TY - CONF A1 - Dokhanchi, Najmeh Sadat A2 - Arnold, Jörg T1 - Reconstruction of the indoor air temperature distribution using acoustic travel-time tomography N2 - Acoustic travel-time tomography (ATOM) is being increasingly considered recently as a remote sensing methodology to determine the indoor air temperatures distribution. It employs the relationship between the sound velocities along sound-paths and their related travel-times through measured room-impulse-response (RIR). Thus, the precise travel-time estimation is of critical importance which can be performed by applying an analysis time-window method. In this study, multiple analysis time-windows with different lengths are proposed to overcome the challenge of accurate detection of the travel-times at RIR. Hence, the ATOM-temperatures distribution has been measured at the climate chamber lab of the Bauhaus-University Weimar. As a benchmark, the temperatures of NTC thermistors are compared to the reconstructed temperatures derived from the ATOM technique illustrating this technique can be a reliable substitute for traditional thermal sensors. The numerical results indicate that the selection of an appropriate analysis time-window significantly enhances the accuracy of the reconstructed temperatures distribution. KW - Bauphysik KW - Akustische Laufzeit-Tomographie KW - Acoustic Travel-Time Tomography KW - Bauklimatik Y1 - 2021 UR - https://e-pub.uni-weimar.de/opus4/frontdoor/index/index/docId/4659 UR - https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20220622-46593 ER -