@article{AnsariZachariasKoenke, author = {Ansari, Meisam and Zacharias, Christin and K{\"o}nke, Carsten}, title = {Metaconcrete: An Experimental Study on the Impact of the Core-Coating Inclusions on Mechanical Vibration}, series = {materials}, volume = {2023}, journal = {materials}, number = {Volume 16, Issue 5, article 1836}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/ma16051836}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230315-49370}, pages = {1 -- 18}, abstract = {Resonance vibration of structures is an unpleasant incident that can be conventionally avoided by using a Tuned Mass Damper (TMD). The scope of this paper contains the utilization of engineered inclusions in concrete as damping aggregates to suppress resonance vibration similar to a TMD. The inclusions are composed of a stainless-steel core with a spherical shape coated with silicone. This configuration has been the subject of several studies and it is best known as Metaconcrete. This paper presents the procedure of a free vibration test conducted with two small-scaled concrete beams. The beams exhibited a higher damping ratio after the core-coating element was secured to them. Subsequently, two meso-models of small-scaled beams were created: one representing conventional concrete and the other representing concrete with the core-coating inclusions. The frequency response curves of the models were obtained. The change in the response peak verified the ability of the inclusions to suppress the resonance vibration. This study concludes that the core-coating inclusions can be utilized in concrete as damping aggregates.}, subject = {Beton}, language = {en} } @article{AnsariTartaglioneKoenke, author = {Ansari, Meisam and Tartaglione, Fabiola and K{\"o}nke, Carsten}, title = {Experimental Validation of Dynamic Response of Small-Scale Metaconcrete Beams at Resonance Vibration}, series = {materials}, volume = {2023}, journal = {materials}, number = {volume 16, issue 14, article 5029}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/ma16145029}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230818-64154}, pages = {1 -- 17}, abstract = {Structures and their components experience substantially large vibration amplitudes at resonance, which can cause their failure. The scope of this study is the utilization of silicone-coated steel balls in concrete as damping aggregates to suppress the resonance vibration. The heavy steel cores oscillate with a frequency close to the resonance frequency of the structure. Due to the phase difference between the vibrations of the cores and the structure, the cores counteract the vibration of the structure. The core-coating inclusions are randomly distributed in concrete similar to standard aggregates. This mixture is referred to as metaconcrete. The main goal of this work is to validate the ability of the inclusions to suppress mechanical vibration through laboratory experiments. For this purpose, two small-scale metaconcrete beams were cast and tested. In a free vibration test, the metaconcrete beams exhibited a larger damping ratio compared to a similar beam cast from conventional concrete. The vibration amplitudes of the metaconcrete beams at resonance were measured with a frequency sweep test. In comparison with the conventional concrete beam, both metaconcrete beams demonstrated smaller vibration amplitudes. Both experiments verified an improvement in the dynamic response of the metaconcrete beams at resonance vibration.}, subject = {Beton}, language = {en} } @article{NguyenTuanKoenkeBettziecheetal., author = {Nguyen-Tuan, Long and K{\"o}nke, Carsten and Bettzieche, Volker and Lahmer, Tom}, title = {Numerical modeling and validation for 3D coupled-nonlinear thermo-hydro-mechanical problems in masonry dams}, series = {Computers \& Structures}, journal = {Computers \& Structures}, pages = {143 -- 154}, abstract = {Numerical modeling and validation for 3D coupled-nonlinear thermo-hydro-mechanical problems in masonry dams}, subject = {Angewandte Mathematik}, language = {en} } @article{LahmerNguyenTuanKoenkeetal., author = {Lahmer, Tom and Nguyen-Tuan, Long and K{\"o}nke, Carsten and Bettzieche, Volker}, title = {Thermo-hydro-mechanische 3-D-Simulation von Staumauern-Modellierung und Validierung}, series = {WASSERWIRTSCHAFT}, journal = {WASSERWIRTSCHAFT}, pages = {27 -- 30}, abstract = {Thermo-hydro-mechanische 3-D-Simulation von Staumauern-Modellierung und Validierung}, subject = {Angewandte Mathematik}, language = {de} } @article{LuuMartinezRodrigoZabeletal., author = {Luu, M. and Martinez-Rodrigo, M.D. and Zabel, Volkmar and K{\"o}nke, Carsten}, title = {H∞ optimization of fluid viscous dampers for reducing vibrations of high-speed railway bridges}, series = {Journal of Sound and Vibration}, journal = {Journal of Sound and Vibration}, pages = {2421 -- 2442}, abstract = {H∞ optimization of fluid viscous dampers for reducing vibrations of high-speed railway bridges}, subject = {Angewandte Mathematik}, language = {en} } @article{SchraderKoenke, author = {Schrader, Kai and K{\"o}nke, Carsten}, title = {Distributed computing for the nonlinear analysis of multiphase composites}, series = {Advances in Engineering Software}, journal = {Advances in Engineering Software}, pages = {20 -- 32}, abstract = {Distributed computing for the nonlinear analysis of multiphase composites}, subject = {Angewandte Mathematik}, language = {en} } @article{SchraderKoenke, author = {Schrader, Kai and K{\"o}nke, Carsten}, title = {Hybrid computing models for large-scale heterogeneous 3d microstructures}, series = {International Journal for Multiscale Computational Engineering}, journal = {International Journal for Multiscale Computational Engineering}, pages = {365 -- 377}, abstract = {Hybrid computing models for large-scale heterogeneous 3d microstructures}, subject = {Angewandte Mathematik}, language = {en} } @article{LutherKoenke, author = {Luther, Torsten and K{\"o}nke, Carsten}, title = {Coupled cohesive zone representations from 3D quasicontinuum simulation on aluminum grain boundaries}, series = {International Journal for Multiscale Computational Engineering}, journal = {International Journal for Multiscale Computational Engineering}, abstract = {Coupled cohesive zone representations from 3D quasicontinuum simulation on aluminum grain boundaries}, subject = {Angewandte Mathematik}, language = {en} } @article{LahmerKoenkeBettzieche, author = {Lahmer, Tom and K{\"o}nke, Carsten and Bettzieche, Volker}, title = {Optimale Positionierung von Messeinrichtungen an Staumauern zur Bauwerks{\"u}berwachung}, series = {WASSERWIRTSCHAFT}, journal = {WASSERWIRTSCHAFT}, pages = {16 -- 16}, abstract = {Optimale Positionierung von Messeinrichtungen an Staumauern zur Bauwerks{\"u}berwachung}, subject = {Angewandte Mathematik}, language = {de} } @article{LahmerKoenkeBettzieche, author = {Lahmer, Tom and K{\"o}nke, Carsten and Bettzieche, Volker}, title = {Optimal positioning of sensors for the monitoring of water dams}, series = {WASSERWIRTSCHAFT}, journal = {WASSERWIRTSCHAFT}, pages = {16 -- 19}, abstract = {Optimal positioning of sensors for the monitoring of water dams}, subject = {Angewandte Mathematik}, language = {de} }