## 56.03 Methoden im Bauingenieurwesen

### Refine

#### Institute

- Professur Informatik im Bauwesen (468)
- In Zusammenarbeit mit der Bauhaus-Universität Weimar (174)
- Graduiertenkolleg 1462 (35)
- Institut für Strukturmechanik (26)
- Professur Angewandte Mathematik (18)
- Institut für Konstruktiven Ingenieurbau (8)
- Professur Baubetrieb und Bauverfahren (8)
- Professur Baumechanik (7)
- Professur Stahlbau (6)
- Institut für Mathematik/Bauphysik (4)

#### Keywords

- Computerunterstütztes Verfahren (290)
- Architektur <Informatik> (201)
- CAD (165)
- Angewandte Informatik (145)
- Angewandte Mathematik (145)
- Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing (73)
- Modellierung (65)
- Bauwerk (50)
- Finite-Elemente-Methode (48)
- Verteiltes System (38)

#### Year of publication

#### Document Type

- Conference Proceeding (602)
- Article (137)
- Doctoral Thesis (26)
- Master's Thesis (5)
- Bachelor Thesis (2)

- Parameter identification based on FE-models by genetic algorithms (2002)
- A realistic and reliable model is an important precondition for the simulation of revitalization tasks as well as for the estimation of properties of existing buildings. Within one theory the parameters of the model should be approximated best by gradually performed experiments and their analysis. Usually this kind of optimization problems leads into non-convex non-differentiable objective function spaces with high dimensions. Normally ore complex structures are modeled using finite element method. We present a method of identifying Young's modulus for a beam and a plate by using FE-models and genetic optimization algorithms for parameter identification.

- Challenges of BIM for Construction Site Operations (2015)
- Building Information Modeling is a powerful tool for the design and for a consistent set of data in a virtual storage. For the application in the phases of realization and on site it needs further development. The paper describes main challenges and main features, which will help the development of software to better service the needs of construction site managers

- Error estimate and adaptive refinement in mixed discrete least squares meshless method (2014)
- The node moving and multistage node enrichment adaptive refinement procedures are extended in mixed discrete least squares meshless (MDLSM) method for efficient analysis of elasticity problems. In the formulation of MDLSM method, mixed formulation is accepted to avoid second-order differentiation of shape functions and to obtain displacements and stresses simultaneously. In the refinement procedures, a robust error estimator based on the value of the least square residuals functional of the governing differential equations and its boundaries at nodal points is used which is inherently available from the MDLSM formulation and can efficiently identify the zones with higher numerical errors. The results are compared with the refinement procedures in the irreducible formulation of discrete least squares meshless (DLSM) method and show the accuracy and efficiency of the proposed procedures. Also, the comparison of the error norms and convergence rate show the fidelity of the proposed adaptive refinement procedures in the MDLSM method.

- Error in prediction due to data type availability in a coupled hydro-mechanical model (2012)
- Different types of data provide different type of information. The present research analyzes the error on prediction obtained under different data type availability for calibration. The contribution of different measurement types to model calibration and prognosis are evaluated. A coupled 2D hydro-mechanical model of a water retaining dam is taken as an example. Here, the mean effective stress in the porous skeleton is reduced due to an increase in pore water pressure under drawdown conditions. Relevant model parameters are identified by scaled sensitivities. Then, Particle Swarm Optimization is applied to determine the optimal parameter values and finally, the error in prognosis is determined. We compare the predictions of the optimized models with results from a forward run of the reference model to obtain the actual prediction errors. The analyses presented here were performed calibrating the hydro-mechanical model to 31 data sets of 100 observations of varying data types. The prognosis results improve when using diversified information for calibration. However, when using several types of information, the number of observations has to be increased to be able to cover a representative part of the model domain. For an analysis with constant number of observations, a compromise between data type availability and domain coverage proves to be the best solution. Which type of calibration information contributes to the best prognoses could not be determined in advance. The error in model prognosis does not depend on the error in calibration, but on the parameter error, which unfortunately cannot be determined in inverse problems since we do not know its real value. The best prognoses were obtained independent of calibration fit. However, excellent calibration fits led to an increase in prognosis error variation. In the case of excellent fits; parameters' values came near the limits of reasonable physical values more often. To improve the prognoses reliability, the expected value of the parameters should be considered as prior information on the optimization algorithm.

- Identification of the thermal properties of concrete for the temperature calculation of concrete slabs and columns subjected to a standard fire—Methodology and proposal for simplified formulations (2017)
- The fire resistance of concrete members is controlled by the temperature distribution of the considered cross section. The thermal analysis can be performed with the advanced temperature dependent physical properties provided by 5EN6 1992-1-2. But the recalculation of laboratory tests on columns from 5TU6 Braunschweig shows, that there are deviations between the calculated and measured temperatures. Therefore it can be assumed, that the mathematical formulation of these thermal properties could be improved. A sensitivity analysis is performed to identify the governing parameters of the temperature calculation and a nonlinear optimization method is used to enhance the formulation of the thermal properties. The proposed simplified properties are partly validated by the recalculation of measured temperatures of concrete columns. These first results show, that the scatter of the differences from the calculated to the measured temperatures can be reduced by the proposed simple model for the thermal analysis of concrete.

- DISCRETE-CONTINUAL BOUNDARY ELEMENT METHODS OF ANALYSIS FOR TWO-DIMENSIONAL AND THREE-DIMENSIONAL STRUCTURES (2006)
- The aim of this paper is to present so-called discrete-continual boundary element method (DCBEM) of structural analysis. Its field of application comprises buildings constructions, structures and also parts and components for the residential, commercial and un-inhabitant structures with invariability of physical and geometrical parameters in some dimensions. We should mention here in particular such objects as beams, thin-walled bars, strip foundations, plates, shells, deep beams, high-rise buildings, extensional buildings, pipelines, rails, dams and others. DCBEM comes under group of semianalytical methods. Semianalytical formulations are contemporary mathematical models which currently becoming available for realization due to substantial speed-up of computer productivity. DCBEM is based on the theory of the pseudodifferential boundary equations. Corresponding pseudodifferential operators are discretely approximated using Fourier analysis or wavelet analysis. The main DCBEM advantages against the other methods of the numerical analysis is a double reduction in dimension of the problem (discrete numerical division applied not to the full region of the interest but only to the boundary of the region cross section, as a matter of fact one is solving an one-dimensional problem with the finite step on the boundary area of the region), one has opportunities to carrying out very detailed analysis of the specific chosen zones, simplified initial data preparation, simplistic and adaptive algorithms. There are two methods to define and conduct DCBEM analysis developed – indirect (IDCBEM) and direct (DDCBEM), thus indirect like in boundary element method (BEM) applied and used little bit more than direct.

- TREE-BASED METHODS FOR RESOURCE INVESTMENT AND RESOURCE LEVELLING PROBLEMS (2006)
- The execution of project activities generally requires the use of (renewable) resources like machines, equipment or manpower. The resource allocation problem consists in assigning time intervals to the execution of the project activities while taking into account temporal constraints between activities emanating from technological or organizational requirements and costs incurred by the resource allocation. If the total procurement cost of the different renewable resources has to be minimized we speak of a resource investment problem. If the cost depends on the smoothness of the resource utilization over time the underlying problem is called a resource levelling problem. In this paper we consider a new tree-based enumeration method for solving resource investment and resource levelling problems exploiting some fundamental properties of spanning trees. The enumeration scheme is embedded in a branch-and-bound procedure using a workload-based lower bound and a depth first search. Preliminary computational results show that the proposed procedure is promising for instances with up to 30 activities.

- ALGEBRAICALLY EXTENDED 2D IMAGE REPRESENTATION (2006)
- We present an algebraically extended 2D image representation in this paper. In order to obtain more degrees of freedom, a 2D image is embedded into a certain geometric algebra. Combining methods of differential geometry, tensor algebra, monogenic signal and quadrature filter, the novel 2D image representation can be derived as the monogenic extension of a curvature tensor. The 2D spherical harmonics are employed as basis functions to construct the algebraically extended 2D image representation. From this representation, the monogenic signal and the monogenic curvature signal for modeling intrinsically one and two dimensional (i1D/i2D) structures are obtained as special cases. Local features of amplitude, phase and orientation can be extracted at the same time in this unique framework. Compared with the related work, our approach has the advantage of simultaneous estimation of local phase and orientation. The main contribution is the rotationally invariant phase estimation, which enables phase-based processing in many computer vision tasks.

- ANALYSING THE INFLUENCE OF THE REINFORCED CONCRETE CHIMNEY GEOMETRY CHANGES ON THE STRESSES IN THE CHIMNEY SHAFT (2006)
- Analysis of the reinforced concrete chimney geometry changes and their influence on the stresses in the chimney mantle was made. All the changes were introduced to a model chimney and compared. Relations between the stresses in the mantle of the chimney and the deformations determined by the change of the chimney's vertical axis geometry were investigated. The vertical axis of chimney was described by linear function (corresponding to the real rotation of the chimney together with the foundation), and by parabolic function (corresponding to the real dislocation of the chimney under the influence of the horizontal forces - wind). The positive stress pattern in the concrete as well as the negative stress pattern in the reinforcing steel have been presented. The two cases were compared. Analysis of the stress changes in the chimney mantle depending on the modification in the thickness of the mantle (the thickness of the chimney mantle was altered in the linear or the abrupt way) was carried out. The relation between the stresses and the chimney's diameter change from the bottom to the top of the chimney was investigated. All the analyses were conducted by means of a specially developed computer program created in Mathematica environment. The program makes it also possible to control calculations and to visualize the results of the calculations at every stage of the calculation process.

- TOOL TO CHECK TOPOLOGY AND GEOMETRY FOR SPATIAL STRUCTURES ON BASIS OF THE EXTENDED MAXWELL'S RULE (2006)
- One of the simplest principle in the design of light-weight structures is to avoid bending. This can be achieved by dissolving girders into members acting purely in axial tension or compression. The employment of cables for the tensioned members leads to even lighter structures which are called cable-strut structures. They constitute a subclass of spatial structures. To give fast information about the general feasibility of an architectural concept employing cable-strut structures is a challenging task due to their sophisticated mechanical behavior. In this regard it is essential to control if the structure is stable and if pre-stress can be applied. This paper presents a tool using the spreadsheet software Microsoft (MS) Excel which can give such information. Therefore it is not necessary to purchase special software and the according time consuming training is much lower. The tool was developed on basis of the extended Maxwell's rule, which besides topology also considers the geometry of the structure. For this the rank of the node equilibrium matrix is crucial. Significance and determination of the rank and the implementation of the corresponding algorithms in MS Excel are described in the following. The presented tool is able to support the structural designer in an early stage of the project in finding a feasible architectural concept for cable-strut structures. As examples for the application of the software tool two special cable-strut structures, so called tensegrity structures, were examined for their mechanical behavior.