TY - CONF A1 - Brackx, Fred A1 - De Schepper, Hennie A1 - De Schepper, Nele A1 - Sommen, Frank A2 - Gürlebeck, Klaus A2 - Könke, Carsten T1 - HERMITIAN CLIFFORD-HERMITE WAVELETS N2 - The one-dimensional continuous wavelet transform is a successful tool for signal and image analysis, with applications in physics and engineering. Clifford analysis offers an appropriate framework for taking wavelets to higher dimension. In the usual orthogonal case Clifford analysis focusses on monogenic functions, i.e. null solutions of the rotation invariant vector valued Dirac operator ∂, defined in terms of an orthogonal basis for the quadratic space Rm underlying the construction of the Clifford algebra R0,m. An intrinsic feature of this function theory is that it encompasses all dimensions at once, as opposed to a tensorial approach with products of one-dimensional phenomena. This has allowed for a very specific construction of higher dimensional wavelets and the development of the corresponding theory, based on generalizations of classical orthogonal polynomials on the real line, such as the radial Clifford-Hermite polynomials introduced by Sommen. In this paper, we pass to the Hermitian Clifford setting, i.e. we let the same set of generators produce the complex Clifford algebra C2n (with even dimension), which we equip with a Hermitian conjugation and a Hermitian inner product. Hermitian Clifford analysis then focusses on the null solutions of two mutually conjugate Hermitian Dirac operators which are invariant under the action of the unitary group. In this setting we construct new Clifford-Hermite polynomials, starting in a natural way from a Rodrigues formula which now involves both Dirac operators mentioned. Due to the specific features of the Hermitian setting, four different types of polynomials are obtained, two types of even degree and two types of odd degree. These polynomials are used to introduce a new continuous wavelet transform, after thorough investigation of all necessary properties of the involved polynomials, the mother wavelet and the associated family of wavelet kernels. KW - Architektur KW - CAD KW - Computerunterstütztes Verfahren Y1 - 2006 UR - https://e-pub.uni-weimar.de/opus4/frontdoor/index/index/docId/2931 UR - https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20170327-29313 UR - http://euklid.bauing.uni-weimar.de/ikm2006/index.php_lang=de&what=papers.html ER -