnet, sowie elektronenmikropische, porosimetrische und r{\"o}ntgenografische Untersuchungen durchgef{\"u}hrt. Abschließend wurden die Ergebnisse gesamtheitlich interpretiert, da die Ergebnisse der einzelnen Untersuchungsprogramme miteinander in Wechselwirkung stehen. Als haupts{\"a}chliche Hydratationsprodukte wurden Calciumsulfat-Dihydrat, Ettringit und C-(A)-S-H-Phasen ermittelt, deren Anteile im GZPB neben dem Calciumsulfatanteil und dem Puzzolan-Zement-Verh{\"a}ltnis auch deutlich vom Wasserangebot und der Gef{\"u}geentwicklung abh{\"a}ngen. Bei Verwendung von alumosilikatischen Puzzolans kommt es wahrscheinlich zur teilweisen Substitution des Siliciums durch Aluminium in den C-S-H-Phasen. Dies erscheint aufgrund des Nachweises der f{\"u}r diese Phasen typischen, folienartigen Morphologie wahrscheinlich. Portlandit wurde in raumbest{\"a}ndigen GZPB-Systemen nur zu sehr fr{\"u}hen Zeitpunkten in geringen Mengen gefunden. In den Untersuchungen konnte ein Teil der in der Literatur beschriebenen, prinzipiellen Hydratationsabl{\"a}ufe best{\"a}tigt werden. Bei Verwendung von Halbhydrat als Calciumsulfatkomponente entsteht zuerst Dihydrat und bildet die Prim{\"a}rstruktur der GZPB. In dieses existierende Grundgef{\"u}ge kristallisieren dann das Ettringit und die C-(A)-S-H-Phasen. In den GZPB sorgen entgegen der Beschreibungen in der Literatur nicht ausschließlich die C-(A)-S-H-Phasen zur Verbesserung der Feuchtebest{\"a}ndigkeit und der Erh{\"o}hung des Festigkeitsniveaus, sondern auch das Ettringit. Beide Phasen {\"u}berwachsen im zeitlichen Verlauf der Hydratation die Dihydratkristalle in der Matrix und h{\"u}llen diese - je nach Calciumsulfatanteil im GZPB - teilweise oder vollst{\"a}ndig ein. Diese Umh{\"u}llung sowie die starke Gef{\"u}geverdichtung durch die C-(A)-S-H-Phasen und das Ettringit bedingen, dass ein l{\"o}sender Angriff durch Wasser erschwert oder gar verhindert wird. Gleichzeitig wird die Gleitf{\"a}higkeit an den Kontaktstellen der Dihydratkristalle verringert. Eine rissfreie und raumbest{\"a}ndige Erh{\"a}rtung ist f{\"u}r die gefahrlose Anwendung eines GZPB-Systems essentiell. Hierf{\"u}r ist die Kinetik der Ettringitbildung von elementarer Bedeutung. Die gebildete Ettringitmenge spielt nur eine untergeordnete Rolle. Selbst ausgepr{\"a}gte, ettringitbedingte Dehnungen und hohe sich bildende Mengen f{\"u}hren zu fr{\"u}hen Zeitpunkten, wenn die Dihydratkristalle noch leicht gegeneinander verschiebbar sind, zu keinen Sch{\"a}den. Bleibt die {\"U}bers{\"a}ttigung bez{\"u}glich Ettringit und somit auch der Kristallisationsdruck allerdings {\"u}ber einen langen Zeitraum hoch, gen{\"u}gen bereits geringe Ettringitmengen, um das sich stetig verfestigende Gef{\"u}ge stark zu sch{\"a}digen. Die f{\"u}r die raumbest{\"a}ndige Erh{\"a}rtung der GZPB notwendige, schnelle Abnahme der Ettringit{\"u}bers{\"a}ttigung wird haupts{\"a}chlich durch die Reaktivit{\"a}t des Puzzolans beeinflusst. Die puzzolanische Reaktion f{\"u}hrt zur Bindung des aus dem Zement stammenden Calciumhydroxid durch die Bildung von C-(A)-S-H-Phasen und Ettringit. Hierdurch sinkt die Calcium- und Hydroxidionenkonzentration in der Porenl{\"o}sung im Verlauf der Hydratation, wodurch auch die {\"U}bers{\"a}ttigung bez{\"u}glich Ettringit abnimmt. Je h{\"o}her die Reaktivit{\"a}t des Puzzolans ist, desto schneller sinkt der S{\"a}ttigungsindex des Ettringits und somit auch der Kristallisationsdruck. Nach Unterschreiten eines noch n{\"a}her zu kl{\"a}rendem Grenzwert der {\"U}bers{\"a}ttigung stagnieren die Dehnungen. Das Ettringit kristallisiert bzw. w{\"a}chst nun bevorzugt in den Poren ohne eine weitere, {\"a}ußere Volumenzunahme zu verursachen. Um eine schadensfreie Erh{\"a}rtung des GZPB zu gew{\"a}hrleisten, muss gerade in der fr{\"u}hen Phase der Hydratation ein ausreichendes Wasserangebot gew{\"a}hrleistet werden, so dass die Ettringitbildung m{\"o}glichst vollst{\"a}ndig ablaufen kann. Andernfalls kann es bei einer Wiederbefeuchtung zur Reaktivierung der Ettringitbildung kommen, was im eingebauten Zustand Sch{\"a}den verursachen kann. Die Gew{\"a}hrleistung eines ausreichenden Wasserangebots ist im GZPB-System nicht unproblematisch. In Abh{\"a}ngigkeit der GZPB-Zusammensetzung k{\"o}nnen sich große Ettringitmengen bilden, die einen sehr hohen Wasserbedarf aufweisen. Deshalb kann es, je nach verwendeten Wasser-Bindemittel-Wert, im Bindemittelleim zu einem Wassermangel kommen, welcher die weitere Hydratation verlangsamt bzw. komplett verhindert. Zudem k{\"o}nnen GZPB-Systeme teils sehr dichte Gef{\"u}ge ausbilden, wodurch der Wassertransport zum Reaktionsort des Ettringits zus{\"a}tzlich behindert wird. Die Konzeption raumbest{\"a}ndiger GZPB-Systeme muss anhand mehrerer aufeinander aufbauender Untersuchungen erfolgen. Zur Vorauswahl geeigneter Puzzolan-Zementverh{\"a}ltnisse eignen sich die Messungen der CaO-Konzentration und des pH-Wertes in Suspensionen. Als alleinige Beurteilungsgrundlage reicht dies allerdings nicht aus. Zus{\"a}tzlich muss das L{\"a}ngen{\"a}nderungs-verhalten beurteilt werden. Raumbest{\"a}ndige Mischungen mit alumosilikatischen Puzzolanen zeigen zu fr{\"u}hen Zeitpunkten starke Dehnungen, welche dann abrupt stagnieren. Stetige - auch geringe - Dehnungen weisen auf eine destruktive Zusammensetzung hin. Mit diesem mehrstufigen Vorgehen k{\"o}nnen raumbest{\"a}ndige, stabile GZPB-Systeme konzipiert werden, so dass die Zielstellung der Arbeit erreicht wurde und ein sicherer praktischer Einsatz dieser Bindemittelart gew{\"a}hrleistet werden kann.  }, subject = {Gips}, language = {de} } @phdthesis{Malik, author = {Malik, Irfan}, title = {An adaptive contact formulation for Isogeometric Finite Element Analysis}, doi = {10.25643/bauhaus-universitaet.4612}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220324-46129}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {124}, abstract = {Numerical simulation of physical phenomena, like electro-magnetics, structural and fluid mechanics is essential for the cost- and time-efficient development of mechanical products at high quality. It allows to investigate the behavior of a product or a system far before the first prototype of a product is manufactured. This thesis addresses the simulation of contact mechanics. Mechanical contacts appear in nearly every product of mechanical engineering. Gearboxes, roller bearings, valves and pumps are only some examples. Simulating these systems not only for the maximal/minimal stresses and strains but for the stress-distribution in case of tribo-contacts is a challenging task from a numerical point of view. Classical procedures like the Finite Element Method suffer from the nonsmooth representation of contact surfaces with discrete Lagrange elements. On the one hand, an error due to the approximate description of the surface is introduced. On the other hand it is difficult to attain a robust contact search because surface normals can not be described in a unique form at element edges. This thesis introduces therefore a novel approach, the adaptive isogeometric contact formulation based on polynomial Splines over hierarchical T-meshes (PHT-Splines), for the approximate solution of the non-linear contact problem. It provides a more accurate, robust and efficient solution compared to conventional methods. During the development of this method the focus was laid on the solution of static contact problems without friction in 2D and 3D in which the structures undergo small deformations. The mathematical description of the problem entails a system of partial differential equations and boundary conditions which model the linear elastic behaviour of continua. Additionally, it comprises side conditions, the Karush-Kuhn-Tuckerconditions, to prevent the contacting structures from non-physical penetration. The mathematical model must be transformed into its integral form for approximation of the solution. Employing a penalty method, contact constraints are incorporated by adding the resulting equations in weak form to the overall set of equations. For an efficient space discretization of the bulk and especially the contact boundary of the structures, the principle of Isogeometric Analysis (IGA) is applied. Isogeometric Finite Element Methods provide several advantages over conventional Finite Element discretization. Surface approximation with Non-Uniform Rational B-Splines (NURBS) allow a robust numerical solution of the contact problem with high accuracy in terms of an exact geometry description including the surface smoothness. The numerical evaluation of the contact integral is challenging due to generally non-conforming meshes of the contacting structures. In this work the highly accurate Mortar Method is applied in the isogeometric setting for the evaluation of contact contributions. This leads to an algebraic system of equations that is linearized and solved in sequential steps. This procedure is known as the Newton Raphson Method. Based on numerical examples, the advantages of the isogeometric approach with classical refinement strategies, like the p- and h-refinement, are shown and the influence of relevant algorithmic parameters on the approximate solution of the contact problem is verified. One drawback of the Spline approximations of stresses though is that they lack accuracy at the contact edge where the structures change their boundary from contact to no contact and where the solution features a kink. The approximation with smooth Spline functions yields numerical artefacts in the form of non-physical oscillations. This property of the numerical solution is not only a drawback for the simulation of e.g. tribological contacts, it also influences the convergence properties of iterative solution procedures negatively. Hence, the NURBS discretized geometries are transformed to Polynomial Splines over Hierarchical T-meshes (PHT-Splines), for the local refinement along contact edges to reduce the artefact of pressure oscillations. NURBS have a tensor product structure which does not allow to refine only certain parts of the geometrical domain while leaving other parts unchanged. Due to the B{\´e}zier Extraction, lying behind the transformation from NURBS to PHT-Splines, the connected mesh structure is broken up into separate elements. This allows an efficient local refinement along the contact edge. Before single elements are refined in a hierarchical form with cross-insertion, existing basis functions must be modified or eliminated. This process of truncation assures local and global linear independence of the refined basis which is needed for a unique approximate solution. The contact boundary is a priori unknown. Local refinement along the contact edge, especially for 3D problems, is for this reason not straight forward. In this work the use of an a posteriori error estimation procedure, the Super Convergent Recovery Solution Based Error Estimation Scheme, together with the D{\"o}rfler Marking Method is suggested for the spatial search of the contact edge. Numerical examples show that the developed method improves the quality of solutions along the contact edge significantly compared to NURBS based approximate solutions. Also, the error in maximum contact pressures, which correlates with the pressure artefacts, is minimized by the adaptive local refinement. In a final step the practicability of the developed solution algorithm is verified by an industrial application: The highly loaded mechanical contact between roller and cam in the drive train of a high-pressure fuel pump is considered.}, subject = {Isogeometrische Analyse}, language = {en} } @phdthesis{Cicek, author = {Cicek, Burhan}, title = {Revisiting vernacular technique: Engineering a low environmental impact earth stabilisation method}, doi = {10.25643/bauhaus-universitaet.4698}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220803-46989}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {195}, abstract = {The major drawbacks of earth as a construction material — such as its low water stability and moderate strength — have led mankind to stabilize earth. Different civilizations developed vernacular techniques mainly focussing on lime, pozzolan or gypsum stabilization. Recently, cement has become the most commonly used additive in earth stabilization as it improves the strength and durability of plain earth. Also, it is a familiar and globally available construction material. However, using cement as an additive reduces the environmental advantages of earth and run counter to global targets regarding the reduction of CO2 emissions. Alternatives to cement stabilization are currently neither efficient enough to reduce its environmental impact nor allow the possibility of obtaining better results than those of cement. As such, this thesis deals with the rediscovery of a reverse engineering approach for a low environmental impact earth stabilization technique, aiming to replace cement in earth stabilization. The first step in the method consists in a comprehensive review of earth stabilization with regards to earthen building standards and soil classification, which allows us to identify the research gap. The review showed that there is great potential in using other additives which result in similar improvements as those achieved by cement. However, the studies that have been conducted so far either use expansive soils, which are not suitable for earth constructions or artificial pozzolans that indirectly contribute to CO2 emissions. This is the main research gap. The key concept for the development in the second step of the method is to combine vernacular additives to both improve the strength and durability of plain earth and to reduce the CO2 emissions. Various earth-mixtures were prepared and both development and performance tests were done to investigate the performance of this technique. The laboratory analyses on mix-design have proven a high durability and the results show a remarkable increase in strength performance. Furthermore, a significant reduction in CO2 emissions in comparison to cement stabilization could be shown. The third step of the method discusses the results drawn from the experimental programme. In addition, the potential of the new earth mixture with regards to its usability in the field of building construction and architectural design is further elaborated on. The method used in this study is the first of its kind that allows investors to avoid the very time-consuming processes such as finding a suitable source for soil excavation and soil classification. The developed mixture has significant workability and suitability for production of stabilized earthen panels — the very first of its kind. Such a panel is practically feasible, reasonable, and could be integrated into earthen building standards in general and in particular to DIN 18948, which is related to earthen boards and published in 2018.}, subject = {Lehm}, language = {en} } @phdthesis{Damir, author = {Damir, Mirhan}, title = {Recalling the Omitted: Exploring the Spatial Development of the Modern Industrial Legacies in Egypt. The Case of Alexandria.}, doi = {10.25643/bauhaus-universitaet.4619}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220329-46196}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {237}, abstract = {The modern industries of the 19th and 20th centuries had multiple effects on the spatial transformation of cities and regions. The past decade has witnessed increasing scholarly and governmental attempts toward conserving modern industrial heritage in the so-called Global North, with the goal, among others, of leveraging this heritage as a driver for urban economic development. In Egypt, the process continues to lag behind; on the one hand, this is due to the perplexing official recognition of the (in)tangible witnesses of modern industries. On the other hand, the official recognition and previous publications focus predominantly on weighing the significance of industrial structures based on their monumental architectural aesthetics. Their historical urban role and spatial attributes as part of urban heritage have yet to be seriously acknowledged. Accordingly, this hinders the integration of the extant industrial sites into the broader debate surrounding urban conservation, leaving them vulnerable to decay and destruction. This dissertation steers away from the singular investigation of selective modern industrial sites to recall their historical spatial development on a city scale. This is effected by investigating a case study - the Egyptian port city of Alexandria. With the limited secondary data available on modern industries in Alexandria, this dissertation relied predominantly on primary sources. The author collected and leveraged both quantitative and qualitative data to recontextualize modern industries in terms of their spatial dynamics, order, and rationale within cities' transformation. By recalling historical spatial development in Alexandria, the contribution of this dissertation lies in highlighting what the author refers to as the Omitted Heritage. This is defined by the modern industries in Egypt that are intentionally, unintentionally, and forgetfully excluded in terms of physical documentation, evaluation, appreciation, and integration within urban development plans. The method used excavated the richness of the established modern industries in Alexandria in terms of their quantity and diversity, which would have otherwise remained largely forgotten. The contextualization of modern industries unveiled spatial periodization, spatial dynamics, and conceptual development. The study draws on important analytical aspects that transcend the sites' boundaries, elevating their significance to the municipal, regional, national, and even global levels. Its recommendations for further research are also divided into those levels.}, subject = {{\"A}gypten}, language = {en} } @phdthesis{Nouri, author = {Nouri, Hamidreza}, title = {Mechanical Behavior of two dimensional sheets and polymer compounds based on molecular dynamics and continuum mechanics approach}, doi = {10.25643/bauhaus-universitaet.4670}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220713-46700}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {152}, abstract = {Compactly, this thesis encompasses two major parts to examine mechanical responses of polymer compounds and two dimensional materials: 1- Molecular dynamics approach is investigated to study transverse impact behavior of polymers, polymer compounds and two dimensional materials. 2- Large deflection of circular and rectangular membranes is examined by employing continuum mechanics approach. Two dimensional materials (2D), including, Graphene and molybdenum disulfide (MoS2), exhibited new and promising physical and chemical properties, opening new opportunities to be utilized alone or to enhance the performance of conventional materials. These 2D materials have attracted tremendous attention owing to their outstanding physical properties, especially concerning transverse impact loading. Polymers, with the backbone of carbon (organic polymers) or do not include carbon atoms in the backbone (inorganic polymers) like polydimethylsiloxane (PDMS), have extraordinary characteristics particularly their flexibility leads to various easy ways of forming and casting. These simple shape processing label polymers as an excellent material often used as a matrix in composites (polymer compounds). In this PhD work, Classical Molecular Dynamics (MD) is implemented to calculate transverse impact loading of 2D materials as well as polymer compounds reinforced with graphene sheets. In particular, MD was adopted to investigate perforation of the target and impact resistance force . By employing MD approach, the minimum velocity of the projectile that could create perforation and passes through the target is obtained. The largest investigation was focused on how graphene could enhance the impact properties of the compound. Also the purpose of this work was to discover the effect of the atomic arrangement of 2D materials on the impact problem. To this aim, the impact properties of two different 2D materials, graphene and MoS2, are studied. The simulation of chemical functionalization was carried out systematically, either with covalently bonded molecules or with non-bonded ones, focusing the following efforts on the covalently bounded species, revealed as the most efficient linkers. To study transverse impact behavior by using classical MD approach , Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) software, that is well-known among most researchers, is employed. The simulation is done through predefined commands in LAMMPS. Generally these commands (atom style, pair style, angle style, dihedral style, improper style, kspace style, read data, fix, run, compute and so on) are used to simulate and run the model for the desired outputs. Depends on the particles and model types, suitable inter-atomic potentials (force fields) are considered. The ensembles, constraints and boundary conditions are applied depends upon the problem definition. To do so, atomic creation is needed. Python codes are developed to generate particles which explain atomic arrangement of each model. Each atomic arrangement introduced separately to LAMMPS for simulation. After applying constraints and boundary conditions, LAMMPS also include integrators like velocity-Verlet integrator or Brownian dynamics or other types of integrator to run the simulation and finally the outputs are emerged. The outputs are inspected carefully to appreciate the natural behavior of the problem. Appreciation of natural properties of the materials assist us to design new applicable materials. In investigation on the large deflection of circular and rectangular membranes, which is related to the second part of this thesis, continuum mechanics approach is implemented. Nonlinear F{\"o}ppl membrane theory, which carefully release nonlinear governing equations of motion, is considered to establish the non-linear partial differential equilibrium equations of the membranes under distributed and centric point loads. The Galerkin and energy methods are utilized to solve non-linear partial differential equilibrium equations of circular and rectangular plates respectively. Maximum deflection as well as stress through the film region, which are kinds of issue in many industrial applications, are obtained.}, subject = {Molekulardynamik}, language = {en} } @phdthesis{Jenabidehkordi, author = {Jenabidehkordi, Ali}, title = {An Efficient Adaptive PD Formulation for Complex Microstructures}, doi = {10.25643/bauhaus-universitaet.4742}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20221124-47422}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {118}, abstract = {The computational costs of newly developed numerical simulation play a critical role in their acceptance within both academic use and industrial employment. Normally, the refinement of a method in the area of interest reduces the computational cost. This is unfortunately not true for most nonlocal simulation, since refinement typically increases the size of the material point neighborhood. Reducing the discretization size while keep- ing the neighborhood size will often require extra consideration. Peridy- namic (PD) is a newly developed numerical method with nonlocal nature. Its straightforward integral form equation of motion allows simulating dy- namic problems without any extra consideration required. The formation of crack and its propagation is known as natural to peridynamic. This means that discontinuity is a result of the simulation and does not demand any post-processing. As with other nonlocal methods, PD is considered an expensive method. The refinement of the nodal spacing while keeping the neighborhood size (i.e., horizon radius) constant, emerges to several nonphysical phenomena. This research aims to reduce the peridynamic computational and imple- mentation costs. A novel refinement approach is introduced. The pro- posed approach takes advantage of the PD flexibility in choosing the shape of the horizon by introducing multiple domains (with no intersections) to the nodes of the refinement zone. It will be shown that no ghost forces will be created when changing the horizon sizes in both subdomains. The approach is applied to both bond-based and state-based peridynamic and verified for a simple wave propagation refinement problem illustrating the efficiency of the method. Further development of the method for higher dimensions proves to have a direct relationship with the mesh sensitivity of the PD. A method for solving the mesh sensitivity of the PD is intro- duced. The application of the method will be examined by solving a crack propagation problem similar to those reported in the literature. New software architecture is proposed considering both academic and in- dustrial use. The available simulation tools for employing PD will be collected, and their advantages and drawbacks will be addressed. The challenges of implementing any node base nonlocal methods while max- imizing the software flexibility to further development and modification will be discussed and addressed. A software named Relation-Based Sim- ulator (RBS) is developed for examining the proposed architecture. The exceptional capabilities of RBS will be explored by simulating three dis- tinguished models. RBS is available publicly and open to further develop- ment. The industrial acceptance of the RBS will be tested by targeting its performance on one Mac and two Linux distributions.}, subject = {Peridynamik}, language = {en} } @phdthesis{Hanna, author = {Hanna, John}, title = {Computational Fracture Modeling and Design of Encapsulation-Based Self-Healing Concrete Using XFEM and Cohesive Surface Technique}, doi = {10.25643/bauhaus-universitaet.4746}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20221124-47467}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {125}, abstract = {Encapsulation-based self-healing concrete (SHC) is the most promising technique for providing a self-healing mechanism to concrete. This is due to its capacity to heal fractures effectively without human interventions, extending the operational life and lowering maintenance costs. The healing mechanism is created by embedding capsules containing the healing agent inside the concrete. The healing agent will be released once the capsules are fractured and the healing occurs in the vicinity of the damaged part. The healing efficiency of the SHC is still not clear and depends on several factors; in the case of microcapsules SHC the fracture of microcapsules is the most important aspect to release the healing agents and hence heal the cracks. This study contributes to verifying the healing efficiency of SHC and the fracture mechanism of the microcapsules. Extended finite element method (XFEM) is a flexible, and powerful discrete crack method that allows crack propagation without the requirement for re-meshing and has been shown high accuracy for modeling fracture in concrete. In this thesis, a computational fracture modeling approach of Encapsulation-based SHC is proposed based on the XFEM and cohesive surface technique (CS) to study the healing efficiency and the potential of fracture and debonding of the microcapsules or the solidified healing agents from the concrete matrix as well. The concrete matrix and a microcapsule shell both are modeled by the XFEM and combined together by CS. The effects of the healed-crack length, the interfacial fracture properties, and microcapsule size on the load carrying capability and fracture pattern of the SHC have been studied. The obtained results are compared to those obtained from the zero thickness cohesive element approach to demonstrate the significant accuracy and the validity of the proposed simulation. The present fracture simulation is developed to study the influence of the capsular clustering on the fracture mechanism by varying the contact surface area of the CS between the microcapsule shell and the concrete matrix. The proposed fracture simulation is expanded to 3D simulations to validate the 2D computational simulations and to estimate the accuracy difference ratio between 2D and 3D simulations. In addition, a proposed design method is developed to design the size of the microcapsules consideration of a sufficient volume of healing agent to heal the expected crack width. This method is based on the configuration of the unit cell (UC), Representative Volume Element (RVE), Periodic Boundary Conditions (PBC), and associated them to the volume fraction (Vf) and the crack width as variables. The proposed microcapsule design is verified through computational fracture simulations.}, subject = {Beton}, language = {en} }