@article{BenzTarabenLichtenheldetal., author = {Benz, Alexander and Taraben, Jakob and Lichtenheld, Thomas and Morgenthal, Guido and V{\"o}lker, Conrad}, title = {Thermisch-energetische Geb{\"a}udesimulation auf Basis eines Bauwerksinformationsmodells}, series = {Bauphysik}, journal = {Bauphysik}, number = {40, Heft 2}, doi = {10.25643/bauhaus-universitaet.3835}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20181221-38354}, pages = {61 -- 67}, abstract = {F{\"u}r eine Absch{\"a}tzung des Heizw{\"a}rmebedarfs von Geb{\"a}uden und Quartieren k{\"o}nnen thermisch-energetische Simulationen eingesetzt werden. Grundlage dieser Simulationen sind geometrische und physikalische Geb{\"a}udemodelle. Die Erstellung des geometrischen Modells erfolgt in der Regel auf Basis von Baupl{\"a}nen oder Vor-Ort-Begehungen, was mit einem großen Recherche- und Modellierungsaufwand verbunden ist. Sp{\"a}tere bauliche Ver{\"a}nderungen des Geb{\"a}udes m{\"u}ssen h{\"a}ufig manuell in das Modell eingearbeitet werden, was den Arbeitsaufwand zus{\"a}tzlich erh{\"o}ht. Das physikalische Modell stellt die Menge an Parametern und Randbedingungen dar, welche durch Materialeigenschaften, Lage und Umgebungs-einfl{\"u}sse gegeben sind. Die Verkn{\"u}pfung beider Modelle wird innerhalb der entsprechenden Simulations-software realisiert und ist meist nicht in andere Softwareprodukte {\"u}berf{\"u}hrbar. Mithilfe des Building Information Modeling (BIM) k{\"o}nnen Simulationsdaten sowohl konsistent gespeichert als auch {\"u}ber Schnittstellen mit entsprechenden Anwendungen ausgetauscht werden. Hierf{\"u}r wird eine Methode vorgestellt, die thermisch-energetische Simulationen auf Basis des standardisierten {\"U}bergabe-formats Industry Foundation Classes (IFC) inklusive anschließender Auswertungen erm{\"o}glicht. Dabei werden geometrische und physikalische Parameter direkt aus einem {\"u}ber den gesamten Lebenszyklus aktuellen Geb{\"a}udemodell extrahiert und an die Simulation {\"u}bergeben. Dies beschleunigt den Simulations-prozess hinsichtlich der Geb{\"a}udemodellierung und nach sp{\"a}teren baulichen Ver{\"a}nderungen. Die erarbeite-te Methode beruht hierbei auf einfachen Modellierungskonventionen bei der Erstellung des Bauwerksinformationsmodells und stellt eine vollst{\"a}ndige {\"U}bertragbarkeit der Eingangs- und Ausgangswerte sicher. Thermal building simulation based on BIM-models. Thermal energetic simulations are used for the estimation of the heating demand of buildings and districts. These simulations are based on building models containing geometrical and physical information. The creation of geometrical models is usually based on existing construction plans or in situ assessments which demand a comparatively big effort of investigation and modeling. Alterations, which are later applied to the structure, request manual changes of the related model, which increases the effort additionally. The physical model represents the total amount of parameters and boundary conditions that are influenced by material properties, location and environmental influences on the building. The link between both models is realized within the correspondent simulation soft-ware and is usually not transferable to other software products. By Applying Building Information Modeling (BIM) simulation data is stored consistently and an exchange to other software is enabled. Therefore, a method which allows a thermal energetic simulation based on the exchange format Industry Foundation Classes (IFC) including an evaluation is presented. All geometrical and physical information are extracted directly from the building model that is kept up-to-date during its life cycle and transferred to the simulation. This accelerates the simulation process regarding the geometrical modeling and adjustments after later changes of the building. The developed method is based on simple conventions for the creation of the building model and ensures a complete transfer of all simulation data.}, subject = {Building Information Modeling}, language = {de} } @article{BenzTarabenLichtenheldetal., author = {Benz, Alexander and Taraben, Jakob and Lichtenheld, Thomas and Morgenthal, Guido and V{\"o}lker, Conrad}, title = {Thermisch-energetische Geb{\"a}udesimulation auf Basis eines Bauwerksinformationsmodells}, series = {Bauphysik}, journal = {Bauphysik}, number = {40, Heft 2}, doi = {10.25643/bauhaus-universitaet.3819}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20181102-38190}, pages = {61 -- 67}, abstract = {F{\"u}r eine Absch{\"a}tzung des Heizw{\"a}rmebedarfs von Geb{\"a}uden und Quartieren k{\"o}nnen thermisch-energetische Simulationen eingesetzt werden. Grundlage dieser Simulationen sind geometrische und physikalische Geb{\"a}udemodelle. Die Erstellung des geometrischen Modells erfolgt in der Regel auf Basis von Baupl{\"a}nen oder Vor-Ort-Begehungen, was mit einem großen Recherche- und Modellierungsaufwand verbunden ist. Sp{\"a}tere bauliche Ver{\"a}nderungen des Geb{\"a}udes m{\"u}ssen h{\"a}ufig manuell in das Modell eingearbeitet werden, was den Arbeitsaufwand zus{\"a}tzlich erh{\"o}ht. Das physikalische Modell stellt die Menge an Parametern und Randbedingungen dar, welche durch Materialeigenschaften, Lage und Umgebungs-einfl{\"u}sse gegeben sind. Die Verkn{\"u}pfung beider Modelle wird innerhalb der entsprechenden Simulations-software realisiert und ist meist nicht in andere Softwareprodukte {\"u}berf{\"u}hrbar. Mithilfe des Building Information Modeling (BIM) k{\"o}nnen Simulationsdaten sowohl konsistent gespeichert als auch {\"u}ber Schnittstellen mit entsprechenden Anwendungen ausgetauscht werden. Hierf{\"u}r wird eine Methode vorgestellt, die thermisch-energetische Simulationen auf Basis des standardisierten {\"U}bergabe-formats Industry Foundation Classes (IFC) inklusive anschließender Auswertungen erm{\"o}glicht. Dabei werden geometrische und physikalische Parameter direkt aus einem {\"u}ber den gesamten Lebenszyklus aktuellen Geb{\"a}udemodell extrahiert und an die Simulation {\"u}bergeben. Dies beschleunigt den Simulations-prozess hinsichtlich der Geb{\"a}udemodellierung und nach sp{\"a}teren baulichen Ver{\"a}nderungen. Die erarbeite-te Methode beruht hierbei auf einfachen Modellierungskonventionen bei der Erstellung des Bauwerksinformationsmodells und stellt eine vollst{\"a}ndige {\"U}bertragbarkeit der Eingangs- und Ausgangswerte sicher. Thermal building simulation based on BIM-models. Thermal energetic simulations are used for the estimation of the heating demand of buildings and districts. These simulations are based on building models containing geometrical and physical information. The creation of geometrical models is usually based on existing construction plans or in situ assessments which demand a comparatively big effort of investigation and modeling. Alterations, which are later applied to the structure, request manual changes of the related model, which increases the effort additionally. The physical model represents the total amount of parameters and boundary conditions that are influenced by material properties, location and environmental influences on the building. The link between both models is realized within the correspondent simulation soft-ware and is usually not transferable to other software products. By Applying Building Information Modeling (BIM) simulation data is stored consistently and an exchange to other software is enabled. Therefore, a method which allows a thermal energetic simulation based on the exchange format Industry Foundation Classes (IFC) including an evaluation is presented. All geometrical and physical information are extracted directly from the building model that is kept up-to-date during its life cycle and transferred to the simulation. This accelerates the simulation process regarding the geometrical modeling and adjustments after later changes of the building. The developed method is based on simple conventions for the creation of the building model and ensures a complete transfer of all simulation data.}, subject = {Geb{\"a}udeh{\"u}lle}, language = {de} } @article{AlsaadSchaelteSchneeweissetal., author = {Alsaad, Hayder and Sch{\"a}lte, Gereon and Schneeweiß, Mario and Becher, Lia and Pollack, Moritz and Gena, Amayu Wakoya and Schweiker, Marcel and Hartmann, Maria and Voelker, Conrad and Rossaint, Rolf and Irrgang, Matthias}, title = {The Spread of Exhaled Air and Aerosols during Physical Exercise}, series = {Journal of Clinical Medicine}, volume = {2023}, journal = {Journal of Clinical Medicine}, number = {Volume 12, issue 4, article 1300}, publisher = {Basel}, address = {MDPI}, doi = {10.3390/jcm12041300}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230208-49262}, pages = {20}, abstract = {Physical exercise demonstrates a special case of aerosol emission due to its associated elevated breathing rate. This can lead to a faster spread of airborne viruses and respiratory diseases. Therefore, this study investigates cross-infection risk during training. Twelve human subjects exercised on a cycle ergometer under three mask scenarios: no mask, surgical mask, and FFP2 mask. The emitted aerosols were measured in a grey room with a measurement setup equipped with an optical particle sensor. The spread of expired air was qualitatively and quantitatively assessed using schlieren imaging. Moreover, user satisfaction surveys were conducted to evaluate the comfort of wearing face masks during training. The results indicated that both surgical and FFP2 masks significantly reduced particles emission with a reduction efficiency of 87.1\% and 91.3\% of all particle sizes, respectively. However, compared to surgical masks, FFP2 masks provided a nearly tenfold greater reduction of the particle size range with long residence time in the air (0.3-0.5 μm). Furthermore, the investigated masks reduced exhalation spreading distances to less than 0.15 m and 0.1 m in the case of the surgical mask and FFP2 mask, respectively. User satisfaction solely differed with respect to perceived dyspnea between no mask and FFP2 mask conditions.}, subject = {Sport}, language = {en} } @article{BecherGenaAlsaadetal., author = {Becher, Lia and Gena, Amayu Wakoya and Alsaad, Hayder and Richter, Bernhard and Spahn, Claudia and V{\"o}lker, Conrad}, title = {The spread of breathing air from wind instruments and singers using schlieren techniques}, series = {Indoor Air}, volume = {2021}, journal = {Indoor Air}, number = {volume 31, issue 6}, publisher = {Wiley Blackwell}, address = {Oxford}, doi = {10.1111/ina.12869}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220209-45817}, pages = {1798 -- 1814}, abstract = {The spread of breathing air when playing wind instruments and singing was investigated and visualized using two methods: (1) schlieren imaging with a schlieren mirror and (2) background-oriented schlieren (BOS). These methods visualize airflow by visualizing density gradients in transparent media. The playing of professional woodwind and brass instrument players, as well as professional classical trained singers were investigated to estimate the spread distances of the breathing air. For a better comparison and consistent measurement series, a single high note, a single low note, and an extract of a musical piece were investigated. Additionally, anemometry was used to determine the velocity of the spreading breathing air and the extent to which it was quantifiable. The results showed that the ejected airflow from the examined instruments and singers did not exceed a spreading range of 1.2 m into the room. However, differences in the various instruments have to be considered to assess properly the spread of the breathing air. The findings discussed below help to estimate the risk of cross-infection for wind instrument players and singers and to develop efficacious safety precautions, which is essential during critical health periods such as the current COVID-19 pandemic.}, subject = {Covid-19}, language = {en} } @article{AlsaadHartmannVoelker, author = {Alsaad, Hayder and Hartmann, Maria and Voelker, Conrad}, title = {The effect of a living wall system designated for greywater treatment on the hygrothermal performance of the facade}, series = {Energy and Buildings}, volume = {2022}, journal = {Energy and Buildings}, number = {volume 255, article 111711}, doi = {10.1016/j.enbuild.2021.111711}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20240116-65299}, pages = {17}, abstract = {Besides their multiple known benefits regarding urban microclimate, living walls can be used as decentralized stand-alone systems to treat greywater locally at the buildings. While this offers numerous environmental advantages, it can have a considerable impact on the hygrothermal performance of the facade as such systems involve bringing large quantities of water onto the facade. As it is difficult to represent complex entities such as plants in the typical simulation tools used for heat and moisture transport, this study suggests a new approach to tackle this challenge by coupling two tools: ENVI-Met and Delphin. ENVI-Met was used to simulate the impact of the plants to determine the local environmental parameters at the living wall. Delphin, on the other hand, was used to conduct the hygrothermal simulations using the local parameters calculated by ENVI-Met. Four wall constructions were investigated in this study: an uninsulated brick wall, a precast concrete plate, a sandy limestone wall, and a double-shell wall. The results showed that the living wall improved the U-value, the exterior surface temperature, and the heat flux through the wall. Moreover, the living wall did not increase the risk of moisture in the wall during winter and eliminated the risk of condensation.}, subject = {Feuchteleitung}, language = {en} } @article{VoelkerKornadtOstry, author = {V{\"o}lker, Conrad and Kornadt, Oliver and Ostry, Milan}, title = {Temperature reduction due to the application of phase change materials}, series = {Energy and Buildings}, journal = {Energy and Buildings}, number = {40, 5}, doi = {10.25643/bauhaus-universitaet.3816}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20181025-38166}, pages = {937 -- 944}, abstract = {Overheating is a major problem in many modern buildings due to the utilization of lightweight constructions with low heat storing capacity. A possible answer to this problem is the emplacement of phase change materials (PCM), thereby increasing the thermal mass of a building. These materials change their state of aggregation within a defined temperature range. Useful PCM for buildings show a phase transition from solid to liquid and vice versa. The thermal mass of the materials is increased by the latent heat. A modified gypsum plaster and a salt mixture were chosen as two materials for the study of their impact on room temperature reduction. For realistic investigations, test rooms were erected where measurements were carried out under different conditions such as temporary air change, alternate internal heat gains or clouding. The experimental data was finally reproduced by dint of a mathematical model.}, subject = {Raumklima}, language = {en} } @article{VoelkerAlsaad, author = {V{\"o}lker, Conrad and Alsaad, Hayder}, title = {Simulating the human body's microclimate using automatic coupling of CFD and an advanced thermoregulation model}, series = {Indoor Air}, volume = {2018}, journal = {Indoor Air}, number = {28, Heft 3}, doi = {10.25643/bauhaus-universitaet.3851}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20190218-38517}, pages = {415 -- 425}, abstract = {This study aims to develop an approach to couple a computational fluid dynamics (CFD) solver to the University of California, Berkeley (UCB) thermal comfort model to accurately evaluate thermal comfort. The coupling was made using an iterative JavaScript to automatically transfer data for each individual segment of the human body back and forth between the CFD solver and the UCB model until reaching convergence defined by a stopping criterion. The location from which data are transferred to the UCB model was determined using a new approach based on the temperature difference between subsequent points on the temperature profile curve in the vicinity of the body surface. This approach was used because the microclimate surrounding the human body differs in thickness depending on the body segment and the surrounding environment. To accurately simulate the thermal environment, the numerical model was validated beforehand using experimental data collected in a climate chamber equipped with a thermal manikin. Furthermore, an example of the practical implementations of this coupling is reported in this paper through radiant floor cooling simulation cases, in which overall and local thermal sensation and comfort were investigated using the coupled UCB model.}, subject = {Numerische Str{\"o}mungssimulation}, language = {en} } @article{AlsaadVoelker, author = {Alsaad, Hayder and V{\"o}lker, Conrad}, title = {Qualitative evaluation of the flow supplied by personalized ventilation using schlieren imaging and thermography}, series = {Building and Environment}, volume = {2020}, journal = {Building and Environment}, number = {Volume 167, article 106450}, publisher = {Elsevier}, address = {New York}, doi = {10.25643/bauhaus-universitaet.4511}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211008-45117}, pages = {11}, abstract = {Personalized ventilation (PV) is a mean of delivering conditioned outdoor air into the breathing zone of the occupants. This study aims to qualitatively investigate the personalized flows using two methods of visualization: (1) schlieren imaging using a large schlieren mirror and (2) thermography using an infrared camera. While the schlieren imaging was used to render the velocity and mass transport of the supplied flow, thermography was implemented to visualize the air temperature distribution induced by the PV. Both studies were conducted using a thermal manikin to simulate an occupant facing a PV outlet. As a reference, the flow supplied by an axial fan and a cased axial fan was visualized with the schlieren system as well and compared to the flow supplied by PV. Schlieren visualization results indicate that the steady, low-turbulence flow supplied by PV was able to penetrate the thermal convective boundary layer encasing the manikin's body, providing clean air for inhalation. Contrarily, the axial fan diffused the supplied air over a large target area with high turbulence intensity; it only disturbed the convective boundary layer rather than destroying it. The cased fan supplied a flow with a reduced target area which allowed supplying more air into the breathing zone compared to the fan. The results of thermography visualization showed that the supplied cool air from PV penetrated the corona-shaped thermal boundary layer. Furthermore, the supplied air cooled the surface temperature of the face, which indicates the large impact of PV on local thermal sensation and comfort.}, subject = {Bildverarbeitung}, language = {en} } @article{GenaVoelkerSettles, author = {Gena, Amayu Wakoya and V{\"o}lker, Conrad and Settles, Gary}, title = {Qualitative and quantitative schlieren optical measurement of the human thermal plume}, series = {Indoor Air}, volume = {2020}, journal = {Indoor Air}, number = {volume 30, issue 4}, publisher = {John Wiley \& Sons}, doi = {10.1111/ina.12674}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200709-41936}, pages = {757 -- 766}, abstract = {A new large-field, high-sensitivity, single-mirror coincident schlieren optical instrument has been installed at the Bauhaus-Universit{\"a}t Weimar for the purpose of indoor air research. Its performance is assessed by the non-intrusive measurement of the thermal plume of a heated manikin. The schlieren system produces excellent qualitative images of the manikin's thermal plume and also quantitative data, especially schlieren velocimetry of the plume's velocity field that is derived from the digital cross-correlation analysis of a large time sequence of schlieren images. The quantitative results are compared with thermistor and hot-wire anemometer data obtained at discrete points in the plume. Good agreement is obtained, once the differences between path-averaged schlieren data and planar anemometry data are reconciled.}, subject = {Raumklima}, language = {en} } @article{AlsaadVoelker, author = {Alsaad, Hayder and V{\"o}lker, Conrad}, title = {Performance evaluation of ductless personalized ventilation in comparison with desk fans using numerical simulations}, series = {Indoor Air}, volume = {2020}, journal = {Indoor Air}, publisher = {John Wiley \& Sons Ltd}, doi = {10.1111/ina.12672}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200422-41407}, pages = {14}, abstract = {The performance of ductless personalized ventilation (DPV) was compared to the performance of a typical desk fan since they are both stand-alone systems that allow the users to personalize their indoor environment. The two systems were evaluated using a validated computational fluid dynamics (CFD) model of an office room occupied by two users. To investigate the impact of DPV and the fan on the inhaled air quality, two types of contamination sources were modelled in the domain: an active source and a passive source. Additionally, the influence of the compared systems on thermal comfort was assessed using the coupling of CFD with the comfort model developed by the University of California, Berkeley (UCB model). Results indicated that DPV performed generally better than the desk fan. It provided better thermal comfort and showed a superior performance in removing the exhaled contaminants. However, the desk fan performed better in removing the contaminants emitted from a passive source near the floor level. This indicates that the performance of DPV and desk fans depends highly on the location of the contamination source. Moreover, the simulations showed that both systems increased the spread of exhaled contamination when used by the source occupant.}, subject = {Behaglichkeit}, language = {en} }