@article{AchenbachLahmerMorgenthal, author = {Achenbach, Marcus and Lahmer, Tom and Morgenthal, Guido}, title = {Global Sensitivity Analysis of Reinforced Concrete Walls Subjected to Standard Fire - A Comparison of Methods}, series = {14th International Probabilistic Workshop}, journal = {14th International Probabilistic Workshop}, pages = {97 -- 106}, abstract = {Global Sensitivity Analysis of Reinforced Concrete Walls Subjected to Standard Fire—A Comparison of Methods}, subject = {Angewandte Mathematik}, language = {en} } @article{AchenbachLahmerMorgenthal, author = {Achenbach, Marcus and Lahmer, Tom and Morgenthal, Guido}, title = {Identification of the thermal properties of concrete for the temperature calculation of concrete slabs and columns subjected to a standard fire—Methodology and proposal for simplified formulations}, series = {Fire Safety Journal 87}, journal = {Fire Safety Journal 87}, doi = {10.1016/j.firesaf.2016.12.003}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170331-30929}, pages = {80 -- 86}, abstract = {The fire resistance of concrete members is controlled by the temperature distribution of the considered cross section. The thermal analysis can be performed with the advanced temperature dependent physical properties provided by 5EN6 1992-1-2. But the recalculation of laboratory tests on columns from 5TU6 Braunschweig shows, that there are deviations between the calculated and measured temperatures. Therefore it can be assumed, that the mathematical formulation of these thermal properties could be improved. A sensitivity analysis is performed to identify the governing parameters of the temperature calculation and a nonlinear optimization method is used to enhance the formulation of the thermal properties. The proposed simplified properties are partly validated by the recalculation of measured temperatures of concrete columns. These first results show, that the scatter of the differences from the calculated to the measured temperatures can be reduced by the proposed simple model for the thermal analysis of concrete.}, subject = {Sensitivit{\"a}tsanalyse}, language = {en} } @article{AlYasiriMutasharGuerlebecketal., author = {Al-Yasiri, Zainab Riyadh Shaker and Mutashar, Hayder Majid and G{\"u}rlebeck, Klaus and Lahmer, Tom}, title = {Damage Sensitive Signals for the Assessment of the Conditions of Wind Turbine Rotor Blades Using Electromagnetic Waves}, series = {Infrastructures}, volume = {2022}, journal = {Infrastructures}, number = {Volume 7, Issue 8 (August 2022), article 104}, editor = {Shafiullah, GM}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/infrastructures7080104}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220831-47093}, pages = {18}, abstract = {One of the most important renewable energy technologies used nowadays are wind power turbines. In this paper, we are interested in identifying the operating status of wind turbines, especially rotor blades, by means of multiphysical models. It is a state-of-the-art technology to test mechanical structures with ultrasonic-based methods. However, due to the density and the required high resolution, the testing is performed with high-frequency waves, which cannot penetrate the structure in depth. Therefore, there is a need to adopt techniques in the fields of multiphysical model-based inversion schemes or data-driven structural health monitoring. Before investing effort in the development of such approaches, further insights and approaches are necessary to make the techniques applicable to structures such as wind power plants (blades). Among the expected developments, further accelerations of the so-called "forward codes" for a more efficient implementation of the wave equation could be envisaged. Here, we employ electromagnetic waves for the early detection of cracks. Because in many practical situations, it is not possible to apply techniques from tomography (characterized by multiple sources and sensor pairs), we focus here on the question of whether the existence of cracks can be determined by using only one source for the sent waves.}, subject = {Windkraftwerk}, language = {en} } @article{AlaladeNguyenTuanWuttkeetal., author = {Alalade, Muyiwa and Nguyen-Tuan, Long and Wuttke, Frank and Lahmer, Tom}, title = {Damage identification in gravity dams using dynamic coupled hydro-mechanical XFEM}, series = {International Journal of Mechanics and Materials in Design}, journal = {International Journal of Mechanics and Materials in Design}, doi = {10.25643/bauhaus-universitaet.3596}, pages = {1 -- 19}, abstract = {Damage identification in gravity dams using dynamic coupled hydro-mechanical XFEM.}, subject = {Angewandte Mathematik}, language = {en} } @article{AlaladeReichertKoehnetal., author = {Alalade, Muyiwa and Reichert, Ina and K{\"o}hn, Daniel and Wuttke, Frank and Lahmer, Tom}, title = {A Cyclic Multi-Stage Implementation of the Full-Waveform Inversion for the Identification of Anomalies in Dams}, series = {Infrastructures}, volume = {2022}, journal = {Infrastructures}, number = {Volume 7, issue 12, article 161}, editor = {Qu, Chunxu and Gao, Chunxu and Zhang, Rui and Jia, Ziguang and Li, Jiaxiang}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/infrastructures7120161}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20221201-48396}, pages = {19}, abstract = {For the safe and efficient operation of dams, frequent monitoring and maintenance are required. These are usually expensive, time consuming, and cumbersome. To alleviate these issues, we propose applying a wave-based scheme for the location and quantification of damages in dams. To obtain high-resolution "interpretable" images of the damaged regions, we drew inspiration from non-linear full-multigrid methods for inverse problems and applied a new cyclic multi-stage full-waveform inversion (FWI) scheme. Our approach is less susceptible to the stability issues faced by the standard FWI scheme when dealing with ill-posed problems. In this paper, we first selected an optimal acquisition setup and then applied synthetic data to demonstrate the capability of our approach in identifying a series of anomalies in dams by a mixture of reflection and transmission tomography. The results had sufficient robustness, showing the prospects of application in the field of non-destructive testing of dams.}, subject = {Damm}, language = {en} } @article{AlemuHabteLahmeretal., author = {Alemu, Yohannes L. and Habte, Bedilu and Lahmer, Tom and Urgessa, Girum}, title = {Topologically preoptimized ground structure (TPOGS) for the optimization of 3D RC buildings}, series = {Asian Journal of Civil Engineering}, volume = {2023}, journal = {Asian Journal of Civil Engineering}, publisher = {Springer International Publishing}, address = {Cham}, doi = {10.1007/s42107-023-00640-2}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230517-63677}, pages = {1 -- 11}, abstract = {As an optimization that starts from a randomly selected structure generally does not guarantee reasonable optimality, the use of a systemic approach, named the ground structure, is widely accepted in steel-made truss and frame structural design. However, in the case of reinforced concrete (RC) structural optimization, because of the orthogonal orientation of structural members, randomly chosen or architect-sketched framing is used. Such a one-time fixed layout trend, in addition to its lack of a systemic approach, does not necessarily guarantee optimality. In this study, an approach for generating a candidate ground structure to be used for cost or weight minimization of 3D RC building structures with included slabs is developed. A multiobjective function at the floor optimization stage and a single objective function at the frame optimization stage are considered. A particle swarm optimization (PSO) method is employed for selecting the optimal ground structure. This method enables generating a simple, yet potential, real-world representation of topologically preoptimized ground structure while both structural and main architectural requirements are considered. This is supported by a case study for different floor domain sizes.}, subject = {Bodenmechanik}, language = {en} } @article{AlkamLahmer, author = {Alkam, Feras and Lahmer, Tom}, title = {A robust method of the status monitoring of catenary poles installed along high-speed electrified train tracks}, series = {Results in Engineering}, volume = {2021}, journal = {Results in Engineering}, number = {volume 12, article 100289}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.rineng.2021.100289}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211011-45212}, pages = {1 -- 8}, abstract = {Electric trains are considered one of the most eco-friendly and safest means of transportation. Catenary poles are used worldwide to support overhead power lines for electric trains. The performance of the catenary poles has an extensive influence on the integrity of the train systems and, consequently, the connected human services. It became a must nowadays to develop SHM systems that provide the instantaneous status of catenary poles in- service, making the decision-making processes to keep or repair the damaged poles more feasible. This study develops a data-driven, model-free approach for status monitoring of cantilever structures, focusing on pre-stressed, spun-cast ultrahigh-strength concrete catenary poles installed along high-speed train tracks. The pro-posed approach evaluates multiple damage features in an unfied damage index, which leads to straightforward interpretation and comparison of the output. Besides, it distinguishes between multiple damage scenarios of the poles, either the ones caused by material degradation of the concrete or by the cracks that can be propagated during the life span of the given structure. Moreover, using a logistic function to classify the integrity of structure avoids the expensive learning step in the existing damage detection approaches, namely, using the modern machine and deep learning methods. The findings of this study look very promising when applied to other types of cantilever structures, such as the poles that support the power transmission lines, antenna masts, chimneys, and wind turbines.}, subject = {Fahrleitung}, language = {en} } @article{AlkamLahmer, author = {Alkam, Feras and Lahmer, Tom}, title = {Eigenfrequency-Based Bayesian Approach for Damage Identification in Catenary Poles}, series = {Infrastructures}, volume = {2021}, journal = {Infrastructures}, number = {Volume 6, issue 4, article 57}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/infrastructures6040057}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210510-44256}, pages = {1 -- 19}, abstract = {This study proposes an efficient Bayesian, frequency-based damage identification approach to identify damages in cantilever structures with an acceptable error rate, even at high noise levels. The catenary poles of electric high-speed train systems were selected as a realistic case study to cover the objectives of this study. Compared to other frequency-based damage detection approaches described in the literature, the proposed approach is efficiently able to detect damages in cantilever structures to higher levels of damage detection, namely identifying both the damage location and severity using a low-cost structural health monitoring (SHM) system with a limited number of sensors; for example, accelerometers. The integration of Bayesian inference, as a stochastic framework, in the proposed approach, makes it possible to utilize the benefit of data fusion in merging the informative data from multiple damage features, which increases the quality and accuracy of the results. The findings provide the decision-maker with the information required to manage the maintenance, repair, or replacement procedures.}, subject = {Fahrleitung}, language = {en} } @article{FaridmehrTahirLahmer, author = {Faridmehr, Iman and Tahir, Mamood Md. and Lahmer, Tom}, title = {Classification System for Semi-Rigid Beam-to-Column Connections}, series = {LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES 11}, journal = {LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES 11}, doi = {10.1590/1679-78252595}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170401-30988}, pages = {2152 -- 2175}, abstract = {The current study attempts to recognise an adequate classification for a semi-rigid beam-to-column connection by investigating strength, stiffness and ductility. For this purpose, an experimental test was carried out to investigate the moment-rotation (M-theta) features of flush end-plate (FEP) connections including variable parameters like size and number of bolts, thickness of end-plate, and finally, size of beams and columns. The initial elastic stiffness and ultimate moment capacity of connections were determined by an extensive analytical procedure from the proposed method prescribed by ANSI/AISC 360-10, and Eurocode 3 Part 1-8 specifications. The behaviour of beams with partially restrained or semi-rigid connections were also studied by incorporating classical analysis methods. The results confirmed that thickness of the column flange and end-plate substantially govern over the initial rotational stiffness of of flush end-plate connections. The results also clearly showed that EC3 provided a more reliable classification index for flush end-plate (FEP) connections. The findings from this study make significant contributions to the current literature as the actual response characteristics of such connections are non-linear. Therefore, such semirigid behaviour should be used to for an analysis and design method.}, subject = {Tragf{\"a}higkeit}, language = {en} } @article{GhorashiLahmerBagherzadehetal., author = {Ghorashi, Seyed Shahram and Lahmer, Tom and Bagherzadeh, Amir Saboor and Zi, Goangseup and Rabczuk, Timon}, title = {A stochastic computational method based on goal-oriented error estimation for heterogeneous geological materials}, series = {Engineering Geology}, journal = {Engineering Geology}, abstract = {A stochastic computational method based on goal-oriented error estimation for heterogeneous geological materials}, subject = {Angewandte Mathematik}, language = {en} }