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Kurzfassung

Die wichtige Bedeutung moderner Simulationsverfahren in der mechanischen Analyse
heterogener Festkörper wird eingangs ausführlich dargestellt. Dabei wird als Problem
festgestellt, dass die erforderliche hochauflösende Analyse bereits für relativ kleine Körper
an die Grenzen heutiger Rechenleistung stößt, sowohl bezüglich Speicherbedarf als auch
akzeptablen Rechenaufwands. Ein weiteres Problem stellt die häufig unzureichend genaue
geometrische Modellierung der Zusammensetzung heterogener Körper dar.

Die vorliegende Arbeit führt eine systematische Kombination und Anpassung von gitter-
basierten Methoden ein, um dadurch eine wesentlich höhere Auflösung in der numerischen
Analyse heterogener Körper zu erzielen. Gitterverfahren eignen sich ebenfalls ausgezeich-
net, um effiziente und numerisch stabile Algorithmen zur flexiblen geometrischen Model-
lierung zu entwickeln. Ein Schlüsselaspekt stellt ein gleichmäßiges Datenmanagement für
Gitter dar, welches dafür eingesetzt werden kann, um den Aufwand und die Komplexität
von nahezu allen beteiligten Methoden zu reduzieren. Ein neues Finite-Elemente Pro-
gramm, namens Mulgrido, wurde eigens dafür entwickelt, um das vorgeschlagene Konzept
konsistent zu realisieren und zu untersuchen. Einige Nachteile, die sich klassischerweise aus
Gitterdiskretisierungen ergeben, werden gezielt durch modifizierte Verfahren korrigiert.

Die gegenwärtige Arbeit gliedert sich in ein geometrisches Modell, ein mechanisches
Modell und ein numerisches Modell. Das geometrische Modell beinhaltet neben Me-
thoden der digitalen Bildverarbeitung, insbesondere sämtliche Verfahren zur künstlichen
Generierung von Einschluss-Matrix Geometrien. Wesentliche Beiträge werden bezüglich
variabler Form, Größenverteilung, Überschneidungsabfragen und Platzierung von Ein-
schlüssen geleistet. Das mechanische Modell bereitet durch Grundlagen der Kontinuums-
mechanik, der Homogenisierung und der Schädigungsmodellierung auf eine numerische
Umsetzung vor. Als erstes Thema des numerischen Modells wird eine besondere Umset-
zung von B-Spline Finiten Elementen vorgestellt. Diese Finite Elemente können gene-
risch für eine beliebige Ordnung k der B-Splines erzeugt werden. Für homogene Körper
verfügen diese somit über beliebig skalierbare Approximationseigenschaften. Mittels des
Konzepts mehrphasiger Finite Elemente in Kombination mit Übergangszonen entlang
von Materialgrenzen gelingt eine hochwertige Erweiterung für heterogene Körper. Durch
die Formulierung auf Elementebene, kann die Speicherung der globalen Steifigkeitsmatrix
und somit wesentlicher Speicherplatz eingespart werden. Dies ist möglich in Kombina-
tion mit iterativen Lösungsverfahren, die das zweite Thema des numerischen Modells
darstellen. Dabei liegt der Fokus auf Mehrgitterverfahren. Diese zeichnen sich dadurch
aus, dass die Anzahl der erforderlichen Operationen um ein lineares Gleichungssystem
zu lösen, nur linear mit der Problemgröße ansteigt. Durch Vorkonditionierung wird für
schlecht konditionierte Probleme eine ganz wesentliche Verbesserung erreicht. Als drittes
Thema des numerischen Modells werden Aspekte der Schädigungssimulation diskutiert,
die in engem Zusammenhang mit der Gitterdiskretisierung stehen. Die hohe Effizienz der
linearen Analyse kann durch ein schädigungskontrolliertes, schrittweise lineares Iterations-
schema für die Schädigungsanalyse aufrecht erhalten werden.

Abschließend wird eine Studie über das effektive Materialverhalten heterogener Körper
vorgestellt. Insbesondere wird der Einfluss der Form von Einschlüssen untersucht. Mit-
tels insgesamt weit über hunderttausend zufälliger geometrischer Anordnungen wird das
effektive Materialverhalten statistisch analysiert und bewertet.





Abstract

The importance of modern simulation methods in the mechanical analysis of heteroge-
neous solids is presented in detail. Thereby the problem is noted that even for small
bodies the required high-resolution analysis reaches the limits of today’s computational
power, in terms of memory demand as well as acceptable computational effort. A further
problem is that frequently the accuracy of geometrical modeling of heterogeneous bodies
is inadequate.

The present work introduces a systematic combination and adaption of grid-based meth-
ods for achieving an essentially higher resolution in the numerical analysis of heterogeneous
solids. Grid-based methods are as well primely suited for developing efficient and numer-
ically stable algorithms for flexible geometrical modeling. A key aspect is the uniform
data management for a grid, which can be utilized to reduce the effort and complexity of
almost all concerned methods. A new finite element program, called Mulgrido, was just
developed to realize this concept consistently and to test the proposed methods. Several
disadvantages which generally result from grid discretizations are selectively corrected by
modified methods.

The present work is structured into a geometrical model, a mechanical model and a
numerical model. The geometrical model includes digital image-based modeling and in
particular several methods for the theory-based generation of inclusion-matrix models.
Essential contributions refer to variable shape, size distribution, separation checks and
placement procedures of inclusions. The mechanical model prepares the fundamentals of
continuum mechanics, homogenization and damage modeling for the following numerical
methods. The first topic of the numerical model introduces to a special version of B-spline
finite elements. These finite elements are entirely variable in the order k of B-splines.
For homogeneous bodies this means that the approximation quality can arbitrarily be
scaled. In addition, the multiphase finite element concept in combination with transition
zones along material interfaces yields a valuable solution for heterogeneous bodies. As the
formulation is element-based, the storage of a global stiffness matrix is superseded such
that the memory demand can essentially be reduced. This is possible in combination with
iterative solver methods which represent the second topic of the numerical model. Here,
the focus lies on multigrid methods where the number of required operations to solve
a linear equation system only increases linearly with problem size. Moreover, for badly
conditioned problems quite an essential improvement is achieved by preconditioning. The
third part of the numerical model discusses certain aspects of damage simulation which
are closely related to the proposed grid discretization. The strong efficiency of the linear
analysis can be maintained for damage simulation. This is achieved by a damage-controlled
sequentially linear iteration scheme.

Finally a study on the effective material behavior of heterogeneous bodies is presented.
Especially the influence of inclusion shapes is examined. By means of altogether more than
one hundred thousand random geometrical arrangements, the effective material behavior
is statistically analyzed and assessed.
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Nomenclature

The following lists include the most relevant variables. Exceptional, different notation of
variables is defined in the context. Statistical measures are only applied within Chapter 7.
Corresponding notation of variables is given by Equations 7.7 to 7.14 in Section 7.2.

Capital letters

A area

Ae surface of element e

Be strain-displacement matrix of element e

BJ strain-displacement matrix of element type J

Bjx,jy strain-displacement matrix of element type (jx, jy)

C material matrix

Capp apparent properties

Ce material matrix of element e

Ceff effective properties

CE linear elastic material matrix

C fourth-order material tensor

CT,D scalar constant which depends on D

D dimension of finite element: 1, 2 or 3

D diagonal of a matrix

Dmax maximum size of aggregates

E Young’s modulus

Ea Young’s modulus of element a

Ee
i Young’s modulus in integration point i of element e

EW External work

Ê reduced Young’s modulus according to damage

F Airy function

F i external point load i within finite element

H height of rectangular domain

H−1 preconditioning matrix

J Jacobian matrix

K global stiffness matrix

Ki global stiffness matrix of mesh i

Ki,j submatrix (i, j) of K

vi



vii

K̄i,j element in i-th row and j-th column of element stiffness matrix with
Young’s modulus E = 1.

K̂i,j element in i-th row and j-th column of effective stiffness in center node of
element patch

Ke element stiffness matrix of element e

K̄e element stiffness matrix sorted into global degrees of freedom

KX element stiffness matrix of the scaled element

KZ element stiffness matrix of the initial element

L negative strictly lower triangle of a matrix

M iteration matrix

N e shape functions of element e

NJ one-dimensional shape functions of element type J

N jx,jy two-dimensional shape functions of element type (jx, jy)

P (s) Legendre polynomial

Q square matrix

R ratio of Young’s modulus between inclusion and matrix (Chapter 5)
or interaction radius of weighting function (Chapters 3 and 6)

R1, R2 resulting force in x1- or x2-direction

S splitting matrix

Se
i principal stress with S1 > S2 > S3 of σe

U displacement vector (or tensor)
or negative strictly upper triangle of a matrix (only in Section 5.3)

UD prescribed displacements

U e interpolated displacements within element e

U i displacements in domain Ωi

U(x) one-dimensional displacement as function of x

V volume

V e volume of element e

W width of rectangular domain

X1, X2 uniform random numbers in the unit interval [0;1]

X vector of coordinates

Z vector of coordinates

Lower case letters

bk(x) univariate B-spline of order k

bk
j (x) univariate B-spline of order k numbered by j

bk
d,h(x) univariate B-spline scaled to segment length h, translated by distance d

bjx,jy(x, y) bivariate B-spline of element type (jx, jy)

c scalar variable

c̄j coefficient j of polynomial

c̄i,j coefficient j of piecewise polynomial p̄i(x)

d1, d2, d3 main dimensions of particle

ei unit vector i of coordinate system

ek error of displacements after k-th iteration

f global vector of loads
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f i subvector i of f

fm force vector of mesh m

f e load vector of element e

f̂i applied external force of i-th degree of freedom of element patch

f̄ e element load vector sorted into global degrees of freedom

fk product Kuk

ft tensile strength

f(x) any function of x

f̄(x) nonlocal equivalent of f(x)

∆fk increment of fk after the k-th iteration

g(x) one-dimensional function of x

h grid size and element size

hx, hy grid size in x- and y-direction

i imaginary unit i =
√
−1 in context of complex numbers

i, j, k, l integer variables (e.g. also indices)

ie, in global numbering of elements and nodes

ieg, ing, isg global numbering of elements, nodes and B-spline coefficients

icg local numbering of B-spline coefficients within an element

i∗, j∗ additional integer variables

k order of B-splines (Chapter 4)
or number of iterations (Chapter 5)

k1, k2 constants

` internal length of a material

`c characteristic length of a material

la, lb, lc size of element in x-, y- and z-direction

lx, ly, lz size of orthogonal domain in x-, y- and z-direction

m number of meshes is m + 1, such that i = 0 . . . m counts all meshes

n normal vector

n integer variable (e.g. upper limit of series or sum)

n̄ number of bivariate spline segments in one element

nx, ny number of integration points in x- and y-direction

nex, ney, nez number of elements of grid in x-, y and z-direction

nnx, nny, nnz number of nodes of grid (x, y, z)

nsx, nsy, nsz number of spline coefficients of grid (x, y, z)

ncx, ncy, ncz number of spline coefficients in one element (x, y, z)

pk search direction after k-th iteration

pe loads of element e in combination with pb and ps

p, pb body loads

ps surface loads

p(x) one-dimensional load

p̄i(x) piecewise polynomial i with respect to x

q vector

r positive distance between effect point and source point

r1, r2, r3 radii of ellipsoid (also superellipsoid)

rk residual forces after the k-th iteration
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rk
m residual forces after the k-th iteration on mesh m

r̂i residual force of i-th degree of freedom of element patch

s scalar variable

si coordinate of integration point i

st size of transition zone

sx,i, sy,i distance in x- and y-direction within finite element

s̄(x) univariate spline

t surface tractions

t thickness of two-dimensional finite element

u global vector of displacements

ui subvector i of u

um displacement vector of mesh m

ue degrees of freedom of element e

uk vector u after the k-th iteration

∆uk vector increment after the k-th iteration

∆ui displacement increment of i-th degree of freedom of element patch

v vector with size of global degrees of freedom

ve vector with size of local degrees of freedom of element e

v̄e vector ve sorted into global degrees of freedom

wx,i, wy,i weighting factors of numerical integration in x- and y-direction numbered
by i

x position in a global coordinate system

x scalar variable

xi supporting point i of a spline

xj for convenience: x to the power of j

x1; x2 range of aggregate sizes is [x1; x2]

y scalar variable associated with a coordinate system

z scalar variable associated with a coordinate system

Greek letters

ΓD Dirichlet boundary (prescribed displacements)

ΓN Neumann boundary (prescribed forces)

Γij boundary between domain Ωi and domain Ωj

Ω two- or three-dimensional domain

Ωi defined domain i

ΩX domain of mapped element geometry

ΩZ domain of initial element geometry

α scalar variable

α(x, ξ) effective weighting function which satisfies
∫

Ω
α(x, ξ) = 1

α0(x, ξ) an initial weighting function

β angle within triangle

δij Kronecker symbol

ε strain vector (or tensor)
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ε0 limit elastic strain

ε0 constant strain

εa absolute error according to Euclidean norm

εr relative error according to Euclidean norm

εE measure for relative error of energy

ζ position in a local coordinate system, equivalent to ξ

η exponent, integer variable

κ maximum equivalent strain in the history of a material point
or bulk modulus (only in Section 3.3.4)

λ, µ Lame constants

λk scalar factor after k-th iteration

ν Poisson’s ratio

νa Poisson’s ratio of element a

ξ position in a local coordinate system

σ stress vector (or tensor)

σE stress of linear elastic (undamaged) material

σ0 constant stress

ϕV density function of aggregate volume

Φm cumulative distribution function of aggregate mass

ΦV cumulative distribution function of aggregate volume

ω relaxation factor (Chapter 5)
or damage parameter (Chapters 3 and 6)

Mathematical notation

| · | absolute value of a scalar value (·)
(·)T transposed of vector or matrix (·)
〈·〉 average value of (·) from integral over domain

or positive part which means maximum of 0 and (·) (only in Section 3.4.2)
∂(·)
∂x

partial derivative of (·) with respect to x

(·),x partial derivative of (·) with respect to x

(·),xx is equivalent to ((·),x ) ,x
∆ Laplace operator

Ck Ck-continuous denotes: k derivatives are continuous

det (·) determinant of (·)
grad (·) gradient of (·)
Re real part of a complex number



Chapter 1

Introduction

1.1 Practical Importance and Application

Numerical simulation of heterogeneous solids has already been successfully performed
in many kinds of scientific and engineering disciplines. Moreover it attracts increasing
interest and still gains in importance. Numerical simulation is not only promising for
improving existing materials but establishes additional insights, leads to novel manufac-
turing processes and essentially initiates new technologies while new applications arise. In
the present context several terms are closely related to the entitled heterogeneous solid,
such as composite material, multiphase material, microstructural material, advanced ma-
terials, engineering materials, while there are many specific terms within a hierarchic
categorization of heterogeneous solids.

The chance to simulate the mechanical behavior of heterogeneous solids has only been
established by the immense increase of computational power in the recent decades. In
computational mechanics the analysis of materials can partially be based on the well-
established analysis of structures. In fact, the adequate magnification of a heterogeneous
material often reveals a concise arrangement of one or more material phases which re-
mind of a structure. This indicates an explanation for the term microstructural materials.
However, the analysis of materials requires additional theoretical considerations as well
as further advanced computational methods. In comparison to structural analysis of tra-
ditional objects, the geometrical description of a heterogeneous solid or microstructure is
particularly more complex. The mechanical theory needs to be revisited for an adequate
adaption of modeling e.g. material interfaces. Especially volumetric modeling and analysis
of heterogeneous solids require advanced numerical methods. This outline characterizes
some present challenges in the research of the simulation of heterogeneous solids.

The basic idea of this research is the direct modeling of a heterogeneous solid. The ma-
terial is not homogenized, but the various constituents are explicitly represented in the
computational model. Therefore the mechanical behavior of the heterogeneous solid can
be based on clear defined material laws of the constituents rather than creating a new
phenomenological material law for each specific composite. In damage mechanics this
means a consistent simulation from initial cracks on the material level (microcracks) up
to macroscopic cracks and structural failure. Cause and effect in the behavior of a certain
material become more direct and transparent. Therefore it is possible to analyze a wide
variety of materials which could so far only investigated by physical experiments. Zohdi
and Wriggers (2005) state: “Minimally, no one can argue that computations cannot now
play a strong complementary role to laboratory experiments.”. In fact, computational
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material testing implicates several further opportunities. The proposed mechanical sim-
ulation of heterogeneous solids based on defined properties of the constituents reaches
from effective elastic properties up to complex damage behavior. It is noted that such
simulation techniques are also applied for other physical properties such as e.g. dynamic,
thermal, hydrological or acoustic properties. However, besides only analyzing existing nat-
ural or artificial materials, numerical simulation essentially supports the design of novel,
advanced materials. Selective prototyping of materials by simulation enables to develop
tailored materials with specific, optimal or extremal properties. For the typical applica-
tion, the simulation supports an increase of strength or crack resistance, a reduction of
weight or heat expansion, as well as a combined optimization of various physical proper-
ties. Therefore virtual material testing has become and will further develop as a valuable
tool for material scientists and structural engineers.

Figure 1.1 illustrates the complexity and diversity of heterogeneous solids. Also mate-
rials which are generally classified to be homogeneous, such as cement stone, metals or
bone, exhibit a heterogeneous character on a magnified level and are therefore micro-
heterogeneous. Besides, natural materials, such as bone and wood, there is a large range
of engineering materials. Such composites consist of polymers, metals or ceramics, and
as embedded material also carbon and glass are applied. The embedded phase is most
often included to strengthen the matrix material. The variable design of the compos-
ite allows to establish various other material properties. Fibers, flakes, small particles,
larger inclusions, as well as voids, denote various entities within composites. There are
numerous subcategories such as long, continuous fibers or short, discontinuous fibers. The
microstructural arrangement ranges from a regular order, directed orientations to com-
pletely random geometries. The application of such materials has become profitable and
indispensable for aerospace, automotive, sports equipment, construction and several other
fields of engineering.

In civil-engineering concrete plays a key role. In fact it is one of the most common mate-
rials for building massive structures. It is applied for bridges, tunnels, dams, repositories,
foundations and high-rise buildings. The manifold use of concrete for various purposes has
lead to numerous, different material types of concrete for achieving certain properties. The
corresponding research still continues. Generally concrete is reinforced by steel bars, but
concrete itself is already a heterogeneous material. The classic material consists of sand,
natural aggregates and cement which hardens almost completely within one month by a
reaction with water. There are many aspects to consider not only with regard to the final
product such as effective strength, but also to its manufacturing process such as segrega-
tion and workability. Special processes such as creep and shrinkage need to be considered.
Various aggregates, such as river gravel, crushed gravel, polystyrene beads, steel fibers
and recycling material are applied in concrete mixtures to achieve certain properties or
serve as economical filler. Textile reinforcement and glass fiber reinforced concrete are
actual research topics. But also the cementitious matrix material with various additives
spans a wide spectrum. Also in the research of concrete, computational material testing
serves as important tool in analysis and design.

As a further microheterogeneous solid, bone tissue is considered. As it is a natural mate-
rial, it is expected to be optimal (Sigmund 2002). The microstructure of trabecular bone
is open-walled. The computational simulation revealed, however, that from a mechanical
point of view, a close-walled microstructure would be optimal. This difference can be ex-
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 1.1: Examples of heterogeneous and microheterogeneous materials (sources of images, page 162):
(a) cement stone with flat portlandite crystals, (b) mortar material with natural aggregates smaller
than 2 mm, (c) crystals of a aluminum-silicon-germanium alloy, (d) ceramic material of silicon nitride
with ultimate toughness, (e) concrete material with natural aggregates, (f) remodeled trabecular bone
of the human femur, (g) carbon fibers in magnesium-lithium alloy, (h) boron fibers in aluminum matrix,
(i) manufactured material with negative Poisson’s ratio.

plained as for the flow of nutrition within the bone, conductivity needs to be established.
Bone tissue not only performs as a structural element, but in multiple tasks. Computa-
tional simulation of bone tissue is promising and has become a respectable research topic.

Finally, it is pointed out to the research of Sigmund (2002) on the design of extreme
materials. By topology optimization within computational simulation Sigmund (2002) has
designed several new materials with outstanding properties. It is shown that several of
such materials come close to the theoretical limits. As modern manufacturing processes,
such as etching techniques and coextrusion, allow to create an enormous range of mi-
crostructural materials, several extremal materials have been manufactured. An example
of a manufactured material with negative Poisson’s ratio is shown in Fig. 1.1 (i). More-
over, Sigmund (2002) designed extremal and optimal materials with respect to thermal
expansion coefficient, buckling, wave propagation and other material properties. Some of
these materials have already found industrial application. It is highlighted, that the design
of these extremal materials, completely originates from computational simulation.
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1.2 Real Material, Model and Simulation

The observed character of materials often changes with different magnification. Therefore
a classification of length scales or material levels is introduced in Table 1.1.

Macroscale 10−2 m - 10+2 m

Mesoscale 10−4 m - 10−1 m

Microscale 10−6 m - 10−3 m

Nanoscale 10−8 m - 10−7 m

Table 1.1: Definition of length scales

The defined ranges which are assigned to the various length scales partially overlap and
in fact can only be considered as approximate reference values. In fact these terms rather
describe an abstraction level of a material than just a specific length. Within this context
a macroscale model means that the material is homogenized. The mesoscale refers to an
intermediate order of magnitude. For concrete material the mesoscale model explicitly
includes the two phases aggregates and cement stone. On this level the material phases
themselves are homogenized. It is possible to assign larger voids to the mesoscale model.
Furthermore also a phenomenologic interface law in between the phases may be added.
However, only an increased resolution of the interfacial transition zone on the microscale
enables an improved insight into its microstructure and provides a reasonable cause for
the special behavior of an interface. The term macro defines visibility to the naked eye
and micro defines the opposite. At this microscopic level also the cement stone appears as
heterogeneous material. Some further dimensions below, on the nanoscale, the material
is recognized as molecules and atoms. At this resolution level the material is generally
not considered being continuous. The present generation of computers and probably the
next few of the future do not allow to simulate a macroscopic structure, by a nanoscale
model, a microscale model and only hardly by a mesoscale model. Only some tiny relevant
parts, as e.g. cracks or crack tips, of the macroscale model can be replaced by a model of
higher resolution to increase the approximation quality. Such a combination is denoted as
multiscale model.

This thesis only refers to models of the microscale and the mesoscale. In the following the
term subscale is applied as a general reference to both. In different approaches, subscale
models may differ in dimension and type of abstraction. Therefore the reader is referred
to Fig. 1.2 which illustrates the proposed abstraction type as a continuous multiphase
material. Figure 1.2 does not yet put the model into mechanical context such as loads
and boundary conditions. It is only considered as a geometrical model which consists of
a certain geometrical arrangement of various phases, denoted as material A, B, C and so
on. The geometry of the model and the real heterogeneous material need to correspond
adequately. Otherwise, as a real material with a modified geometry might significantly
differ in its behavior, the same has to be expected from the model. But besides the
importance of the geometry, there are several further things to consider which have been
summarized in Fig. 1.3.

Besides the geometrical model, Fig. 1.3 further includes the mechanical model and the
numerical model. It is highlighted that these models are mostly independent of each other.
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voids 

damaged  region 
material A, B, C, ...  

material transition zones 

Figure 1.2: Geometrical model of multiphase material

One can apply various mechanical models to the geometry, such as continuum mechanics,
discontinuum mechanics or the Cosserat continuum. Moreover, many constitutive laws
for modeling damage, creep, shrinkage or the behavior of material interfaces are avail-
able. The numerical model denotes applied methods of numerical mathematics. For the
discretization of the material, finite elements are common in use, but only to point out
to one relevant alternative it is referred to meshless methods. Moreover, the numerical
model includes methods for solving linear and nonlinear equation systems. Finally, certain
dependencies and connections between geometry, mechanics and numerics will occur. But
besides stating a manifold range of possible combinations, it is summarized that each of
these three instances deserves considerate appreciation and understanding to achieve an
accurate simulation of heterogeneous materials.

Besides, a stochastic model is mentioned in Fig. 1.3. The stochastic model is not in
the focus of the present work. Scatter and disturbances in the material are omnipresent
and often relevant conditions for a certain material behavior. For concrete material it
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is the usual practice to perform an experiment not on one but a series of specimen, as
the results might significantly scatter. Not only measured values might differ, but also
failure mechanisms as for example shown by Ebert (2002). Again, one can distinguish
between randomness of geometrical arrangement or mechanical properties with regard to
the proposed multiphase model.

Furthermore an error estimation is included in Fig. 1.3. It would be the ideal case that the
total error between the behavior of the real material and that of the computational model
could be approximated from theoretical consideration only. Accurate error estimators
are available for numerical methods. However, the error of geometry and especially of
mechanical parameters can not completely be derived from theory, but remains directly
associated to the real material. With respect to Fig. 1.3, it is noted that, beyond the
fundamental theory, an accurate simulation requires numerous computational methods
and algorithms. Finally, the computational simulation, denoted as virtual experiments,
needs to be compared to real experiments. However, once the simulation model has been
verified, it can replace certain real experiments. Moreover, virtual experiments can be
performed to design and optimize heterogeneous solids which represents an important
gain for numerous applications, as outlined in Section 1.1.

1.3 Statement of Problem

The present work discusses geometrical, mechanical and numerical modeling aspects of
multiphase material as introduced in Section 1.2. The present work started from the me-
chanical analysis of concrete on the mesoscale in 2003. Several corresponding models of
the literature showed an obvious lack in the geometrical representation of the concrete ma-
terial, while these works often focused on mechanical aspects. The motivation for Häfner,
Eckardt and Könke (2003) was to achieve an accurate geometrical mesoscale model of
concrete. A result is shown in Fig. 1.4 (left). It is a three-dimensional model with a few
spherical inclusions which are cut along the edges of the cube. While the theory of con-
crete mixes has thoroughly been considered, it is clear that the shapes of aggregates in
concrete are not spheres.

Figure 1.4: Mesoscale geometry of concrete model (left) and strain εxx of finite element solution for
uniaxial load in x-direction (right) from Häfner, Eckardt and Könke (2003).
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In the context of the geometrical model the following major questions arose:

Q1 How can a more realistic geometrical representation of inclusion-matrix materials
be created? How can a model with arbitrary inclusion shapes be generated? How
can other materials with a different micro- or mesostructure be modeled?

On the right hand side Fig. 1.4 shows a finite element solution according to the defined
mesoscale geometry on the left. In this analysis multiphase finite elements have been
applied. The geometry of inclusions is mapped onto the integration points of finite el-
ements, while a regular grid of finite elements is applied. This method avoids complex
three-dimensional meshing and is completely flexible for the application of any mater-
ial. However, at that time the shown model of about 50000 degrees of freedom was near
to the maximum possible model size which could comfortably be handled on a desktop
computer within the finite element program SLang. It is highlighted that meanwhile con-
siderably more efficient solver packages have been implemented into SLang as documented
in (Schrader 2004a, 2004b; Most and Eckardt 2004). However, besides there are other rel-
evant restrictions of model size. With larger models the post-processing and graphical
output slow significantly down. The major limitation is defined by the required memory
which is significantly predetermined by the storage of the global stiffness matrix.

In the context of the numerical model the following major questions arose:

Q2 If the resolution of the finite element model is restricted in this way, especially by
the memory demand, is there any way to increase model size to simulate a more
complex heterogeneous material, e.g. with a much larger number of inclusions?

Q3 An increase of model size leads to disproportional increase of computation times for
solving the linear equation system. What kind of solver method is appropriate for
very large problems?

Q4 The approximation quality of the applied finite elements with linear shape functions
is known to be relatively poor. What kind of finite elements are best to apply for
this problem?

A possible answer to the questions Q1 to Q4 is covered by the present grid-based approach.
However, this concept also lead to several, additional challenges, such as e.g.

• an improvement of the defective stress solution at material interfaces due to grid
discretization and

• an improvement of the applied multigrid method which remains efficient for high
ratios of Young’s modulus within the heterogeneous solid,

which are also discussed in the present work. Such aspects will be highlighted in the
corresponding chapters.

The foregoing aspects referred to the linear analysis of heterogeneous specimen. Therefore
the linear elastic theory already represents the required mechanical model. But especially
with regard to the damage behavior the simulation of heterogeneous materials becomes
most relevant.
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In the context of the mechanical model the following additional question arose in close
relationship to the numerical model:

Q5 How can damage effectively be modeled by the proposed grid-based approach?
It needs to be considered that there might be a relevant mesh bias due to grid-
discretization. It needs further to be considered that the achieved efficiency for the
linear analysis is kept as high as possible for the nonlinear analysis.

1.4 Outline of Thesis

Several objectives of this thesis have already indirectly been declared by the question Q1
to Q5 in Section 1.3. In the following the proposed grid-based solution strategy is depicted
in more detail. In analogy to the questions Q1 to Q5 the developed answers A1 to A5 are
outlined:

A1 Grid discretization can be considered as a pixel or voxel model. Any geometries can
be mapped onto the orthogonal grid. A proper theoretical background of inclusion-
matrix models is prepared. It includes formulas for various inclusion shapes. Digital-
image based modeling represents an important option to achieve a realistic geomet-
rical representation of heterogeneous solids in general.

A2 The regular topology of elements enables to formulate the problem by equilibrium
equations on the element level. In combination with iterative solver techniques the
storage of a global stiffness matrix is superseded. Therefore the memory demand
essentially decreases or the possible model size increases. Besides, the effort and
memory demand of several other procedures can be reduced in adaption to the grid.

A3 The grid discretization is ideal for the efficient use of the multigrid method. The
computational effort of the multigrid method only increases linear with number of
degrees of freedom. While there are faster solvers for small problems, there is no
solver known where the effort scales better than linear. Therefore the gain of the
multigrid method increases the larger the problem becomes.

A4 A B-spline finite element formulation is developed which is completely variable in
the order k of B-splines. For homogeneous models the approximation quality of these
elements can arbitrarily be scaled. For modeling heterogeneous solids the multiphase
concept and transition zones along material interfaces are introduced. The local
equilibrium condition according to A2 is maintained for these finite elements.

A5 An isotropic material law is applied for simulating the damage behavior. A nonlocal
model reduces mesh bias. Due to the high resolution of the material, complex crack
patterns or damage processes can be simulated on the subscale level. According to a
damage-controlled, sequentially linear iteration scheme, this method is efficient and
remains numerically stable along the softening branch.

For best classification of the proposed approach some restrictions are added. With focus
on the analysis of materials it is sufficient to consider orthogonal bodies in contrast to
the analysis of structures. The methods are designed for a general multiphase material
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as introduced in Section 1.2. Several procedures will be exemplified for concrete. The
work mainly focuses on geometrical and numerical modeling. The concerning procedures
are variable in application to other materials. As the specific constitutive behavior of a
certain material is not considered, the present work is assigned to the general class of
heterogeneous solids. The applied mechanical damage law is only regarded as a prototype
for a principal extension to simulate nonlinear effects.

The present grid-based strategy is dedicated to an efficient mechanical analysis of het-
erogeneous materials on the micro- or mesoscale by a continuum model. It is the
major objective to work out possible advantages and to reduce several disadvantages
of the grid-based simulation approach by a systematic combination and enhancement of
various methods. The present approach is proposed as an alternative to standard finite
element procedures in the mechanical analysis of heterogeneous materials. Some relevant
parts of this approach have recently been published (Häfner, Eckardt, Luther and Könke
2006; Häfner, Kessel and Könke 2006; Häfner and Könke 2006a; Häfner and Könke 2006b).

For the proposed, particular approach of this thesis, a grid-based finite element program
has been developed. It is labeled Mulgrido. This name represents a fancy modification
of the word multigrid. Most of the described methods in this thesis have been imple-
mented into Mulgrido which is also the testing environment of the provided numerical
examples. However, this work does not discuss the program itself, but is restricted to
the corresponding relevant theory. For more information about Mulgrido, it is referred to
(Häfner 2005).

The thesis is organized as follows. Chapter 2 presents the geometrical model (item A1).
Chapter 3 covers the mechanical model and prepares for the numerical model. It
includes the governing equations of continuum mechanics, some theory of homog-
enization and relevant aspects of damage modeling (item A5). The Chapters 4, 5
and 6 refer to the numerical model. The numerical model includes B-Spline finite
elements (Chap. 4, items A4 and A2), fast iterative solver methods with focus on
the multigrid method (Chap. 5, items A2 and A3) and numerical aspects of damage
simulation (Chap. 6, item A5). A study on the effective material behavior of heteroge-
neous solids is provided in Chapter 7. More than altogether one hundred thousand random
geometrical arrangements are tested with respect to various aspects, such as e.g. effect
from shape of inclusions. The scattering answers are evaluated statistically. Chapter 8
discusses particular aspects from the present work, summarizes major contributions and
presents the final conclusions.



Chapter 2

Geometrical Model

2.1 General Overview

The subscale geometry according to which the material phases are arranged within the
heterogeneous solid essentially influences the effective material behavior. Therefore, be-
sides the physical properties of the individual material phases, the subscale geometry plays
a significant role for an accurate simulation of a heterogeneous solid. The direct, relevant
reference for creating an accurate geometrical model is the real material itself. Various
methods are applied to detect and store geometrical material data such as digital photos,
computer tomography or laser scan methods. After some processing of the obtained data,
it can be employed for computational simulation. However, this procedure requires the
existence of and the access to the real material. Provided both conditions are valid, this
procedure is relatively expensive while the result might not be representative for possible
variations of the material.

As an alternative solution, indirect geometrical modeling based on theoretical information
of the material is proposed. For precisely manufactured materials of regular geometry, such
as honeycomb material or material with negative Poisson’s ratio (Section 1.1), an adequate
plan of the geometry exists. However, there are several random materials for which such
a clear specification is not available. One can distinguish between plane random arrange-
ment, which is useful for composites with long, uniaxial oriented fibers, and spatially ran-
dom arrangement as for many inclusion-matrix composites, as for example various types
of concrete, semi-crystalline polymers with rubber particles (Van Dommelen et al. 2002)
and other advanced engineering materials (Michaud 1993). In these cases knowledge about
the constituents and the manufacturing process provides theoretical information for gener-
ating adequate geometrical models. It is principally possible to simulate processes such as
crystal growth of alloys or growth of bone tissue. However, often simplified algorithms are
used to reconstruct an observed typical material structure without physical background.

This work discusses aspects of direct and indirect modeling. According to its importance
in the present scope of civil-engineering, the selected material of focus is concrete, while
several methods can be transfered to model other random materials, especially inclusion-
matrix materials. The geometry of concrete on the mesoscale is mainly characterized by
particle shapes, particle size distribution, the total volume of particles and their arrange-
ment.

10
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Figure 2.1: Shapes of modified ellipsoid function:
n=5, 2 and 0.7

Figure 2.2: Additional sine functions added to el-
lipsoid

2.2 Particle Shapes

Particle shapes influence the stress distribution within the composite. Round shapes
cause rather smooth stress distributions. Angular shapes lead to stress concentrations.
A corresponding initiation of cracks can be relevant for accumulating damage and finally
macroscopic failure. In asphalt material an effect of the particle shape on tensile strength
and shear resistance is observed (Al-Rousan et al. 2006). Zaitsev and Wittmann (1981)
compare crack patterns in two-dimensional random structures of normal concrete with
polygonal inclusions and idealized lightweight concrete with circular inclusions. The ap-
proach of circular aggregates is frequently applied, as for example in (Bažant et al. 1990;
Van Mier et al. 2002; Van Mier and van Vliet 2003). To consider the effects resulting
from the nature of aggregates, rounded particle shapes according to a morphological law
of gravel are used in mesoscale models in (Wittmann et al. 1993). A detailed descrip-
tion of two-dimensional random aggregate structures with crushed as well as with round
particles is presented in (Wang et al. 1999). Therein crushed particles are generated as
randomly shaped polygons with a prescribed elongation ratio and furthermore round par-
ticles are formed with shapes according to the morphological law of Beddow and Meloy
(1980). The first three-dimensional geometrical models applied spherical inclusions which
were extended to ellipsoids with different sizes and roundness (Guidoum and Navi 1993;
Leite et al. 2004). For advanced studies on inclusion-matrix models it is favorable to use
various particle shapes which can be controlled by only a few parameters. Therefore the
superellipsoid is proposed, which is also applied by Zohdi (2001).∣∣∣∣ xr1

∣∣∣∣n +

∣∣∣∣ yr2

∣∣∣∣n +

∣∣∣∣ zr3

∣∣∣∣n = 1 (2.1)

For z = 0 Eq. 2.1 reduces to the superellipse (Gardner 1993). Equation 2.1 includes one
parameter in the variable exponent n, with n > 0, to vary the shape between round and
angular as shown in Fig. 2.1. Therefore this variant is well suited to study the effect of
particle shape upon the mechanical behavior and is applied in the present work. Additional
sine functions such as fi (Eq. 2.2) with an even number of sine-phases pi , amplitude ai

and phase shift ei are applicable to modify the particle shape (Häfner et al. 2003).

fi = ai · sin
(
arctan

(y

x

)
· pi + ei

)
(2.2)

Therefore based on a few parameters some more or less controlled irregularity and rough-
ness can be included as illustrated in Fig. 2.2. An analog extension of fi to the z-coordinate
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Figure 2.3: Particles shapes generated by adding sinus functions on ellipsoid

lead to the particle shapes of Fig. 2.3. A similar two-dimensional formulation is labeled
as a roughened circle in (Beddow and Meloy 1980). A recent approach to achieve a wide
variety of two-dimensional shapes is called superformula as introduced by Gielis (2003).(∣∣∣∣1a cos

(m

4
φ
)∣∣∣∣n2

+

∣∣∣∣1b sin
(m

4
φ
)∣∣∣∣n3

) 1
n1

=
1

r
(2.3)

The variables r and φ refer to a polar coordinate system. The primary parameters to
control the shape are m, n1, n2 and n3. Examples of the superformula are provided in
Section 2.7.

Garboczi (2002) detects the shape of real aggregates in concrete using X-ray tomography
and approximates the shape by spherical harmonics. These continuum surface models lead
to accurate representations of complex shapes by a low number of parameters, while the
memory demand is drastically reduced compared to the original full voxel representation
of the particle. A profound study on modeling of polar shapes, based on e.g. a sample of
surface boundary points, by double fourier series as well as spherical harmonics is provided
by Li (2002). However, besides generating various, complex particle shapes for computa-
tional simulation, there is the need to quantify or classify the shape (of real particles and
model particles), such that a general, meaningful relationship between characteristic of
particle shape and its effect on the mechanical behavior can be formulated.

A typical measure of particle shape is sphericity ps which refers to the three main di-
mensions of the particle d1 ≥ d2 ≥ d3. In (Al-Rousan et al. 2006; Mora and Kwan 2000)
sphericity is defined by

ps = 3

√
d2d3

d2
1

(2.4)

Further shape measures are flatness or flakiness pf = d2/d3 and elongation pe = d1/d2 as
well as a flat and elongated ratio pc = d1/d3 (Al-Rousan et al. 2006). The basic definition
that most measures are based on a ratio of two particle dimensions is confirmed in (Stark,
Liebezeit and Müller 2005). However, for these, but especially for other shape factors
various attributes and definitions are presented in (Kwan et al. 1999). Further references
are (Beddow and Meloy 1980; Kwan et al. 1999; Mora and Kwan 2000; Jamkar and Rao
2004; Al-Rousan et al. 2006). It is only summarized that additional important measures
refer to roughness, angularity and texture of particles. Shape measures can refer to two-
dimensional projections or to the real three-dimensional shape. For example angularity
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can be categorized according to graphical drafts, as e.g. assembled in (Koensler 1989), or
by fourier analysis as proposed in (Beddow and Meloy 1980; Al-Rousan et al. 2006). In
fourier analysis the relevant frequencies increase from global form to angularity to texture
of particle. However, it is noted that the applied measure also depends on the available
data. For concrete material, in practice the ratio of disproportionate aggregates can be
determined according to specific sieve analysis, thickness and length gages or automatic
image analysis (Brzezicki and Kasperkiewicz 1999). Undoubtfully, the recent detection
and description of three-dimensional particle shapes (Garboczi 2002) is most accurate
and therefore promising for a detailed categorization. At present and with regard to the
present context, the available alternative is bringing the observed mechanical behavior
directly into relationship with the parameters of the applied functions, Eqs. 2.1 to 2.3, or
the application of clear measures such as Eq. 2.4.

2.3 Particle Size Distribution

For the generation of aggregates in a concrete specimen the particle size distribution is
an essential aspect in combination with maximum aggregate size and total volume of
aggregates, generally between 60% and 90% (Shakhmenko and Birsh 1998). In practice
the aggregate grading of concrete is mostly designed after the Fuller curve. It stems
from optimal packing of spheres and generally leads to high density and strength, while
it also provides low segregation and good workability. Consequently the Fuller curve is
frequently applied to geometrical mesoscale modeling of concrete (Schlangen and van Mier
1992; Schlangen 1993; Wittmann et al. 1993; Van Mier et al. 2002). Variable predefined
grading curves are considered in (Wang et al. 1999; Leite et al. 2004). A thorough and
extensive study about particle size distributions and an analysis of the wall effect in
finite bodies with respect to spatial distribution of aggregate sizes is presented in (Zheng
2000). As a particle size distribution function naturally corresponds to a three-dimensional
geometry, it is not directly applicable for two-dimensional models. Based on the Fuller
curve Walraven (1980) provides a formula for the particle sizes in an intersection plane
of a theoretical three-dimensional model, which is adopted in (Schlangen and van Mier
1992; Van Mier et al. 2002). As an alternative way slice cut-outs can be created from a
generated three-dimensional specimen to obtain two-dimensional geometries (Leite et al.
2004; Eckardt et al. 2004). In the following the inverse cumulative distribution function
of particle number with respect to particle size is derived from grading curves of mass.
The procedure adapts to various grading curves and provides a short, convenient formula
to generate consistent particle sizes for three- and two-dimensional models.

The size distribution of aggregates in concrete is described by a cumulative distribution
function of mass Φm(x) with respect to the particle size x. Assuming a constant mass
density % of the aggregates, the cumulative distribution function of particle volume ΦV (x)
is given by

ΦV (x) = Φm(x) (% = const.) (2.5)

and the associated density function ϕV (x) is

ϕV (x) =
dΦV (x)

dx
(2.6)
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Figure 2.4: Cumulative distribution functions (CDF) of particle sizes of German standard DIN 1054: ideal
range between A32 and B32, upper limit C32 and the Fuller curve

In the differential interval of [x, x + dx] the increment of particle number ϕ̃N(x) follows
the condition

ϕ̃N(x) =
ϕV (x)

V (x)
(2.7)

whereby V (x) is the volume of a particle with reference length x (e.g. in case of a sphere
x defines the diameter), which is assumed to define the sieve passing of a particle. The
number of particles within the range [x1;x2] of a reference volume equal to ”1” is calculated
by

N [x1; x2] =

∫ x2

x1

ϕ̃N(z)dz (2.8)

The cumulative distribution function of particle number within the range [x1;x2] is defined
as

ΦN(x) =
N [x1; x]

N [x1; x2]
(2.9)

The inverse formulation of Eq. (2.9) with respect to x can be used to generate consistent
particles sizes within the range of [x1;x2] according to the provided cumulative distribution
function of mass Φm(x).

The analysis from Eqs. (2.5)-(2.9) is exemplified for the following cumulative distribution
function of volume

ΦV (x) = k1x
α (2.10)

This function covers the Fuller curve (Fig. 2.4) for α = 0.5 and k1 = D−α
max where Dmax

denotes the maximum particle size x of the considered sieve curve. The corresponding
density function is

ϕV (x) = αk1x
(α−1) (2.11)

As the volume is a cubic function V (x) = k2x
3 (whereby k2 is independent of x and e.g.

in case of a sphere k2 = π
6
), this leads to

ϕ̃N(x) = αk1k
−1
2 x(α−4) (2.12)
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As a result the following cumulative distribution function of particle number is established

ΦN(x) =
x(α−3) − x

(α−3)
1

x
(α−3)
2 − x

(α−3)
1

(2.13)

The Fuller curve as cumulative distribution function of particle number is shown in
Fig. 2.4. Then, the following inverse cumulative distribution function enables consistent
generation of particle sizes, where X1 denotes a uniform random number in the inter-
val [0; 1].

x =
(
X1

(
x

(α−3)
2 − x

(α−3)
1

)
+ x

(α−3)
1

) 1
(α−3)

(2.14)

The lognormal distribution of particle volume corresponds to a linear graph in the log-
normal diagram of Fig. 2.4 and is described by

ΦV (x) = m · log2(x) + n (2.15)

and
ϕV (x) =

m

ln 2
x−1 (2.16)

which leads to Eqs. (2.13) and (2.14) with α = 0.

For consistent generation of various particle shapes, it is assumed that a sphere can be
replaced by an irregular shape of the same volume. The prior equations only describe
the three-dimensional case. Neglecting wall effects, the probability to cut a sphere of
diameter x in a volume of depth z equals to x

z
. Therefore the particle increment defined

in Eq. (2.7) can be adapted to that of a two-dimensional section.

ϕ̃∗N(x) =
ϕV (x)

V (x)
· x

z
(2.17)

The depth z cancels in the evaluation of the cumulative distribution function of particle
number. Additionally, in case a certain sphere is cut, its effective diameter of a random
section is reduced by the factor

√
1−X2

2 . The uniform random numbers X1 and X2 in the
interval [0; 1] are not correlated. These natural assumptions lead to the following inverse
function which is directly applicable to generating particle sizes of a two-dimensional
section

x =
(
X1

(
x

(α−2)
2 − x

(α−2)
1

)
+ x

(α−2)
1

) 1
(α−2)

√
1−X2

2 (2.18)

While the particle size distribution of a section differs to that of the volume, expected area
ratio and volume ratio correspond. The derived functions can either be used to generate
particle sizes of individual mineral size classes or the complete range in case of the Fuller
curve. To exemplify the analysis, the number of particles in a (100 mm)3-concrete cube
designed according to the Fuller curve (assuming 70% aggregate volume fraction) are
provided in Table 2.1 where Eq. (2.8) leads to

N [x1; x2] =
α

α− 3
k1k

−1
2

(
xα−3

1 − xα−3
2

)
Vagg. (2.19)

with the following parameters α = 0.5, Dmax = 32 mm, k1 = D−α
max, k2 = π

6
and Vagg. =

700000 mm3. A corresponding number of particles has been generated by the derived
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Figure 2.5: Particle configurations in accordance to Table 2.1: 38 particles of fraction 16-32mm, 215 par-
ticles of fraction 8-16mm and the combination of 253 particles.

inverse function for the intervals [x1 = 8; x2 = 16] and [x1 = 16; x2 = 32]. The resulting
volume fractions agree within the statistical deviation. The relationship in number and
volume between larger and smaller aggregates is illustrated in Fig. 2.5.

From one to the next lower mineral size class the related particle number in Table 2.1
increases by the factor 5.66 ≈ 1/2α−3 while mass fraction reduces by the factor 0.71 ≈
1/2α. This recursive character of particle sizes provides an indication to research on fractal
properties of concrete (Carpinteri et al. 2004).

x1[mm] x2 [mm] Mass [%] Number

16.0 32.0 29.3 38

8.0 16.0 20.8 215

4.0 8.0 14.6 1216

2.0 4.0 10.4 6879

1.0 2.0 7.3 38910

0.5 1.0 5.2 220114

0.25 0.5 3.7 1245151

0.125 0.25 2.6 7043638

Table 2.1: An example of corresponding particle mass and number according to the Fuller curve

2.4 Separation Check of Two Particles

A separation check of two particles denotes a basic procedure of generating random ma-
terials with inclusions in a matrix. In contrast to pores, solid inclusions can obviously not
overlap. The problem is trivial to solve for spheres. If the center distance of two spheres
is larger than the sum of their radii, the two spheres do not overlap and otherwise they
do. For other, variable particle shapes as described in Section 2.2, this problem becomes
essentially more complicated.
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2.4.1 Coarse Detection Methods

As a simple and fast method to detect whether two particles possibly overlap, larger
spheres which completely include each particle can be generated and the separation check
be performed for these spheres instead. This coarse detection method requires a valid ap-
proximation about the maximum dimension of a particle. With a similar idea, orthogonal
bounding boxes for each particle can be generated which is illustrated in Fig. 2.6 (left). If
these bounding boxes are separated, it is clear that the included particles are separated,
too. It is intuitive that the definition of tight bounding boxes is favorable. Converse con-
ditions, namely interior boxes, can possibly assure overlapping of close particles. However,
the foregoing conditions are not sufficient to decide about the overlapping of two particles
in any case. In the critical cases when the coarse detection method fails to provide a unique
answer, namely when bounding boxes do overlap and interior boxes do not overlap, an
additional more accurate and also more costly separation check needs to be performed.

2.4.2 Separation Check of Two Ellipsoids

Ellipsoids represent an exception within non-spherical particle shapes for which an
analytical separation check is available. Nevertheless, due to variable spatial rotation
and location of two ellipsoids, a corresponding separation check is quite involving. In
the following a recent approach (Wang et al. 2001) is outlined, which is applied by
Eckardt in (Häfner, Eckardt, Luther and Könke 2006). An ellipsoid is defined by Eq. (2.20),
where X = (x, y, z, 1)T are the homogeneous coordinates.

XTAX = 0 (2.20)

The 4x4 matrix A includes the complete information of the three ellipsoid diameters, of
the position and of the rotation angles of the ellipsoid. The characteristic polynomial of
two ellipsoids is defined by

f(λ) = det(λA1 + A2) (2.21)

The separation status of the two ellipsoids is determined by the number of positive roots
of the characteristic equation f(λ) = 0. If the characteristic equation has two distinct
positive roots, then the ellipsoids do not overlap and otherwise they do. The exact roots
of Eq. 2.21 are not required. The number of positive distinct roots can effectively be
determined by Sturm sequences (Dickson 1914). The advantage of this solution is its
accuracy and efficiency.

2.4.3 Separation Check of Two Arbitrary Shapes

The discussion of variable particle shapes according to Section 2.2 raised the need to
include separation checks for variable shapes. However, because an analytical solution, as
for ellipsoids, is not available, the corresponding strategy rather refers to a computational
algorithm than a mathematical formulation. If the coarse detection method of Section 2.4.1
does not lead to a unique conclusion about the separation of two particles, then the
overlapping region of two bounding boxes is the critical region which needs to be examined
additionally. Figure 2.6 (center) shows a regular grid of points within the overlapping
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(a)     (b)                         (c)(a)     (b)                         (c)(a)     (b)                         (c)Figure 2.6: Overlapping bounding boxes (left). Separation check on grid (center) and on surfaces (right)
within overlapping bounding boxes.

region. One point after another is tested, if it is within both inclusions until such a
point is found or all points have been tested. This method can be applied to any particle
shape, but it is relative expensive, especially with regard to the three-dimensional case.
A modified, alternative method is illustrated in Fig. 2.6 (right). Less of such selective
checks are required, if predetermined points on the surface of a particle are considered.
But on the other hand the detection of these surface points, e.g. by a directional bisection
method, requires additional effort. An advantage especially occurs if a particle needs to
be tested several times before a valid position is found. With both methods principally
any required accuracy for the separation of variable particle shapes can be achieved. A
detailed study of these methods is documented in (Theuer 2003).

2.4.4 Speed–Up by Division into Sub-Domains

Up to the n-th particle to place, at least (n2 − n)/2-times two boundary boxes have to
be compared. As this denotes a quadratic function of n, the efficiency of the algorithm
essentially reduces with increasing number of particles. A decomposition of the total do-
main into sub-domains represents a possible remedy to this problem. For the placement
of a new particle, only particles which are part of the corresponding sub-domain need to
be considered for separation check. This method is demonstrated by Eckardt in (Häfner,
Eckardt, Luther and Könke 2006) and it is shown that the computational effort is par-
ticularly decreased for a model with a very large number of inclusions. The optimal size
of a sub-domain refers to the size of a particle. With varying particle sizes during one
placement process, the size of the sub-domain might ideally also be adaptive. It can be
summarized that the following hierarchy of methods has been developed: sub-domain
method, coarse detection method as described in Section 2.4.1 and accurate separation
check according to Section 2.4.2 or 2.4.3 .

2.4.5 Separation Check on Domain Grid

With respect to the present grid-based approach, a separation check directly on the global
domain grid is proposed. This method covers any random concave or convex shaped
particles in two or three dimensions. There is only the condition that for each particle
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Algorithm 1 Grid-based boundary tracing and placement of particles on domain grid

1: repeat

2: create one random particle according to given statistics

3: determine and save pixels of particle boundary: follow the boundary and draw
pixels into a virtual domain until the first boundary pixel is found again.

4: determine and save particle area: fill particle and count its pixels.

5: until defined particle volume ratio is reached

6: sort particles by area (pixels).

7: prepare domain: initialize domain grid to ’0’. set domain boundary pixels to a non-zero
number.

8: loop {through all particles, starting from the largest}
9: repeat

10: pick random particle position in domain grid

11: until all boundary pixels of this particle are still ’0’ in the domain

12: set boundary pixels of particle in the domain

13: fill particle in the domain by a non-zero number

14: end loop

a coordinate of its interior is known. Then all neighboring coordinates of the particle
interior on the grid can be determined. For the two-dimensional problem the domain
grid can be regarded as a pixel image. An object can be placed into the domain, if the
corresponding pixels at the considered position are not yet occupied by another object.
The procedure for the two-dimensional model is summarized by Algorithm 1. In the first
part, lines 1-5, a pixel representation of each particle is generated. As the particle size
in this specific algorithm will be decreasing during particle placement, it is sufficient to
detect and store the boundary pixels of each particle. After lines 1-5 the original and
maybe expensive analytical formulation of each particle will not be revisited. By a simple
comparison of pixel values in the last part, lines 8-14, this method is very fast, even for
complex particle shapes. This method can be extended to model other objects, just by
generating a corresponding pixel representation. An extension to three-dimensional voxel
models is almost straightforward. The defined grid model can directly be applied to the
mechanical analysis using the finite element method. In this regard the accuracy of the
geometrical model is directly adjusted to the subsequent numerical analysis. Therefore
in any case the generation of the geometrical model will not be critical with respect to
computation time in comparison to the following mechanical analysis. For damage analysis
using finite elements, it is useful to require at least one pixel gap between the particles,
which can simply be controlled by this method. In summary this method is flexible for
any object shape, its accuracy can arbitrarily be adjusted and therefore it is the applied
method of the present work.
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2.5 Placement Procedures

Different methods have been developed to generate a realistic particle arrangement. Nu-
merous publications (Bažant et al. 1990; Schlangen and van Mier 1992; Schlangen 1993;
Van Mier and van Vliet 2003) describe an arrangement procedure which is labeled as the
take-and-place-method in (Wang et al. 1999). It is based on a set of particles which are
sequentially placed into the matrix starting by the largest one and using checks to obviate
overlapping. In most procedures a new particle is removed if overlapping occurs and it is
tested to place it again at any other position. Alternatively Leite et al. (2004) propose
a stochastic-heuristic algorithm in order to obtain a more realistic concrete structure. If
the last placed particle overlaps with any previously placed particle a new position is
found by rotation and translation along heuristically determined directions. In addition
to the take-and-place-method, Van Mier and van Vliet (2003) describe other algorithms
for arrangement of particles, e.g. the random particle drop method.

The present approach of generating geometrical inclusion-matrix models follows the take-
and-place-method. To the largest extent it is already outlined by the foregoing paragraph
and within Algorithm 1. After generating grading curve consistent particles, the particles
are sorted by size and one after another placed into the domain, starting with the largest
particle. The generation of the position coordinates for each particle bases on a uniform
distribution over the whole domain. If the current position of a particle is not valid,
then any other random position according to the uniform distribution is determined.
Nevertheless, this placement procedure results in a natural wall effect (Van Mier and
van Vliet 2003). This means that while approaching the boundary of the domain the
concentration of smaller particles increases, while the concentration of larger particles
will be larger in the center region. This explains why the wall effect can only partially be
avoided by a cut-out of an oversized domain as proposed in (Prado and van Mier 2003).
A complete elimination of the wall effect is possible by a periodic domain, also denoted
as periodic unit cell. The left model boundary is considered as a continuation of the right
boundary, and analog the bottom, the continuation of the top.

For achieving very dense particle arrangements an additional compaction algorithm is
introduced in (Häfner, Eckardt and Könke 2003). The basic idea stems from the imagina-
tion of shaking the domain. Based on a globally adapting step size all particles are at once
tested for an incremental movement either to the right, to the left, up or down, always
given a random, particle individual direction variance of up to 45 degrees. Compaction is
then achieved by a higher repetition of the sequence towards the preferred direction (e.g.
down). For each sequence the particles are sorted by coordinates for a higher mobility
towards the next direction. The global movement stepsize is increased if more than a
certain percentage (e.g. 80%) of particles were able to move, or decreased if these were
less than a certain limit (e.g. 20%). It is considered as advantageous that this algorithm
forces to pack the particles tighter, without necessarily pushing them towards contact.
Unequal distributions can be compensated by applying sequences of random directions.
This algorithm is heuristic. It shows a considerable compaction result in the test example
which is illustrated in Fig. 2.7.
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Figure 2.7: Particles before and after 60 iterations of compaction

2.6 Digital Image-Based Modeling

Digital image-based modeling can smoothly be integrated into the proposed grid-based
approach. However, the term digital image may associate that the data has been derived
from a real existing object. This is not necessarily appropriate for the present approach
and therefore grid-based modeling is preferred as the more general term. In fact, there
are numerous examples of digital image-based modeling in the mechanical analysis of
heterogeneous solids where a real object is used as direct source of the model data. A
broad overview on this research related to mesomechanical finite element modeling is
provided in (Mishnaevsky and Schmauder 2001), among others, the application of digital-
image based modeling for bone tissue, alloys and metal matrix composites is mentioned.
In this context image-based modeling may refer to two-dimensional pixel models, but
also to the three-dimensional equivalent, voxel models. For concrete material Garboczi
(2002) exemplifies X-ray tomography to create a high-resolution inclusion-matrix model
of a cube with 2703 ≈ 1.97 · 107 voxels. A similar concrete model is generated by Nagai
et al. (2000) by a destructive procedure, piecewise scraping of a physical specimen and
standard scanning of each section. Then, the voxel model is assembled by a stack of two-
dimensional images. Moreover, the application of digital-image based modeling within
the field of computational mechanics is documented for geomaterials (Yue et al. 2003),
engineering alloys and glass ceramic matrix composites (Shan and Gokhale 2004), and
metal matrix composites with particles or fibers (Steinkopff et al. 1995). Advanced mesh
refinement with respect to finite element analysis is presented for voxel-based models of
textile composites in (Kim and Swan 2003).

An extraordinary procedure is presented by Shan and Gokhale (2004), which proposes
to assemble many microstructural images by montage and apply digital image compres-
sion with selective access to relevant details for achieving multiscale analysis. Moreover,
it is aimed for a characterization of the composite, such that parameters of a generation
method can be adapted to create a model with similar properties as for the microstructural
image, which describes a relevant goal of this research. For some materials a numerical
identification of the various phases is straightforward to achieve by standard image soft-
ware such that little or no emphasis is put on digital image processing. However, for
concrete or geomaterials the identification of the various phases requires several proce-
dures and even then might not be quite clear and unique. For concrete material Nagai
et al. (2000) outlines the applied basic procedure which includes an interesting distance
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Figure 2.8: Original image of concrete section and images after processing: A application of color threshold
value, B application of color gradient search and C filtering of noise or small objects

transformation for noise reduction. With respect to geomaterials Yue et al. (2003) de-
scribe various methods of digital image processing, such as image contrast enhancement,
image noise removal, neighborhood averaging, low pass filtering, edge detection and sev-
eral more. However, the methods also include manual processing as well as trial-and-error.
It is remarkable that, there, after transforming the digital image into a model of phase
edges, finally an aligned meshing of material phases is performed.

In cooperation with the present author, a study of Backoff (2003) is concerned with the
identification of aggregates in concrete material based on digital images. Figure 2.8 (top,
left) shows a typical original image. It is obvious that the aggregates can not be assigned
to one specific color range. Even worse, certain colors occur in both, cement stone and
aggregates. In this study some interesting concepts are developed to tackle this difficult
problem. It includes the typical application of a color threshold value which splits the
color range into two parts. However, only in the ideal case one part exclusively includes
either inclusions or matrix material. The threshold value is defined by the user in manual
adaption to the achieved result. In a more sophisticated procedure the user defines a box
of pixels within the matrix material. Then, all colors which lie within a small user-defined
tolerance to any of these predefined pixels will be assigned to the matrix material. In
contrast to one threshold value many adequate color ranges are generated by this method.
Furthermore it is assumed, that the matrix material is one continuous region around the
aggregates. Then, starting from one pixel of the matrix, further pixels will also be assigned
to the matrix if the gradient to at least one neighbor pixel is below a user-defined tolerance.
For some cases the latter method leads to an improved identification of aggregates. Finally
a noise filter is applied to eliminate small objects or particles which only cover a few pixels
and can therefore not accurately be detected. Some results are presented in Fig. 2.8.
In summary, reasonable identification of aggregates has been established by this study



2.7. Examples 23

which might also include some novel aspects. Nevertheless, an additional adaption to
documented methods of digital image-based processing, as e.g. described in (Yue et al.
2003), would be valuable for further enhancement of the present approach.

2.7 Examples

In the following some examples of geometrical models are presented to provide an overview
on the present possibilities of the proposed grid-based approach. Figure 2.9 shows the
first example. It represents a two-dimensional inclusion-matrix model of a concrete sec-
tion with the dimensions 100 mm × 100 mm. The shapes of the aggregate are various
superellipses according to Eq. 2.1. The particle sizes in the range of 0.1 mm to 32 mm have
been generated to meet the Fuller curve by the inverse function of the two-dimensional
problem, as given by Eq. 2.18. The high aggregate contents of 85.8 % was achieved by
the take-and-place method described in Section 2.5 without additional compaction. Fast
separation checks as outlined by Algorithm 1 in Section 2.4.5 lead to a total generation
time of 25.26 seconds on one present standard processor (2.8 GHz). 45549 inclusions are
placed on a matrix of 4096 × 4096 = 1.67107 elements. There is at least one element of
matrix material between any two aggregates. The minimum inclusion size corresponds to
approximately four elements in one dimension. The minimum image size with one bit per
pixel without compression only corresponds to 2 MB. Thus in the 24 bit standard of the
bitmap format the image size is 48 MB. The total memory demand of Mulgrido to solve
the corresponding finite element problem is about 4 GB which will further be discussed
in Section 5.11.1. Therefore this problem is one of the largest which can be processed
by the present approach on standard computers with adequate memory extension. It is
summarized that the achieved complexity of this model is respectable in comparison to
several other models of the present literature. While this model represents a maximum of
size, smaller models are introduced for best visibility of the relevant effect in the following.

Figure 2.9: 45549 inclusions with sizes from 0.1 to 32 mm graded after the Fuller curve on a 4096× 4096
element matrix occupy 85.8 % of the area. Element size is 0.024 mm. Generation time was 25,26 seconds.
Full model (color inverted) is shown on the left and the marked box is magnified on the right.
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Figure 2.10: Example of periodic unit cell of fiber composite. Fiber orientation is orthogonal to section.

A typical example of a periodic unit cell in the context of fiber materials is shown in
Fig. 2.10. Various statistical measures can be applied to control if a periodic unit cell
adequately represents the geometrical characteristics of a larger section (Sejnoha et al.
2001). In this context the periodic unit cell is also denoted as representative volume
element. It is generated to replace the real microstructure by a smaller model, while it is
intended to keep the involving loss of quality low. However, such a model reduction will not
be considered in detail within the present work. This example is rather included to present
the generation of a periodic material structure in general. An example for a periodic
concrete section is shown in Fig. 2.11. For a direct comparison Figure 2.12 illustrates a
model of similar parameters, but with typical wall effect as described in Section 2.5. Only
a few additional steps are required to trim Algorithm 1 for the generation of a periodic
structure. Whenever the actual coordinate within any process would leave the domain
by a certain distance, it re-enters the domain by this distance at the opposite side. This
works for the separation check as well as for the filling process of the particle. However,
as in each step some additional operations are required to control if the coordinate is
within the domain, the computation time slightly increases. For generating models with
wall-effect such a control is not required as all boundary pixels are initially marked as end

Figure 2.11: Periodic geometry. 309 inclusions,
66.9 % volume ratio, generation time 0.87 seconds,
5191 separation checks.

Figure 2.12: Non-periodic geometry. 291 inclu-
sions, 65,2 % volume ratio, generation time 0.55
seconds, 5683 separation checks.
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Figure 2.13: Two objects and 979 inclusions, vol-
ume ratio of inclusions 35 %, 512 × 512 elements
20193 separation checks took 0.35 seconds

Figure 2.14: Quasi-polygonial shapes according to
superformula. 98 inclusions, volume ratio 50 %,
512× 512 elements

of domain. The periodic model is advantageous for homogenization while the model with
wall effect rather corresponds to the section of an equally sized specimen.

Figure 2.13 illustrates the possibility to include arbitrary image data. Here, two objects
which are stored in the bitmap format have been loaded into the Mulgrido program. The
user can select the option that in addition to any present model, particles can be generated
and be placed within a defined color or range of colors. Therewith this arrangement
was generated where the particles closely surround, but do not intersect, the predefined
objects. Here also the wall-effect occurs. This method clearly also includes the possibility
to load any other available image data and regard it as final geometrical model. For each
color a new material can be defined. Relevant image processing can be performed by
external applications e.g. as described in Section 2.6.

Figure 2.14 includes various shapes according to the superformula as given by Eq. 2.3. In
fact, the superformula establishes various interesting shapes which motivated Gielis (2003)
for its application to remodel various species. In the present model only quasi-polygonal
shapes based on the superformula are included. The shapes are not exact polygons, but
represent very close approximations. The applied parameters are summarized in Table
2.2, as they have been approximated by the present author. The parameters a and b in
Eq. 2.3 are set to a = b = 1. A variation of the supershapes in size can be achieved by

m n1 n2=n3

Triangle 3.0 0.54 0.92

Quadrangle 4.0 1.00 1.00

Pentagon 5.0 1.61 1.02

Hexagon 6.0 2.26 1.07

Heptagon 7.0 3.00 1.11

Table 2.2: Parameter combinations of the superformula for the generation of quasi-polygons
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Figure 2.15: 185 fibrous inclusions occupy 25 % in
the model of 1024× 1024 elements.

Figure 2.16: 256 objects, volume ratio 30 %, 11644
separation checks took 1.13 seconds.

a transformation of the base coordinate system. A superellipse according to Eq. 2.1 with
large length-to-height ratio lead to the geometrical arrangement of Fig. 2.15. It represents
a contrast to the foregoing compact shapes and might refer to an idealization of a fibrous
composite.

Figure 2.16 illustrates a further option of the present approach. Instead of only importing
digital image-based data as a complete model, as for the generation of Fig. 2.13, such data
can also define a particle shape. For achieving a high complexity of the model the letter S
with serifs has been selected. The original letter is represented by a 512 × 512 pixel image
in the bitmap format. Instead of testing if a coordinate lies within an analytical shape,
the corresponding coordinate of the pixel object is determined and tested. The original
Algorithm 1 detects the boundary pixels of an object and fills the object subsequently. If
the algorithm is modified such that any pixel in the defined size is tested and stored, addi-
tional filling is not required. Then the object can also be hollow or consist of several parts.
It is clear that it is straightforward to mix various objects. A corresponding object library
represents a further possible option. It is summarized that this method further increases
the flexibility of including complex objects into the geometrical generation process.

In the following some three-dimensional models are presented. Generally most methods
for pixel models are straightforward to extend for voxel models. However, the detection
of a particle boundary and subsequent filling is especially more complex. For simplicity a
modified algorithm which includes each possible coordinate of a particle, as discussed in
the last paragraph, has been implemented for the three-dimensional model. With respect
to this and some other details the current implementation still allows for several possible
enhancements. Nevertheless, the achieved efficiency is still satisfactory. The examples of
Figs. 2.17 to 2.20 include 1283 voxels each. The total memory demand to solve such a
finite element problem is 776 MB in the present implementation. Therefore it can well
be processed on a standard computer. Figure 2.17 shows a model of spheres with similar
parameters as the model of Fig. 2.5 (right). It is noted that the model of Fig. 2.17 with 1283

finite elements is considerably larger than that in the statement of problem (Section 1.3)
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Figure 2.17: 262 spherical inclusions projected onto
a 1283 voxel model. Volume ratio is 30 %. 16754
placement trials. Total time 8.42 seconds.

Figure 2.18: Example with inclusions shapes ac-
cording to the superellipsoid. 51 inclusions occupy
20 % of the volume.

Figure 2.19: 69 fibrous inclusions occupy 2 % of
the volume.

Figure 2.20: Five bars surrounded by 94 small in-
clusions which occupy 2.5 % of the volume.

with 253 finite elements (Fig. 1.4, right). Figure 2.18 illustrates various shapes according
to the superellipsoid (Eq. 2.1). A possible three-dimensional random arrangement of fibers
in a cube is shown in Fig. 2.19. The option to include other objects into the geometrical
model is demonstrated in Fig. 2.20. It is clear that for the graphical visualization of the
three-dimensional model, the matrix material is set to a mode of invisibility. Finally, it is
noted that automatically for each example the memory of the corresponding finite element
problem is allocated, where one pixel or voxel corresponds to one finite element. Otherwise
if only the geometrical model would be of interest essentially larger models could be
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Figure 2.21: Example of three-dimensional periodic unit cell

created. Finally, in analogy to Fig. 2.11, a three-dimensional example of a periodic unit
cell is shown in Fig. 2.21.

2.8 Conclusions

Grid-based methods are applied for two- and three-dimensional geometrical models. It is
shown that such pixel and voxel models bear a high potential to create adequate models
of heterogeneous solids. It is highlighted that it is not required to generate a complete
analytical formulation of the heterogeneous body. In fact, any algorithm only needs to
read or change the state of a discrete number of pixels or voxels. Therefore any change
of the geometry is based on a clear and stable operation. Grid-based modeling is closely
related to digital image-based modeling. Digital images represent a relevant aspect for
the practical application to existing heterogeneous solids. Advanced methods which have
been achieved for digital-image based modeling support the present approach. However,
the major present contribution of the geometrical model refers to theory-based modeling
of heterogeneous solids with focus on inclusion-matrix models. Besides, often applied in-
clusion shapes such as spheres and ellipsoids, arbitrary regular and irregular shapes are
discussed. Special attention is paid to superellipsoids and the superformula which has
recently been discovered in the field of botany. These formulas establish a rich variation
of shapes by the modification of only a few parameters. Adequate distributions of particle
sizes are essential for concrete material. Based on the common mass distribution function
of particle sizes, convenient formulas for the generation of particle sizes are developed for
three- and two-dimensional modeling. These formulas are flexible such that they can be
adapted to various distribution functions. The observed size distribution for the gener-
ated particles will naturally converge to the expected distribution function with increasing
number of particles. For the placement of particles, a separation check of two particles is
required to avoid overlapping. An analytical separation check is generally not available if
the inclusions are not spheres or ellipsoids. Various numerical separation checks are pre-
sented for arbitrary shapes of inclusions. An efficient solution is developed for grid meshes.
There, for the placement of a new particle, it is not required to perform a separation check
with all previously placed particles, but it is only tested if the relevant area of the domain



2.8. Conclusions 29

is still empty. Moreover, own results of digital-image based analysis are presented. It is
shown that arbitrary, complex objects, which may originate from digital images, can be
included into the geometrical model in diverse ways. Various examples demonstrate the
high flexibility and efficiency of the present approach.



Chapter 3

Mechanical Model

3.1 Introduction

In contrast to the geometrical model and the numerical model which originate from math-
ematics, the mechanical model is rooted in physics. Therefore the mechanical model repre-
sents the essential core to describe and simulate the behavior of solids subjected to forces
and deformation. A mechanical theory of solids includes a formulation of kinematics,
constitutive relationship, state of equilibrium and boundary conditions. The constitutive
relationship varies for different materials. In general such constitutive relationships are de-
veloped based on macroscopic responses of a certain material in physical experiments. In
the present context such a constitutive relationship, or material law, for a heterogeneous
material is denoted as phenomenologic, if it relates to strains of a homogeneous body.
In fact, then the actual stress-strain relationships within the heterogeneous material are
not discovered. For any change of the material structure, the specimen size, the specimen
geometry, the experimental setup or the loading state, the phenomenological material law,
which has been derived from the prior experiment, might not be adequate for the next
one. Based on many experiments complex phenomenological laws and theories have been
developed which cover several different loading states. Besides, phenomenological material
laws often include some parameters which are adapted for agreement to the experiments.
However, the physical meaning and determination of these parameters is often not clear.

The present approach is characterized by a direct modeling of heterogeneous solids as
a geometrical assembly of multiple phases. This can be considered as a geometrical-
mechanical approach. The prior phenomenological material laws are replaced by a combi-
nation of geometrical model and mechanical model. Only this combination of geometrical
model and mechanical model provides the chance for the simulation of heterogeneous
solids based on correct stress-strain relationships within the material. Once the constitu-
tive relationships of the material phases have been established, numerous different hetero-
geneous solids containing these material phases can accurately be simulated. Therefore
this method allows for many new possibilities, as introduced in Chapter 1.

The present chapter prepares the relevant mechanical background of the proposed meth-
ods to compute the mechanical behavior of heterogeneous solids. It includes the funda-
mental equations of continuum mechanics. Moreover, it prepares some formulations from
mixing theory which is also labeled as homogenization or mean field theory. This cov-
ers the linear elastic part and links the mesoscale model and macroscale model in terms
of effective elastic properties. Nevertheless, it is the general intention of this research to
develop a transparent and accurate simulation model for nonlinear material behavior.

30
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For example such a relevant material behavior originates from damage. The considered
isotropic damage law for tension is exemplary and does by no means represent the cur-
rent state-of-the-art. However, due to the high resolution of the subscale models complex
damage mechanisms can be simulated. It represents one step away from phenomenologic
macroscopic models which lack of transparency and flexibility, towards direct modeling
of damage with respect to different material phases. However, the damage model is only
considered as principal extension of the grid-based approach, as already outlined in the
Sections 1.3 and 1.4.

3.2 Continuum Mechanics of Solids

3.2.1 Three-Dimensional Continuum

An elastic three-dimensional body in a Cartesian coordinate system with base vectors ei,
with i = 1, 2, 3, is considered. In the view of continuum mechanics the body is continuous
as well as all corresponding vector fields, such as displacements U = Ui ei, strains ε =
εij ei ⊗ ej and stresses σ = σij ei ⊗ ej. For the linearized theory it is unique to introduce
only one coordinate system. In an initial, undeformed state a material point of the body
is located at position X = Xi ei. All field variables refer to this initial configuration
and thus can be considered as a function of X: U = U (X), ε = ε(X) and σ = σ(X).
Due to the following symmetry1 of strain coordinates εij = εji and stress coordinates
σij = σji, the elastic problem includes 15 unknown variables in the coordinates of U , ε
and σ; respectively 3+6+6 = 15. As a formal solution to determine these unknown state
variables a system of 15 equations is introduced, while as well predefined displacements
and tractions on the surface of the body need to be satisfied. This describes the elliptic
boundary value problem of linear elasticity. Six kinematic equations

ε =
1

2

(
grad U + (grad U )T

)
, εij =

1

2
(Ui,j + Uj,i) (3.1)

define the relationship of strains ε and displacements U . Six constitutive equations

σ = C ε , σij = Cijkl εkl (3.2)

couple stresses σ and strains ε where in the case of the generalized Hooke’s law for
homogeneous, isotropic material the material tensor Cijkl is defined as

Cijkl = λ δij δkl + µ (δik δjl + δil δjk) (3.3)

It is noted that the Einstein summation convention defines summation over repeated
indices. The Kronecker delta δij is equal to 1 for i = j and equal to 0 for i 6= j. The
material specific variables µ and λ are the Lamé constants. The Lamé constants can be
substituted by Young’s Modulus E and Poisson’s ratio ν. The corresponding conversions
are

µ =
E

2(1 + ν)
, λ =

νE

(1 + ν)(1− 2ν)
, E =

µ (2µ + 3λ)

µ + λ
, ν =

λ

2 (µ + λ)
(3.4)

1For this symmetry the general absence of body moments is presumed.
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Equilibrium is described by the following three equations∫
V

pidV +

∫
A

σjinjdA = 0 (3.5)

which mean that, in total, body forces piei and surface tractions σjinjei of any considered
volume V , which is bounded by the surface area A, vanish. By the divergence theorem
this equation is transformed into the following well-known fundamental strong form of
equilibrium

div σ + p = 0 , σji,j + pi = 0 (3.6)

The analytical solution requires a state of equilibrium at any point on the surface and
within the volume of the considered body. The body is fixed to avoid rigid body motion. It
is loaded by body loads p = pi ei and surface tractions t = ti ei. The surface tractions at
the boundary of the body correspond to the adjacent stresses ti ei = σjinjei where nj are
the components of the outward oriented normal unit vector n = nj ej. It is a boundary
value problem with prescribed displacements UD on ΓD and prescribed surface tractions
t on ΓN

U = UD on ΓD (3.7)

σ n = t on ΓN (3.8)

The solution is unique, if rigid body modes are excluded and under some further assump-
tions, which generally apply to engineering models (e.g. Young’s modulus is positive).

3.2.2 Reduction to Two- and One-Dimensional Continuum

Under certain conditions and presumptions a three-dimensional elasticity problem can
be reduced to a two-dimensional problem. For example, labels of such special states are
plane stress, plane strain or axisymmetric. In this thesis only the plane stress state is
considered. For plane stress parallel to the X1X2-plane, the stress components σ13, σ23

and σ33 are equal to zero. The other stress components are constant with respect to X3.
The kinematics equation and the equilibrium equation can directly be reduced to two-
dimensional by reducing the range of the indices i and j to 2. The constitutive relationship
in the plane stress state is

σ11 =
E

(1− ν2)
(ε11 + νε22) , σ22 =

E

(1− ν2)
(νε11 + ε22) , σ12 =

E

2 (1 + ν)
γ12 (3.9)

with γ12 = 2ε12 according to Eq. 3.1. A reduction to one dimension as to the uniaxial stress
problem corresponds to the typical model of a bar. All stress components except σ11 are
equal to zero. In this case the kinematics equation, constitutive equation and equilibrium
equation are

ε11 = U1,1 , σ11 = Eε11 , σ11,1 + p1 = 0 (3.10)
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3.3 Homogenization

3.3.1 General Objectives

Homogenization is performed to determine the effective properties of heterogeneous ma-
terials. In heterogeneous materials the material properties can differ from point to point.
This characteristic can result from an assembly of different materials. Therefore the cor-
responding fundamentals are also denoted as mixing theory. As generally volume averages
are the basis to treat such physical phenomena, a further synonym is mean field theory. Ho-
mogenization aims at the approximation of one unique constitutive relationship between
strains and stresses of any arbitrary material. If the linearized theory can be assumed,
the determined constitutive relationship describes the effective linear elastic properties
of the heterogeneous material. The achieved result can only be accurate, if the observed
material sample is sufficiently representative for this material. Then, the effective proper-
ties describe the macroscopic material behavior from sole knowledge of an arrangement
of different components on a subscale. This scale transfer achieved by homogenization
is denoted as upscaling. The opposite is downscaling, which means that e.g. parameters
of a subscale model are approximated from macroscopic responses. Principally up- and
downscaling is possible between any two scales and not necessarily needs to include the
macroscale. Such procedures are relevant for exploring, understanding and evaluating the
complex material behavior of heterogeneous materials which is observed at various scales.
The gained knowledge is important for accurate simulation of heterogeneous materials as
well as for many practical applications of engineering.

3.3.2 Three-Dimensional Continuum

The absence of body moments supposed, the condition σij = σji holds, and with εij = εji

the general constitutive relationship of Eq. 3.2 can be rewritten in the following matrix
form. 

σ11

σ22

σ33

σ12

σ23

σ13

 =


C1111 C1122 C1133 C1112 C1123 C1113

C2211 C2222 C2233 C2212 C2223 C2213

C3311 C3322 C3333 C3312 C3323 C3313

C1211 C1222 C1233 C1212 C1223 C1213

C2311 C2322 C2333 C2312 C2323 C2313

C1311 C1322 C1333 C1312 C1323 C1313




ε11

ε22

ε33

2ε12

2ε23

2ε13

 (3.11)

If no information about further material symmetry is provided, this means that there
are 36 material parameters Cijkl to determine. From the conditions that σij = σji and
εij = εji follows that the matrix C (Eq. 3.11) is symmetric and thus the number of pos-
sibly different parameters reduces to 21. For heterogeneous materials the constitutive
relationship refers to averages over the domain Ω, but may not be valid for any arbitrary
material point. Thus for homogenization, the notation of variables in the the constitutive
relationship, σ = Cε (Eq. 3.11), is redefined while two different cases are distinguished.

〈σ〉Ω = Ceff 〈ε〉Ω in case 1 (effective properties) (3.12)

〈σ〉Ω = Capp〈ε〉Ω in case 2 (apparent properties) (3.13)
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The variables 〈σ〉Ω and 〈ε〉Ω refer to the averaged stresses and strains, respectively, in the
domain Ω of the observed heterogeneous material sample. The effective properties of the
heterogeneous material are denoted by Ceff. The corresponding case 1 refers to an ideal
theoretical arrangement. The observed material sample is exactly statistically homoge-
neous, it ideally represents this material and there is no disturbing effect from sample
size and boundary conditions. This generally requires an infinite domain. Otherwise, if
these strict assumptions do not apply, then only apparent properties Capp, according to
case 2, can be determined by any simulation method. The distinction of two cases is use-
ful, as by applying various boundary conditions, various apparent properties Capp can be
determined, which establish accurate bounds of the effective properties Ceff.

For homogeneous boundary conditions (Aboudi 1991), the following equations apply for
average stresses and strains, respectively.

〈σij〉Ω =
1

V

∫
Ω

σijdV (3.14)

〈εij〉Ω =
1

V

∫
Ω

εijdV (3.15)

There are two types of homogeneous boundary conditions (Aboudi 1991). One type are
pure displacement boundary conditions imposed on the boundary Γ.

Ui(Γ) = ε0
ijXj (3.16)

The variable ε0
ij denotes constant strains which would occur in a homogeneous body ac-

cording to this boundary condition. Equation 3.16 describes kinematic uniform boundary
conditions (KUBC). The other type are pure traction boundary conditions imposed on
the boundary Γ.

ti(Γ) = σ0
ijnj (3.17)

The variable σ0
ij means any constant stresses and nj are the coordinates of the unit

outward normal vector to Γ. Equation 3.17 describes static uniform boundary condi-
tions (SUBC) (Amieur, Hazanov and Huet 1993).

For any load cases according to homogeneous boundary conditions, the Eqs. 3.14 and
3.15 establish the averages 〈σij〉Ω and 〈εij〉Ω from determined fluctuating fields σij and εij

within the heterogeneous body. Thus, in analogy to Eq. 3.11 the relationship of Eq. 3.13,
〈σij〉Ω = Capp

ijkl〈εij〉Ω, can be exploited to solve for the unknowns Capp
ijkl . As one load case

provides six equations, altogether six load cases are required to determine 36 unknowns.
It is clear that these load cases need to be linear independent. Zohdi and Wriggers (2005)
propose the following combination of load cases. According to Eq. 3.16 all strains ε0

ij are set
to ε0

ij = 0 for all i, j = 1 . . . 3 except for the following strain(s) in the load cases (1) to (6),

(1) ε0
11 = cε (3.18)

(2) ε0
22 = cε (3.19)

(3) ε0
33 = cε (3.20)

(4) ε0
12 = ε0

21 = cε (3.21)

(5) ε0
23 = ε0

32 = cε (3.22)

(6) ε0
13 = ε0

31 = cε (3.23)
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where cε denotes any constant value. Alternatively, an analog scheme of load cases can be
constructed, for traction boundary conditions according to Eq. 3.17, for σ0

ij with cσ.

For the valid assumption of an orthotrophic material there are three orthogonal
planes of symmetry and the number of independent material parameters reduces to
nine (Sejnoha et al. 2001). In transversally isotropic material, there is one plane of
symmetry and a perpendicular axis of symmetry which leads to five independent material
parameters. Isotropic material is defined by three axis of rotational symmetry. Then
only two independent material parameters exist, which can either be expressed by the
Lame constants or Young’s modulus and Poisson’s ratio (Eq. 3.4). Then one load case
is sufficient to determine these two material parameters. Anyway, principally for any
material which includes a plane or axis of symmetry also the full scheme according to
Eqs. 3.18 to 3.23 can be applied. However, it is reasonable to use an adequate reduced
scheme for the remaining independent material parameters.

An essential principle of homogenization is Hill’s energy condition (Hill 1963)

〈σijεij〉Ω = 〈σij〉Ω〈εij〉Ω (3.24)

which is proven to be valid for homogeneous boundary conditions, which are defined by
Eqs. 3.16 and 3.17. Thus, it is possible to express the strain energy within the heteroge-
neous material of the domain Ω as a quadratic form in terms of 〈σ〉Ω or in terms of 〈ε〉Ω.
As already introduced in connection with Eqs. 3.13 and 3.12, the average stresses 〈σ〉Ω
and strains 〈ε〉Ω depend on the boundary conditions. The apparent properties according
to homogeneous displacement boundary conditions are denoted as Capp

ε (Eq. 3.16) and
those according to homogeneous traction boundary conditions as Capp

σ (Eq. 3.17) . From
classical energy minimum theorems it can be derived that the apparent properties ac-
cording to the defined two homogeneous load cases represent the following bounds on the
effective properties (Amieur, Hazanov and Huet 1993).

Capp
σ < Ceff < Capp

ε (3.25)

The inequalities of matrices in Eq. 3.25 do not refer to all individual entries of the matrices
(Eqs. 3.11 - 3.13), but in terms of quadratic forms (Hazanov and Amieur 1995). Then,
the following inequality C > D means that

εTC ε > εTD ε (3.26)

where ε is any arbitrary, but non-zero vector and therewith

εT(C −D) ε > 0 (3.27)

Equation 3.27 is valid if the matrix (C − D) is positive definite which is satisfied if all
eigenvalues of (C −D) are positive.

These bounds will improve with increasing size of the specimen. The presented homoge-
nization approach is applicable for general three-dimensional materials, if numerical meth-
ods are available to solve for the field variables σij and εij within the heterogeneous ma-
terial according to the specified load case.
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Figure 3.1: Example of homogeneous traction
boundary conditions (SUBC)

Figure 3.2: Example of homogeneous displacement
boundary conditions (KUBC)

Figure 3.3: Example of periodic boundary condi-
tions

Figure 3.4: Example of mixed boundary conditions
(MBC)

3.3.3 Two-Dimensional Continuum

The theory of the foregoing section also includes the two-dimensional case of e.g. plane
stress or plane strain. However, a more illustrative introduction to the homogenization
of two-dimensional, heterogeneous material samples follows. Various types of boundary
conditions are shown in Figs. 3.1 to 3.4. The dashed line corresponds to the undeformed
state of the heterogeneous material sample. Figure 3.1 illustrates a possible deformed
state of the material sample according to an example of homogeneous traction boundary
conditions as defined by Eq. 3.17 with

σ0
11 = cσ and σ0

12 = σ0
21 = σ0

22 = 0 (3.28)

There are point supports to avoid rigid body motion of the body. As the body is in
equilibrium by the tractions only, there will be no supporting forces and the bound-
ary conditions can be considered homogeneous with respect to traction. Homogeneous
displacement boundary conditions are shown in Fig. 3.2. With respect to Eq. 3.16 the
strains are

ε0
11 = cε and ε0

12 = ε0
21 = ε0

22 = 0 (3.29)

The variables cσ and cε define a constant value. Periodic boundary conditions refer to the
assumption of a periodic material structure. Periodic boundary conditions can also be
applied to the three-dimensional continuum. Similar to Eq. 3.16, the general formulation
is

∆Ui(Γ) = ε0
ij ∆Xj (3.30)
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Again ε0
ij defines constant strains. However, these strains do not prescribe the absolute

displacements U(Γ), but the difference of displacements ∆Ui(Γ) on the boundary Γ. Such
prescribed relative displacements between opposite boundaries are illustrated in Fig. 3.3.
By this condition the solution of this problem is already unique. Then, the deformed
periodic unit cell can continuously be extended in any direction by the same periodic
unit cell of the same deformation state. Moreover, across the boundary Γ also the stresses
automatically adapt themselves to continuity. It is noted that Hill’s condition (Eq. 3.24)
is also valid for periodic boundary conditions (Zohdi and Wriggers 2005). The obtained,
apparent material properties Capp

p due to periodic boundary conditions are bounded by

Capp
σ < Capp

p < Capp
ε (3.31)

and possibly provide a direct, close approximation of the effective properties Ceff.
However, Capp

p neither represents a lower nor an upper bound of Ceff. The deformed
body of Fig. 3.3 is consistent with the periodic boundary conditions according to
Eq. 3.30 with ε0 as defined in Eq. 3.29. Figure 3.4 shows an example of mixed boundary
conditions. This means that the boundary conditions are partially tractions and partially
prescribed displacements. If both parts are uniform then this is denoted as uniform
mixed boundary conditions. In laboratory experiments often only mixed boundary
conditions can effectively be applied to the specimen. For several classical testing
conditions (Amieur, Hazanov and Huet 1993; Hazanov 1998) the corresponding mixed
boundary conditions also satisfy Hill’s condition (Eq. 3.24). The apparent material
properties Capp

m obtained from mixed boundary conditions are bounded by

Capp
σ < Capp

m < Capp
ε (3.32)

similar as stated by Eq. 3.31 for periodic boundary conditions.

Homogenization for Specific Mixed Boundary Conditions

Figure 3.5 sketches the tractions t and resulting forces R of a heterogeneous and a homo-
geneous body, both of width W and height H, for the mixed boundary conditions

U1(X1) = ε0
11X1

t2(X1) = 0

}
for X1 ∈ {0; W} ,

U2(X2) = 0
t1(X2) = 0

}
for X2 ∈ {0; H} (3.33)

where ε0
11 defines a constant value. The resulting force is the integral of traction, e.g.

R1+ =

∫ H

0

t1+ dX2 (3.34)

The absence of body loads supposed, the sign subscript of R is superseded. In the following
it is assumed that the resulting forces of the two models a and b in Fig. 3.5 are equal

Ra
1 = Rb

1 , Ra
2 = Rb

2 (3.35)

and that the effective material behavior of model a is isotropic. Then, model a is replaced
by the homogeneous, isotropic model b, where

σb
11 =

R1

H
, σb

22 =
R2

W
, σb

12 = 0 (3.36)
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Figure 3.5: Model a on the left is a heterogeneous body and model b on the right is a homogeneous body.
To both models identical mixed boundary conditions according to Eq. 3.33 are applied.

The present load case and the plane stress condition (Eq. 3.9) yield

σb
11 =

E

1− ν2
ε0
11 , σb

22 =
E

1− ν2
ν ε0

11 (3.37)

from which follows that with Eq. 3.36 the elastic properties are

E =
R1

H ε0
11

(
1−

(
R2H

R1W

)2
)

, ν =
R2H

R1W
(3.38)

As the external work of both models is equal, 1
2
Ra

1ε
0
11W = 1

2
Rb

1ε
0
11W , it follows that also

the internal energy corresponds, 1
2

∫
Ω

σa
ijε

a
ijdA = 1

2

∫
Ω

σb
ijε

b
ijdA. Therefore it is valid to

determine the apparent properties (according to these mixed boundary conditions) of the
heterogeneous body by Eq. 3.38. In this alternative method only the resulting forces Ra

1

and Ra
2 need to be evaluated, instead of computing averages of strains and averages of

stresses for the complete domain.

3.3.4 Classical Bounds on Effective Properties

First bounds of effective elastic properties were formulated by Voigt (1889) and by
Reuss (1929). With respect to Young’s modulus in an idealized one-dimensional medium
of two phases the Voigt bound EVoigt is derived as

EVoigt = c1E1 + c2E2 (3.39)

where E1 and E2 are the Young’s moduli of the two phases. The variables c1 and c2 denote
the total volume ratios of these phases where c1 + c2 = 1. The Reuss bound is defined as

1

EReuss

=
c1

E1

+
c2

E2

(3.40)

The Voigt bound bases on the assumption of constant strain within the composite and the
Reuss bound on that of constant stress. In the three-dimensional continuum, both states
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violate compatibility of either tractions or displacements between the phases. Neverthe-
less, these complementary measures represent important bounds. The effective Young’s
modulus Eeff of statistically isotropic heterogeneous material is bounded by

EReuss < Eeff < EVoigt (3.41)

The tightest possible bounds for heterogeneous materials of two phases with effective
isotropic material behavior (Zohdi and Wriggers 2005) were developed by Hashin and
Shtrikman (1963). They provide the following upper and lower bounds in terms of shear
modulus µ (Eq. 3.4) and bulk modulus κ = E

3(1−2ν)

κ1 +
c2

1

κ2 − κ1

+
3c1

3κ1 + 4µ1

< κeff < κ2 +
c1

1

κ1 − κ2

+
3c2

3κ2 + 4µ2

(3.42)

µ1 +
c2

1

µ2 − µ1

+
6c1(κ1 + 2µ1)

5µ1(3κ1 + 4µ1)

< µeff < µ2 +
c1

1

µ1 − µ2

+
6c2(κ2 + 2µ2)

5µ2(3κ2 + 4µ2)

(3.43)

for κ2 > κ1 and µ2 > µ1. The Hashin-Shtrikman bounds are derived under the assumption
that the body is infinite and the effective material behavior is isotropic. Hence, for finite
bodies the Hashin-Shtrikman bounds are only exactly valid asymptotically with increasing
sample size.

Hill’s energy condition (Eq. 3.24) represents an important principle in the derivation of ho-
mogenization theories. Besides, several approaches start by a splitting of the field variables
into an average mean and a fluctuating part (Zohdi and Wriggers 2005), such as e.g. for
the strains ε = 〈ε+〉Ω + ε̃. Some approaches base on the Eshelby solution (Eshelby 1957).
It describes the linear elastic mechanical solution of one ellipsoid in an infinite domain
under uniform external loading. This obviously includes the case of a sphere in an infi-
nite domain, but the Eshelby solution is also available for other inclusion shapes. One
classical approach for the estimation of effective linear elastic properties of composites is
the dilute approximation. It bases on the solution of one sphere within a matrix mater-
ial and supposes that there is no interaction between inclusions in the domain (Aboudi
1991). Therefore this method is only adequate if the volume ratio of inclusions in the
matrix material is very low. The self-consistent scheme does not put the inclusion into
the matrix material, but as an improvement to the dilute approximation, into an effec-
tive medium with unknown properties. There exist several additional enhancements of
this method and further analytical homogenization approaches. For corresponding formu-
lations and related references it is referred to (Aboudi 1991; Zohdi and Wriggers 2005;
Sejnoha et al. 2001; Nemat-Nasser and Hori 1999). While classical analytical approaches
still present valuable bounds, approximations and reference values, today, computational
micromechanics provides the chance for achieving essentially, improved homogenization
results.
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3.4 Damage Model

3.4.1 General Classification

In the regard of the present thesis damage modeling is considered as principal extension
of the grid-based approach from linear elastic mechanical analysis to modeling nonlin-
ear effects. For this general purpose a simple isotropic damage law is introduced by the
following Section 3.4.2. There exist several important nonlinear effects in the material
behavior of solids, such as damage, plasticity, creep and shrinkage. However, according to
the major objectives stated in Sections 1.3 and 1.4, an adequate introduction to any of
these nonlinear effects would distract from the focus of the present work. Therefore only
some selected references are provided for the present topic of modeling damage.

An introduction to numerous material models is given in (Jirásek 1999; Desai 2001). Var-
ious damage models of concrete are discussed in (Bažant and Planas 1998). The isotropic
damage model for tension of Section 3.4.2 is treated in detail in (Jirásek and Patzák
2002). It represents one simple example of a continuum damage model. Continuum dam-
age models can be adapted in many different ways to simulate damage for tension, for
compression, as well as a combination of both (Mazars 1986). Various aspects of damage,
also for example anisotropy, are treated in (Lemaitre and Chaboche 1990). For concrete
it is indicated to combine damage with plasticity for compression (Pölling 2000). An-
other important category of damage models are crack models which are based on fracture
mechanics (Hertzberg 1986). Such cracks can either be smeared over the area of finite
elements or explicitly modeled as a discrete crack, on which is commented in (De Borst
et al. 2004). A discrete model for damage processes of cohesive frictional materials is
presented in (D’Addetta, Kun and Ramm 2002; D’Addetta 2004). The discrete model is
based on an assembly of particles which are linked by beams or interfaces in combination
with a contact formulation. Moreover, it is pointed out that microplane models represent
an effective and flexible solution for modeling complex material behavior (Leukart 2005;
Leukart and Ramm 2006). There, based on a set of planes with different orientation, also
anisotropic material behavior can be described in a natural way. Relevant damage effects
result from the special behavior of material interfaces. In concrete an interfacial transi-
tion zone (ITZ) of about 20 to 50 µm (Van Mier et al. 2002) thickness between aggregate
and matrix is considered. The influence of the aggregate type and of the mortar on the
constitutive behavior of the ITZ is analyzed in (Caliskan 2003).

3.4.2 Isotropic Damage Model for Tension

For the application of an isotropic material law in the mesoscale model it is presumed that
the finite element resolution of the heterogeneous solid on the mesoscale is very high. Then
even crack patterns can be reproduced by isotropic damage of small subregions. Therefore
the overall behavior of the considered specimen can become essentially anisotropic. On the
macroscale, modeling of such a material behavior would require a more complex material
law. The considered model only includes damage in tension and does not include plasticity.
This means that for complete unloading of the specimen the displacements return to zero.
For concrete this presumption is not quite realistic. However, it is a prototype to examine
the proposed grid-based concept.
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In the isotropic material model, damage is described by the scalar damage parameter ω.
If the material is not damaged then ω = 0. The damage parameter ω can continuously
increase up to 1, and ω = 1 means that the material is completely damaged. The damage
parameter ω couples the linear elastic stress σE and the effective stress σ.

σ = (1− ω) σE (3.44)

There are several different measures of equivalent strain (Jirásek 1999). As one main
criterion, the equivalent strain shall lead to a realistic response in uniaxial tension. Here,
the following definition is selected.

ε̃ =
1

E

√√√√ 3∑
i=1

〈SE
i 〉

2
(3.45)

where E is the Young’s modulus and SE denotes the principal stresses of σE. The brackets
〈SE

i 〉 mean the positive part of SE
i or symbolically 〈SE

i 〉 = max(0, SE
i ). Equation 3.45

refers to the three-dimensional case. For the plane stress problem, it can be reduced to

ε̃ =
1

E

√
〈SE

1 〉
2
+ 〈SE

2 〉
2

(3.46)

with the descriptive derivation of S1 and S2 from the Mohr circle as

S1,2 =
σxx + σyy

2
±

√(
σxx − σyy

2

)2

+ σ2
xy (3.47)

The maximum equivalent strain in the history of a material point is stored in κ. The
damage parameter ω is defined by

ω =


0 if κ ≤ ε0

1− ε0

κ
exp

(
− κ− ε0

εf − ε0

)
if κ > ε0

(3.48)

where ε0 is the limit elastic strain under uniaxial tension which is related to the tensile
strength ft by

ε0 =
ft

E
(3.49)

The parameter εf controls the ductility of the material in terms of the exponential soft-
ening branch (Fig. 3.6). In contrast, a linear softening branch tends to exhibit a defective
snap-back and therefore is not proposed (Jirásek 1999). The linear elastic material matrix
CE establishes the relationship between stress vector σE and strain vector vector ε.

σE = CEε (3.50)

With the equality C(E, ν) = EC(1, ν) where ν is the Poisson’s ratio, Eq. 3.44 corresponds
to σ = E (1− ω) C(1, ν)ε which allows to define a degraded Young’s modulus Ê as

Ê = E (1− ω) (3.51)

The equivalent strain and damage parameter are stored as an additional layer on the finite
element grid (Section 6.2). A corresponding data field is also created for the degraded
Young’s modulus. Then the data field of E relates to the initial linear elastic stiffness and
Ê to the secant stiffness of the damaged material. It is noted that this is simply possible
as the Poisson’s ratio is not modified by this material model.
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Figure 3.6: Stress-strain diagram of damage model with exponential softening

3.4.3 Motivation of Nonlocal Formulation

A nonlocal formulation in this context means that a value of a field variable at any
point will be influenced by the value of another, neighboring point, and reverse. This is
established by weighted averaging over source points of a predefined local domain around
the considered material point, denoted as effect point. Such a nonlocal averaging can
refer to various quantities. There are the following reasons from different perspectives to
introduce nonlocal formulations in the considered numerical damage analysis:

a.1 By a local formulation of the damage model only, the damaged region could be
infinitely small. Then the energy which is dissipated during the damage process
would be equal to zero. The resulting ideally brittle behavior of the material would
be pathologic. From a mathematical point of view this defect results from a loss of
ellipticity in the governing differential equations (Jirásek 1999). Therefore a local-
ization limiter has to be introduced.

a.2 The physical experiment also indicates a nonlocal model. For example in the damage
process of materials the development of crack bands or damage regions is observed.
This effect is assigned to an internal length of the material.

a.3 A discrete numerical model will generally converge to the analytical solution and
therefore the reasons for a nonlocal formulation of (a.1) also apply to finite element
modeling. Without localization limiter, a defective sensitivity to the size of finite
elements would be observed. Besides there are comfortable side-effects of nonlocal
formulations in finite element modeling. Nonlocal averaging can be applied to recover
strains or stresses, which is useful especially for the proposed grid discretization.

The items (a.1) to (a.3) refer to the defect of strain localization from a rather mathemat-
ical, physical and numerical point of view. There are several solutions to this problem.
In regularization techniques the material law is adapted such that the fracture energy is
invariant to the size of finite elements, e.g. (Rots and Invernizzi 2003). Another important
category are nonlocal formulations which are reviewed in (Bažant and Jirásek 2002).
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Figure 3.7: Graph of bell-shaped function over two-dimensional domain with interaction radius R

3.4.4 Nonlocal Formulation by a Weighting Function

The nonlocal formulation by a weighting function α is applied to an arbitrary function f .
The weighted average is denoted by f̄ .

f̄(x) =

∫
Ω

α(x, ξ)f(ξ) dξ (3.52)

The integral includes source points at coordinate ξ in the relevant domain Ω around the
effect point x. The effective weighting function α(x− ξ) satisfies∫

Ω

α(x− ξ) = 1 (3.53)

which is achieved by scaling of an initial weighting function α0(x− ξ) by

α(x, ξ) =
α0(x− ξ)∫

Ω

α0(x− ζ) dζ

(3.54)

Equation 3.53 establishes that the nonlocal average f̄(x) and the function f(x) are iden-
tical if the function f(x) is constant. A favored weighting function in the context of
nonlocal damages models is the bell-shaped function. A two-dimensional representation
of the bell-shaped function is shown in Fig. 3.7. With the general definition that r is the
positive distance between the effect point and the source point r = ‖x − ξ‖, it follows
that the subsequent formulation of the bell-shaped function is valid for one, two or three
dimensions.

α0(r) =


(

1− r2

R2

)2

if 0 ≤ r ≤ R

0 if R ≤ r

(3.55)

In order to compare various weighting functions an internal length ` is introduced which
is defined by the radius of inertia of the weighting function.

` =

√√√√√√√
∫ ∞

0

r2α0(r)dr∫ ∞

0

α0(r)dr

(3.56)
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Another common weighting function is the Gauss distribution function which already
includes the internal length ` by definition.

α0(r) = exp

(
− r2

2`2

)
(3.57)

A further relevant measure is the characteristic length `c which is defined by

`c =

∫ ∞

−∞
α0(r)dr

α0(r = 0)
=

1

α(r = 0)
(3.58)

For the damage analysis of heterogeneous materials the internal length ` and the charac-
teristic length `c have a certain interpretation in regard to the (heterogeneous) character
of the material. The ratio of `c/` depends on the type of weighting function. It will be
fixed, but generally different from 1 (Jirásek 1999). As final remark to this section of
defining nonlocal weighting in general, it is pointed out that B-splines, beyond the appli-
cation as finite element shape functions (Häfner, Kessel and Könke 2006), in assignment
to a polar coordinate system would also define adequate weighting functions.

3.5 Conclusions

This chapter establishes the relevant theory of continuum mechanics with respect to the
scope of the present thesis. The governing equations of Section 3.2 represent the basis
for the displacement-based finite element formulation in Section 4.2. As the geometrically
nonlinear theory is not applied in this work, its formulation is not introduced2. Rigid bond
of material phases is discussed for two-dimensional domains in connection with multiphase
finite elements in Section 4.6. Homogenization according to Section 3.3 is relevant for the
study on effective material behavior of Chapter 7. The damage model of Section 3.4 serves
as a principal extension to nonlinear analysis and will be applied in Chapter 6 to analyze
certain numerical aspects with respect to the present grid-based approach.

2In general the linear theory is adequate for the mechanical analysis of brittle and compact bodies
with realistic strength criteria. Then the limit state rather results from limited physical strength instead
of instability. It shall only be noted that due to extreme localization, relevant geometrically nonlinear
effects could possibly occur on the material level.



Chapter 4

Numerical Model:
Multiphase B-Spline Finite Elements

4.1 Introduction

4.1.1 Basic Ideas of Multiphase B-Spline Finite Elements

Advanced finite elements are proposed for the mechanical analysis of heterogeneous ma-
terials. The approximation quality of these finite elements can be controlled by a variable
order of B-spline shape functions. An element-based formulation is developed such that the
finite element problem can iteratively be solved without storing a global stiffness matrix.
This means a relevant reduction of memory demand. The heterogeneous material is mod-
eled by projection onto a uniform, orthogonal grid of elements. Conventional grid-based
finite element models show severe oscillating defects in the stress solutions at material
interfaces. This problem is tackled by the extension to multiphase finite elements. This
concept enables to define a heterogeneous material distribution within the finite element.
This is possible by a variable number of integration points to each of which individual
material properties can be assigned. Based on an interpolation of material properties at
nodes and further smooth interpolation within the finite elements, a continuous material
function is established. With both, continuous B-spline shape function and continuous ma-
terial function, also the stress solution will be continuous in the domain. It is shown that
the inaccuracy implied by the continuous material field is by far less defective than the
prior oscillating behavior of stresses. One- and two-dimensional examples are presented.

4.1.2 Overview of Alternative Finite Element Methods

For modeling of heterogeneous solids several different discretization types are recognized
in (Häfner, Eckardt, Luther and Könke 2006). The following selected types are based on
continuum mechanics: aligned meshes of phase boundaries by finite elements, unaligned
projection on conventional solid finite elements, projection on multiphase finite elements
and the extended finite element method. Other discretization types are discrete models
such as the projection on truss elements or beam elements and models of discrete particles
which are connected by beam elements.

Aligned meshing precisely defines the inclusion surfaces as e.g. shown in (Huet 1993;
Wittmann et al. 1993; Guidoum and Navi 1993; Wang et al. 1999; Kwan et al. 1999;
Eckardt et al. 2004). However, standard algorithms might fail to mesh complex geometries,

45
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especially with respect to three-dimensional models. In (Guidoum and Navi 1993) element
subdivision of a regular mesh is proposed. Aligned meshing supports bond modeling of
aggregates in a matrix. The bond zone, labeled as interfacial transition zone (ITZ), shows
an important influence in the mechanical analysis of composites. Often the ITZ represents
the weakest phase. Then the initiation of the first micro-cracks occurs in the ITZ. Several
research groups have recognized the importance of this zone and consider this additional
component by special interface elements e.g. Goodman type elements (Kwan, Wang and
Chan 1999).

The projection method on conventional finite elements is demonstrated by Nagai et al.
(2000) who apply a regular grid of cubical finite elements which directly correspond to
voxel data of image analysis. The two-dimensional analogy is shown in (Häfner and Könke
2004). Paz et al. (2003) discretize a model of concrete by a uniform mesh of tetrahedrons.
In the projection method each finite element is assigned to one certain phase according
to the underlying mesoscale geometry. It is a major drawback of the projection method
that the aggregate surfaces are not accurately represented. An improved variant is the
projection on multiphase elements where each individual integration point of a finite
element is assigned to a certain phase. The present approach applies this concept of
multiphase finite elements. The extended finite element method represents an advanced
method to model a material interface within a finite element (Sukumar et al. 2000).
Modeling failure of material interfaces by the extended finite element method and level
sets is presented in (Hettich and Ramm 2006).

Various research groups demonstrate the discretization by projection on one-dimensional
elements, so-called lattice-type models. Regular triangular lattices of beam elements are
applied in (Schlangen and van Mier 1992; Schlangen 1993; Van Mier et al. 2002; Van Mier
and van Vliet 2003). There the material behavior is described by a brittle fracture law,
namely tension cut-off, with different strength values of each phase. In a similar way
Leite et al. (2004) apply a uniform mesh of truss or frame elements in two or three
dimensions, respectively. Leite et al. (2004) use a material model with softening branches
in tension and compression. In several lattice models the ITZ is explicitly considered
and assigned as material type to elements which intersect both aggregate and matrix.
Due to computational effort the element length tends to be considerably larger than the
thickness of ITZ which ranges from 20 to 50 µm (Van Mier et al. 2002). In general the
consistency of these methods to the mechanical theory is not quite obvious. Nevertheless,
these methods lead to good results in the fracture simulation of concrete on the mesoscale.
Discrete models, as described in (D’Addetta, Kun and Ramm 2002; D’Addetta 2004), are
considered as further discretization type. Various materials, for example geomaterials
and concrete, can be modeled by a discrete granular particle assembly. Therefore the
solid is divided into particles by Voronoi tesselation. This means that the particles are
formed as randomly shaped convex polygons. The centers of particles are connected by
beam elements. An enhancement of particle models by interface elements is proposed in
(D’Addetta and Ramm 2006) for an accurate simulation of debonding processes.
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4.1.3 B-Spline Finite Elements and Multiphase Finite Elements

The present approach introduces a combination of B-spline finite elements with the mul-
tiphase finite element concept. In the following the major references for the development
of this approach are introduced. The mathematical theory of B-spline finite elements is
prepared in (Höllig 2003). It includes so-called web-splines (weighted extended B-splines)
for modeling of curved domains. The corresponding method is applied to various physi-
cal applications such as in the computation of a stationary temperature distribution, the
velocity of an incompressible flow and the deformation of linear elastic bodies. However,
while the domains are variable in shape they are principally homogeneous. The present
approach only considers rectangular domains, but it is designed to model heterogeneous
material inside the domain. A possible application of this approach is the mechanical
analysis of heterogeneous materials on the mesoscale where the macroscopic shape of the
analyzed body is not of importance.

Multiphase finite elements are presented in (Steinkopff, Sautter and Wulf 1995; Zohdi
2001). Besides several other advanced finite elements methods (Mishnaevsky and
Schmauder 2001), multiphase finite elements provide an interesting alternative to model
heterogeneous materials. Arbitrary geometries of the heterogeneous material can be
mapped on the integration points of e.g. a uniform orthogonal mesh of finite elements.
Generally this method is expected to be less accurate than aligned meshing. However, this
method only requires pointwise information of the material. Therefore it is convenient
for modeling very complex heterogeneous solids even by three-dimensional models. This
method is demonstrated in (Häfner, Eckardt and Könke 2003).

The present method integrates the multiphase finite element concept into B-spline finite
elements of variable order k while several advantages of grid-based modeling can prin-
cipally be maintained. As a result, the combination of high performance and improved
accuracy lead to a new quality in grid-based modeling of heterogeneous solids.

4.1.4 Outline and Key Aspects of Present Approach

Section 3.2 summarizes the boundary value problem of linear elasticity and introduces
to the applied notation. By means of the principle of virtual displacements, the classical
displacement-based finite element formulation is provided in Section 4.2. Relevant aspects
with regard to B-spline finite elements are included. Section 4.3 introduces to univariate
splines and B-splines. As a key aspect specific modified B-splines according to (Schwetlick
and Kretzschmar 1991) are introduced which will allow for a comfortable definition of dis-
placement boundary conditions. A transparent introduction to one-dimensional B-spline
finite elements is provided in Section 4.4. As an important aspect, the B-splines are split
to form individual finite elements which are assigned to one grid cell as presented in
(Kessel 2004). The analysis is exemplified for two problems of a homogeneous bar. These
examples are comprehensible by hand calculation and provide clear access to this method.

In Section 4.5 two-dimensional B-spline finite elements of variable order k are introduced.
It includes the Gauss-Legendre numerical integration for polynomials of variable order as
given in (Duschek 1961), the formulation of the global stiffness problem, the definition
of boundary conditions and an adaption to iterative solving methods without storage of
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a global stiffness matrix. Corresponding implementation issues are discussed in (Kessel
2005). A two-dimensional homogeneous test problem with higher-order polynomial loading
establishes a verification of the implemented method. The convergence rates of relative
error in energy are analyzed with respect to order k of elements (p-version) and size of
elements (h-version) in comparison to classical error estimates provided in (Zienkiewicz
and Taylor 1997).

Section 4.6 introduces to the proposed multiphase finite element concept to model het-
erogeneous materials. The mechanical theory of a material discontinuity is outlined. In
the idea of this approach the original mechanical problem is transformed into a substitute
problem with continuous material function. While the B-spline finite elements showed
severe local defects for the original problem, they are well applicable to the substitute
problem. The accuracy of the substitute problem can be scaled by one parameter st and
in the theoretical limit state st −→ 0 the substitute problem converges to the original
problem. After a corresponding introduction to multiphase finite elements, a simple bar
example highlights the effect of transforming the mechanical problem. Two further exam-
ples deal with a circular inclusion in a matrix. A plain grid discretization of the circle and
an exact mapping of the transformed problem are presented and analyzed with respect to
the defect in the stress solution. Another example of only one material transition estab-
lishes a thorough analysis of the multiphase B-spline finite element method with regard
to type of transition function of the substitute problem, order of elements and size of
elements. Similar to the homogeneous problem an error analysis in terms of stresses and
energy follows. Finally also an effective overall error is estimated. This allows to identify
optimal parameter combinations of the presented method and supplies evidence of its
potential.

4.2 Finite Elements for Mechanical Analysis

4.2.1 Principle of Virtual Displacements

Based on the stated boundary value problem of elasticity the principle of virtual dis-
placements can be derived, as for example shown in (Bathe 1996). Assuming a body in
equilibrium the principle of virtual displacements states that for any virtual displacements
δU , which are conform to the displacement boundary conditions, the total internal virtual
work (l.h.s.) is equal to the total external virtual work (r.h.s.).

∫
Ω

δεTσdV =

∫
Ω

δUTpb dV +

∫
ΓN

δUTps dA (4.1)

The virtual displacements δU must be continuous and vanish at the surface of prescribed
displacements ΓD. The virtual strains δε are directly related to the virtual displacements
δU according to Eq. 3.1. The external virtual work is induced by body loads pb and
surface loads ps. The principle of virtual displacements is the basis of the displacement-
based finite element formulation.
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4.2.2 Displacement-Based Finite Elements

A linear elastic, continuous body is considered according to the stated three-, two- or
one-dimensional boundary value problem of elasticity (Section 3.2). For finite element
approximation the continuum is divided into a finite number of parts, which will be labeled
as finite elements. These elements are interconnected at nodes. Therefore the continuous
problem is transformed into a discrete problem with a finite number of degrees of freedom.
The interpretation of degrees of freedom as nodal values is only valid for classical finite
elements, but not for B-spline finite elements (except for B-splines of order k=1). However,
the property remains that a degree of freedom is a factor which is assigned to a shape
function such that the principal interpolation rule remains.

The degrees of freedom are stored in a global vector u in a predefined order. To each
element a local order of degrees of freedom is assigned. For each element e an individual
matrix of shape functions N e defines the displacement interpolation field U e within the
volume V e of this element as a function of degrees of freedom ue of this element

U e = N eue , U e
i = N e

iju
e
j (4.2)

where i counts from 1 to the dimension of the stated boundary value problem (1,2 or 3)
and j counts through all local degrees of freedom of element e. The displacement field as
a continuous function within the element e enables to apply the kinematics (Eq. 3.1) and
leads to

εe = Beue , εe
k = Be

kju
e
j (4.3)

where Be defines the strain-displacement matrix and k refers to the number of strain
components of vector εe. The material matrix C establishes a unique relationship between
stresses σe and strains εe

σe = Ceεe , σe
k = Ce

klε
e
l (4.4)

with both variables k and l in the range of 1 to 6 for the three-dimensional case. Then,
the finite element definitions (Eqs. 4.2-4.4) of discretized state variables adopted by the
principle of virtual displacements (Eq. 4.1) for one element e yield1∫

V e

δueTBeTCeBe uedV =

∫
V e

δueTN eTpe
b dV +

∫
Ae

δueTN eTpe
s dA (4.5)

As the entries of the vectors ue and δue are not functions in V e or Ae, but constants,
these vectors can both be extracted from the integral, which further allows for a complete
elimination of δue. This results in the following fundamental relationship

Keue = f e (4.6)

for one element, where Ke is the element stiffness matrix with

Ke =

∫
V e

BeTCeBe dV (4.7)

and f e is the vector of nodal forces

f e =

∫
V e

N eTpe
bdV +

∫
Ae

N eTpe
sdA (4.8)

1For two matrices A and B the equality (AB)T = BTAT is recalled.
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under the implied presumption that the functions of body loads pe
b and surface loads

pe
s are given in the same local coordinate system as the interpolation matrix N e. In

Eq. 4.6 the unknown variables are the degrees of freedom of the displacement vector ue

as defined beforehand. Globally the principle of virtual displacements yields the global
equation system

Ku = f (4.9)

where the global stiffness matrix corresponds to the sum of element stiffness matrices K̄e

after rearrangement according to the global degrees of freedom

K =
ne∑

e=1

K̄e , Kij =
ne∑

e=1

K̄e
ij (4.10)

and the global force vector corresponds to the sum of reordered element force vectors f̄ e.

f =
ne∑

e=1

f̄ e , fi =
ne∑

e=1

f̄ e
i (4.11)

However, the element stiffness matrix Ke as in Eq. 4.6 is singular and therefore the
solution of the displacement vector ue is not unique. Displacement boundary conditions
need to be integrated into the finite element scheme. Considering all global degrees of
freedom of a finite element model, then here the index 1 corresponds to degrees of freedom
with a prescribed force and the index 2 corresponds to those of a prescribed displacement.[

K1,1 K1,2

K2,1 K2,2

] [
u1

u2

]
=

[
f 1

f 2

]
(4.12)

The initially unknowns of this system are u1 and f 2. As the right hand side of the following
equation is known, it is possible to compute u1

K1,1 u1 = f 1 −K1,2 u2 (4.13)

independent of f 2. For further interest the resulting force vector f 2 at fixed degrees of
freedom yields

f 2 = K2,1 u1 + K2,2 u2 (4.14)

4.3 Description of B-Splines

4.3.1 Fundamentals of Univariate Splines

Univariate means that the spline is one-dimensional or a function of one variable, here x.
For the definition of a univariate spline s̄ in the interval [x0, xn] a sequence of supporting
points xi is introduced with the condition that

xi < xi+1 for i = 0, . . . , n− 1. (4.15)
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A spline function s̄ of order k is composed of piecewise polynomials p̄i for i = 0, . . . , (n−1)
where each polynomial p̄i is at maximum of order k. The piecewise polynomials p̄i have
limited support in the interval [x0, xn] and are defined as

p̄i(x) =

{ ∑k
j=0 c̄i,j xj for x ∈ [xi; xi+1)

0 for x /∈ [xi; xi+1)
(4.16)

with k ≥ 1. The coefficients c̄i,j are scalar values which define the piecewise polynomial p̄i.
In addition to the given function the last piecewise polynomial p̄n−1 also includes the upper
boundary value xn to close the spline interval [x0, xn]. Therewith the spline s̄ is defined
as

s̄(x) =
n−1∑
i=0

p̄i(x) for x ∈ [x0, xn] (4.17)

The coordinates xi for i = 1, . . . , (n−1) where the polynomials join are labeled as breaking
points. In the complete interval [x0, xn] the spline s̄ has (k−r) continuous derivatives. This
property is declared as Ck−r-continuity. While each piecewise polynomial p̄i is naturally
Ck-continuous in the interval [xi, xi+1[, the continuity of the spline is only reduced at the
breaking points by a predefined order r ≥ 1. Otherwise, if r = 0 at all breaking points
the spline would be one polynomial over the whole interval.

The prior definitions provide some basic fundamentals of splines. However, it is noted
that the provided information is not sufficient for a practical application as e.g. in the
approximation of an unknown function only by a given sequence x0 . . . xn of supporting
points. For splines of higher order (k ≥ 2) there are more polynomial coefficients to
determine than conditions are given by the definitions above. For example, for splines of
order k = 2, one additional condition needs to be specified, such as the minimization of the
second order derivative, an additional value of the function or its derivative, while various
choices lead to various approximation quality. This problem continues with increasing
order k. An extensive mathematical theory treats many special properties and methods
related to various forms of splines. The subsequent introduction is restricted to B-splines
(basis splines), which as a sub-category of splines, also satisfy the given fundamentals.

4.3.2 B-Splines as a Functional Basis of Splines

In comparison to Eq. 4.17 any Ck−1 continuous spline of order k can also be defined as
linear combination of n + k linear independent B-splines bk

j

s̄(x) =
n−1∑

j=−k

cjb
k
j (x) for x ∈ [x0, xn] (4.18)

The coefficients cj are the corresponding scalar values. It can simply be shown that there
exist exactly n + k linear independent B-splines in the interval [x0, xn]. For the definition
of each segment of a spline or piecewise polynomial (k +1) coefficients have to be defined.
On the whole interval this results in n(k + 1) = nk + n coefficients. Presuming Ck−1

continuity, at each of (n− 1) breaking points k continuity conditions have to be satisfied
which leads to (n − 1)k = nk − k conditions. Therewith (nk + n) − (nk − k) = n + k
parameters can be determined to define a certain spline.
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B-splines of order k form a spline basis which always satisfies the intrinsic spline conditions
while the choice of (n + k) parameters cj allows to define any Ck−1 continuous spline.
A B-spline has only support on k + 1 neighboring intervals such that

bj(x) = 0 for x /∈ [xj, xj+k+1] (4.19)

Therewith Eq. 4.18 can be rewritten as

s̄(x) =
i∑

j=i−k

cjb
k
j (x) for x ∈ [xi, xi+1] and i = 0 . . . n− 1 (4.20)

which means that in the interval [xi, xi+1] there will be (k + 1) B-splines defined. Equa-
tion 4.20 yields that the considered spline interval [x0, xn] also includes B-Splines of the
intervals [x−k, x1] and [xn−1, xn+k].

4.3.3 B-Spline Formulations

The uniform B-spline bk of order k is defined by the recursion

bk(x) =

∫ x

x−1

bk−1(t)dt (4.21)

starting from the characteristic function b0 of the unit interval [0;1]

b0(x) =

{
1 for x ∈ [0; 1)
0 for x /∈ [0; 1)

(4.22)

Alternatively, for computational reasons Eq. 4.21 can be brought into the following form,
labeled as Recurrence Relation (De Boor 1978; Höllig 2003)

bk(x) =
x

k
bk−1(x) +

k + 1− x

k
bk−1(x− 1) (4.23)

The application of the recursion of Eq. 4.21 to the constant B-Spline (Eq. 4.22) yields the
uniform, linear B-spline

b1(x) =


x for x ∈ [0; 1)
−x + 2 for x ∈ [1; 2)
0 otherwise

(4.24)

which is also known as hat-function within the context of finite elements. The same
principle then leads to the uniform quadratic B-spline

b2(x) =


1
2
x2 for x ∈ [0; 1)

−x2 + 3x− 3
2

for x ∈ [1; 2)
1
2
x2 − 3x + 9

2
for x ∈ [2; 3)

0 otherwise

(4.25)
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Figure 4.1: Uniform B-splines of order k = 1 . . . 10

and the uniform cubic B-spline.

b3(x) =



1
6
x3 for x ∈ [0; 1)
−1

2
x3 + 2x2 − 2x + 2

3
for x ∈ [1; 2)

1
2
x3 − 4x2 + 10x− 22

3
for x ∈ [2; 3)

−1
6
x3 + 2x2 − 8x + 32

3
for x ∈ [3; 4)

0 otherwise

(4.26)

The first ten B-splines of order k = 1 . . . 10 are shown in Fig. 4.1. The uniform B-Spline
of order k is of the length k + 1. The uniform B-Spline is scaled to a segment length h
and translated by a distance d by the following expression.

bk
d,h(x)=bk(x/h− d) (4.27)

Considering an infinite sequence of similar B-splines at a neighboring distance d = h, the
sum of these B-splines will be equal to 1 at any coordinate (partition of unity). It also
follows that in each interval [xi, xi+1], with xi+1 = xi + h, similar B-spline segments will
be represented. For the following formulation of B-spline finite elements it will be useful
and sufficient only to consider these (k + 1) B-Spline functions in an interval [0, h].

4.3.4 Modified B-Splines Towards Endpoints

For the following finite element approach it is advantageous to modify the B-splines such
that the endpoints of the spline will either be equal to 0 or to 1. Then it will be straightfor-
ward to apply displacement boundary conditions. Therefore a special recurrence relation,
as presented in (Schwetlick and Kretzschmar 1991), will be adapted. It starts by the
following definition of B-splines of order k = 1.

b1
j(x) =


x−xj

xj+1−xj
for x ∈ [xj; xj+1)

xj+2−x

xj+2−xj+1
for x ∈ [xj+1; xj+2)

0 otherwise

(4.28)

Multiple knots will be introduced at the coordinates of the endpoints in the considered
interval [x0; xn].

x−k = x−k+1 = . . . = x−1 = x0 , xn = xn+1 = . . . = xn+k−1 = xn+k (4.29)
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The modified B-Splines of order k > 1 can recursively developed by

bk
j = ωk−1

j (x)bk−1
j (x) + [1− ωk−1

j+1 (x)]bk−1
j+1(x) (4.30)

with

ωk−1
j (x) =

{
x−xj

xj+k−xj
if xj+k > xj

0 if xj+k = xj

(4.31)

for j = −k, . . . , n− 1. This recursive formula is designed to develop (modified) B-splines
in the interval [x0; xn]. For implementation issues it is referred to (Kessel 2005). Modified
B-splines segments occur in (k − 1) intervals (of length h) towards the endpoints. This
means that in (2k − 1) intervals, one regular B-spline segment will be created in the
center. A larger number of intervals leads to several regular B-spline segments in the
center. A smaller interval causes to create modified B-splines only. For the case of k = 2,
three segments are required to include exactly one regular B-spline. Figure 4.2 shows such
modified and regular B-splines of order k = 2 in the interval [x0, x4]. The various occurring
B-spline types in one interval according to Fig. 4.2 are highlighted in detached form in
Fig. 4.3.

4.4 One-Dimensional B-Spline Finite Elements

As descriptive demonstration of B-spline finite elements the one-dimensional case is in-
cluded. The corresponding formulation is explicitly given for quadratic B-spline finite
elements. This section prepares some basic principles for the following more abstract and
symbolic description of two-dimensional B-spline finite elements in Section 4.5.

4.4.1 Local Interpolation Scheme

As a special characteristic about the following formulation of B-spline finite elements,
the B-splines are split into segments to create element stiffness matrices for each interval
separately. Nevertheless, continuity of the displacement solution will be recovered by a
specific assembly of the global stiffness matrix. The interpolation of the displacements
(Eq. 4.2) is defined by NJ where J is a placeholder for the different element types I, II
or III according to Fig. 4.3 by

U(x) = NJu (4.32)

with the following degrees of freedom

u =
[

ua ub uc

]T
(4.33)

and the interpolation functions, or shape functions, NJ

N I =
[

x2

h2 − 2x
h

+ 1 , −3x2

2h2 + 2x
h

, x2

2h2

]
N II =

[
x2

2h2 − x
h

+ 1
2

, −x2

h2 + x
h

+ 1
2

, x2

2h2

]
N III =

[
x2

2h2 − x
h

+ 1
2

, −3x2

2h2 + x
h

+ 1
2

, x2

h2

] (4.34)
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 Figure 4.2: Partition of unity by 6 B-splines (k=2)
which are modified in the end segments (x0, x1) and
(x3, x4) .

 

Figure 4.3: B-splines (k=2) split into finite ele-
ments (I,II,III) with three shape functions (a,b,c)
each.

4.4.2 Element Stiffness Matrices

Within each element of type J the strain ε(x) is calculated by

ε(x) =
dU(x)

dx
=

d

dx
NJu = BJu (4.35)

where BJ are the strain-displacement matrices (Eq. 4.3). Based on the recurrence relation
there are special rules to get the derivative of a spline function. However, for the current
formulation and purpose, the usual derivation as known for polynomials is also convenient
and leads to

BI =
[

2x
h2 − 2

h
, −3x

h2 + 2
h

, x
h2

]
BII =

[
x
h2 − 1

h
, −2x2

h2 + 1
h

, x
h2

]
BIII =

[
x
h2 − 1

h
, −3x

h2 + 1
h

, 2x
h2

] (4.36)

For building the element stiffness matrices the material matrix C is required. Here, in the
one-dimensional case it is a scalar matrix C = [E] of Young’s modulus E. The stress σ
(Eq. 4.4) is calculated by

σ(x) = CBJu (4.37)

For the segment basis length h and section area A the integral (Eq. 4.7)

K = A

∫ h

0

BTCB dx (4.38)

leads to the following element stiffness matrices of type J = I, II and III.

KI= EA
h


4
3
−1 −1

3

−1 1 0

−1
3

0 1
3

 KII= EA
h


1
3
−1

6
−1

6

−1
6

1
3
−1

6

−1
6
−1

6
1
3

 KIII= EA
h


1
3

0 −1
3

0 1 −1

−1
3
−1 4

3

 (4.39)

4.4.3 Notes on Global Stiffness Matrix

For a bar example the left boundary of the bar is modeled by element type I and the right
boundary by element type III. All elements in between are of type II. It is important
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to note, that all shape functions of the B-Spline are not directly associated with nodal
values or nodes. It is rather useful to regard a shape function as part of an element only.
To establish the continuity of the displacement solution as required, it has to be ensured
that the shape function segments of one B-Spline will be associated with the same global
degree of freedom. In three neighboring elements (as in Fig. 4.3) the segment (c) of the
left element, the segment (b) of the middle element and the segment (a) of the right
element correspond to one and the same B-Spline shape function and need therefore to
be associated to the same global degree of freedom.

4.4.4 Example: Homogeneous B-Spline Bar Elements of Order
k=2

The following example provides a clear and transparent access to the presented method of
B-spline finite elements. It can be included into any introductory course on finite elements.
Moreover, this example highlights some characteristics of B-spline finite elements and
therefore prepares for further developments of these elements.

The stiffness matrix K of four B-Spline finite elements without consideration of displace-
ment boundary conditions is composed of KI , KII and KIII as

K =
EA

h



4
3

−1 −1
3

0 0 0

−1 1 + 1
3

−1
6

−1
6

0 0

−1
3

−1
6

1
3

+ 1
3

+ 1
3

−1
6
− 1

6
−1

6
0

0 −1
6

−1
6
− 1

6
1
3

+ 1
3

+ 1
3

−1
6

−1
3

0 0 −1
6

−1
6

1
3

+ 1 −1

0 0 0 −1
3

−1 4
3


(4.40)

For best transparency of the method an academic example of simple system parameters
without dimension is chosen. Length of the beam according to Fig. 4.4(a) is 4. Young’s
modulus E and area of section A are both set to 1, such that the factor EA

h
= 1. The

displacement boundary condition of the left end leads to elimination of first line and
column of the matrix (Eq. 4.40) and therefore to

K =



4
3

−1
6
−1

6
0 0

−1
6

1 −1
3
−1

6
0

−1
6
−1

3
1 −1

6
−1

3

0 −1
6
−1

6
4
3

−1

0 0 −1
3
−1 4

3


u =



0.5

1.5

2.5

3.5

4.0


f =



0

0

0

0

1


(4.41)

For system of Fig. 4.4(a) with the load F = 1 the load vector f is straightforward to
construct. The solution of the equations system Ku = f leads to u as provided above (Eq.
4.41). The composition of the linear displacement field by the B-spline shape functions
according to this example is shown in Fig. 4.5.
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Figure 4.4: Static systems of a bar problem: (a) a bar loaded by F and (b) bar with constant line load p.
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Figure 4.5: B-Spline shape functions and displace-
ment solution according to system in Fig. 4.4(a).

0 1 2 3 4 

4 

3 

2 

1 

0 

Bar Coordinate 
D

is
pl

ac
em

en
t 

Figure 4.6: B-Spline shape functions and displace-
ment solution according to system in Fig. 4.4(b).

A further example with the same structural parameters and stiffness matrix with constant
line load p as shown in Fig. 4.4(b) follows. The effective load associated to the segments
of one element is the result of the integral (Eq. 4.8)

f =

∫ h

x=0

NTp(x)dx (4.42)

For a constant load of p = 0.5, the load function can be extracted from the integral, such
that only the following integrals are relevant.

∫ h

x=0
N I dx =

[
h
3

, h
2

, h
6

]
∫ h

x=0
N II dx =

[
h
6

, 2h
3

, h
6

]
∫ h

x=0
N III dx =

[
h
6

, h
2

, h
3

] (4.43)

Again, segments which belong to the same global degree of freedom are associated, such
that the following load vector f and solution u to this problem is obtained.

f =
[

1
3

1
2

1
2

1
3

1
6

]T
, u =

[
1.0 2.5 3.5 4.0 4.0

]T
(4.44)

As further explanation the first entry of f sums up from a segment b of type I and a
segment a of type II, which is 1

2
+ 1

6
= 2

3
and multiplied by p = 0.5 results in 0.52

3
= 1

3
.

The displacement solution is graphed in Fig. 4.6. It corresponds to the exact analyti-
cal solution (Eq. 3.10), EAU,xx +p = 0 with U(x = 0) = 0 and σ(x = 4) = 0, therewith
U = −1

4
x2 + 2x.
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4.5 Two-Dimensional B-Spline Finite Elements

4.5.1 Local Interpolation Scheme

The following method is formulated for orthogonal, two-dimensional meshes with uniform
grid space hx and hy in x- and y-direction respectively. Initially, uniform, univariate B-
splines of order k are generated. The required minimum size of the domain corresponds
to (2k − 1) grid intervals in both directions (Section 4.3.4). Subsequently, the uniform
B-splines are scaled according to grid spaces hx and hy (Eq. 4.27). Bivariate B-splines
result from the tensor product (Höllig 2003).

b jx,jy(x, y) = b jx(x) b jy(y) (4.45)

The superscripts jx and jy signify that various element types are used, such as in the
one-dimensional case (Section 4.4.1). With respect to computational implementation it
is not reasonable to explicitly build the bivariate B-splines in symbolic form, when it is
sufficient to calculate discrete values of b jx,jy(x, y). Then, it is more efficient with respect
to memory storage and number of operations to evaluate the factors b jx(x) and b jy(y),
and apply these discrete values to Eq. 4.45 to obtain b jx,jy(x, y). Bivariate B-splines as
shape functions of two-dimensional finite elements are shown in Fig. 4.7.

 

Figure 4.7: Bivariate B-spline finite element shape functions: k=1, k=2 and k=3 (from left to right).

4.5.2 Element Stiffness Matrices

Similar to the one-dimensional case and as stated by the kinematics, derivatives of the
shape functions b jx,jy(x, y) need to be computed. To obtain these partial derivatives at
discrete coordinates it is convenient to reuse the principle of Eq. 4.45 in the following
form.

∂b jx,jy(x, y)

∂x
=

∂(b jx(x) b jy(y))

∂x
=

∂b jx(x)

∂x
b jy(y) (4.46)

∂b jx,jy(x, y)

∂y
=

∂(b jx(x) b jy(y))

∂y
= b jx(x)

∂b jy(y)

∂y
(4.47)

The interpolation matrices are created for individual elements which correspond to one
grid patch. Analog to Eq. 4.32 this is

U = N jx,jyu (4.48)
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for the two-dimensional case with

U =

[
Ux

Uy

]
(4.49)

N jx,jy =

[
N1 . . . Nn̄ 0

0 N1 . . . Nn̄

] jx,jy

(4.50)

u =
[

ux,1 . . . ux,n̄ uy,1 . . . uy,n̄

]T
(4.51)

Here, the index n̄ denotes the number of bivariate spline segments in one element which
corresponds to n̄ = (k + 1)2 or if the order of B-splines is different in x- and y-direction
n̄ = (kx + 1)(ky + 1). The superscripts jx and jy define the element type in x- and y-
direction, respectively. The strain-displacement relationship is

ε = B jx,jyu (4.52)

with the same degrees of freedom u (Eq. 4.51) and

ε =
[

εxx εyy 2εxy

]T
(4.53)

Bjx,jy =


∂N1

∂x
. . . ∂Nn̄

∂x
0

0 ∂N1

∂y
. . . ∂Nn̄

∂y
∂N1

∂y
. . . ∂Nn̄

∂y
∂N1

∂x
. . . ∂Nn̄

∂x


jx,jy

(4.54)

Recalling the constitutive law of plane stress (Eq. 3.9) yields the material matrix C as

C =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 (4.55)

The stiffness matrices are evaluated by numerical integration

Kjx,jy = t
hx

2

hy

2

nx∑
i=1

ny∑
j=1

wx,i wy,j

(
Bjx,jy

T
CBjx,jy

)
(4.56)

where t is the depth of the two-dimensional system. It is practical to substitute C(E, ν) =
EC(1, ν) and to build the element stiffness matrices for Young’s modulus E = 1. Then
the stiffness matrix can be adapted to any Young’s modulus by a simple scalar factor. The
variables wx,i and wy,j denote the weighting factors of the numerical integration scheme
as described in the following Section 4.5.3.

4.5.3 Gauss-Legendre Numerical Integration of Variable Order

For a limited number of integration points the coordinates and weights of the Gauss-
Legendre numerical integration can be taken from tables as given in e.g. (Bathe 1996).
However, for a variable order k of B-spline finite elements it is required to implement
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the general scheme for a variable number of integration points. For a one-dimensional
function g(s) in the interval [−1, 1] the fundamental equation is∫ 1

−1

g(s) ds ≈
n∑

i=1

wi g(si) (4.57)

where wi are the weights and si are the coordinates of the integration points. An inte-
gration of g(x) in the interval [xa, xb] can be replaced by an integration of g(s) in the
interval [−1, 1] ∫ xb

xa

g(x) dx =

∫ 1

−1

g(s) det J ds (4.58)

with the transformation of coordinates

x =
1

2
((xb − xa) s + xa + xb) (4.59)

and the determinant of the Jacobian matrix

det J =
dx

ds
=

xb − xa

2
(4.60)

From Eqs. 4.57 to 4.60 it follows that a function g(x) in an interval [0, h] is numerically
integrated as follows ∫ h

0

g(x) dx ≈ h

2

n∑
i=1

wi g

(
h

2
(1 + si)

)
(4.61)

The coordinates of the integration points si correspond to the zero points of the Legendre
polynomials in the interval [−1; 1]. The Legendre polynomials can be generated by the
following recursion as documented in (Duschek 1961)

Pn+1(s) =
2n + 1

n + 1
sPn(s)− n

n + 1
Pn−1(s) (4.62)

where the Legendre Polynomials P0(s) = 1 and P1(s) = s are used as start values. There
is no closed-form solution to obtain the n zero points of Pn(s), but the following lower
and upper estimates of si are available.

− cos

(
n− 0.5

i + 0.5
π

)
< si < − cos

(
n

i + 0.5
π

)
for i = 1, . . . , n (4.63)

There is always exactly one coordinate si in the intervals of Eq. 4.63. For the search of
this zero point within a closed interval the bisection method is applied. As an alternative
the more efficient, but apparently less stable Newton method shall be mentioned.

The weights wi of the integration points si are determined by

wi =
2

nPn−1(si)
dPn(si)

ds

(4.64)
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The integration points are symmetric to the origin and the corresponding weighting factors
are equal. Therefore the numerical effort can be reduced to one symmetric half. Clearly,
for a odd number of integration points, one is located at the origin.

An application of the one-dimensional integration formula (Eq. 4.61) to the x− and y-
coordinate successively, transforms the symbolic integral for evaluating the element stiff-
ness matrix (Eq. 4.7) into its numerical counterpart as given in Eq. 4.56. For B-spline
shape functions of order k the integrands in Eq. 4.56 will at maximum be a polynomial of
order 2k with respect to either x or y. For the one-dimensional case n integration points
exactly integrate a polynomial of at most order (2n − 1) such that in one dimension
n = k + 1 integration points would be required. In two dimensions this corresponds to an
(unequally spaced) grid of n× n integration points.

4.5.4 Global Formulation of B-Spline Finite Element Problem

A uniform, orthogonal, two-dimensional mesh of B-spline finite elements of variable order k
is considered. The mesh includes nex×ney elements and nnx×nny nodes. The global degrees
of freedom are split2 into x-and y-direction and the following numbering system refers to
one direction only. Then, without activating displacement boundary conditions, there are
nsx × nsy B-spline coefficients3 assigned to the global mesh. The local degrees of freedom
in one element correspond to ncx × ncy B-spline coefficients. For these definitions the
following equalities hold

nnx = nex + 1 , nny = ney + 1 , (4.65)

nsx = nex + k , nsy = ney + k , (4.66)

ncx = k + 1 , ncy = k + 1 , (4.67)

The numbering of elements ieg, nodes ing, global B-spline coefficients isg and local B-spline
coefficients icg of an element can be defined as

ieg(i, j) = i + jnex with i = 0 . . . nex − 1, j = 0 . . . ney − 1, (4.68)

ing(i, j) = i + jnnx with i = 0 . . . nnx − 1, j = 0 . . . nny − 1, (4.69)

isg(i, j) = i + jnsx with i = 0 . . . nsx − 1, j = 0 . . . nsy − 1, (4.70)

icg(i, j) = i + jncx with i = 0 . . . ncx − 1, j = 0 . . . ncy − 1, (4.71)

where the universal variables i and j count the various entities in positive x- and y-
direction, respectively. In adaption to the implementation the count variables start by 0.
At the corners of element (i, j) there are the nodes (i, j), (i+1, j), (i+1, j +1) and (i, j +
1). Accordingly the local B-spline shape coefficients in element (i, j) refer to the global
B-spline coefficients (i . . . i + k, j . . . j + k). Therefore, the assignment of local B-spline
coefficients (i∗, j∗) of an element (i, j) into the global vector of B-spline coefficients isg is
defined as

isg(i, j, i
∗, j∗) = (i + i∗) + (j + j∗)nsx (4.72)

with i = 0 . . . nex − 1 , j = 0 . . . ney − 1 , i∗ = 0 . . . k , j∗ = 0 . . . k

2Similar as in the local degrees of freedom of Eq. 4.51
3In this context B-spline coefficient is used as illustrative synonym to degree of freedom.
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As for a one-dimensional example where e.g. j = 0 and j∗ = 0 with k = 2 this means that
segment i∗ = 2 of element i = 0, segment i∗ = 1 of element i = 1 and segment i∗ = 0 of
element i = 2 are segments of one and the same B-spline isg = 2 (compare this to Section
4.4.3 and Fig. 4.3).

After the computation of all different element stiffness matrices, the assignment from
local to global degrees of freedom as given by Eq. 4.72 provides a clear order to build
the full singular global stiffness matrix. After that certain degrees of freedom need to be
eliminated according to boundary conditions (Section 4.5.5).

However, one of the basic ideas of the present work is not to store a global stiffness
matrix. This possibility is supported by the uniformity of B-spline shape functions and
the resulting low number of varying element stiffness matrices. A corresponding scheme
of an iterative solver method is outlined in Section 4.5.6. Nevertheless the defined order
of entities and the global ordering according to Eq. 4.72 is maintained.

4.5.5 Boundary Conditions

With common finite elements boundary conditions are often treated in terms of nodal
forces or nodal displacements only. In fact the underlying theory principally corresponds
to that required for B-Spline finite elements. However, the characteristic of B-spline finite
elements of order k ≥ 2 that the values at nodes do not have a direct counterpart in the
vector of unknowns require some more considerate treatment.

The required formulation to apply forces to the finite element system is already provided
by Eq. 4.8. Analog to the element displacement vector Eq. 4.51 the element vector of
forces is

f =
[

fx,1 . . . fx,n̄ fy,1 . . . fy,n̄

]T
(4.73)

For the two-dimensional plane stress problem the vectors of body loads pb and surface
loads ps are reduced by the dimension of depth and they are only functions of x and y.

pb =

[
pbx

pby

]
and ps =

[
psx

psy

]
(4.74)

The integrals of Eq. 4.8 are evaluated numerically as described in Section 4.5.3. The
element forces can be assembled into the global vector of forces according to Section
4.5.4. The present implementation supports line forces along the edges of rectangular
domains. With the modified B-splines towards the boundaries the definition of these
loads principally corresponds to the one-dimensional case while still x- and y-direction
need to distinguished.

Any polynomial load function pi(ξ) can be applied by defining a list of load terms ci,jξ
j,

similar to Eq. 4.16, the result of which will be summed up. The variable ξ is representative
for a local, one-dimensional coordinate system of the considered edge.

Therefore it is obvious that also displacement conditions on corner points can directly be
defined. With the definition of Eq. 4.70 the corresponding degrees of freedom of the four
corners are

isg(0, 0) , isg(nsx − 1, 0) , isg(0, nsy − 1) , isg(nsx − 1, nsy − 1) , (4.75)
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As further possibility only displacement conditions along the edges of the domain are
considered in the following. A constant displacement along an edge which equals to 0 is
straightforward to define as the degree of freedom of shape functions which are unequal
to 0 at this edge needs to be set to 0. This is only possible through the introduction of
the mentioned modified B-splines. The relevant degrees of freedom along the four edges
are

isg(i, 0) , isg(nsx − 1, j) , isg(i, nsy − 1) , isg(0, j) , (4.76)

with the range of i and j as in Eq. 4.70. Otherwise any polynomial displacement func-
tions can be defined or approximated along the edges. This problem corresponds to the
one-dimensional case. An equation system needs to be solved, where n + k values of the
predefined displacement function need to be evaluated to determine n+ k B-spline coeffi-
cients according to the definitions in Section 4.3.2. The n+k function values are evaluated
at equidistant coordinates along the edge in our approach. Other choices in the approxi-
mation of the displacement function are possible as described in Section 4.3.1. It is noted
that also in this Section the applied numerical order referred to the full singular equation
system as given in Eq. 4.12 such that the additional steps of Eq. 4.13 and Eq. 4.14 are
required to solve for the unknowns.

4.5.6 Notes on Solving of B-Spline Finite Element Problem

As exemplified for one-dimensional B-spline finite elements (Section 4.4) a global stiffness
matrix (e.g. Eq. 4.41) and therefore a linear equation system can be created which can
be solved by any direct or iterative solver method. A global numbering system for two-
dimensional B-splines finite element models is introduced in Section 4.5.4. It can either
serve to build a global stiffness matrix or to solve the problem iteratively by local, element-
based operations. The second option is proposed in the present work. Corresponding
iterative solver methods are treated in Chapter 5. Some relevant notes with respect to
B-spline finite elements are provided in the following. Any data which is required from the
global stiffness matrix, as e.g. any specific entry or row, can be reconstructed on basis of
the element stiffness matrices. As an essential key this is efficient by a fast access to a low
number of different element stiffness matrices. Without the storage of a global stiffness
matrix, the memory demand essentially reduces. In summary only a few number of vectors
need to be stored, as itemized for bilinear finite elements in Section 5.11.1. The present
implementation includes such a matrix-free application of the conjugate gradient method
(Section 5.3.7) for two-dimensional B-spline finite elements of variable order k. Apart from
some usual vector operations the conjugate gradient method only requires to compute
the global matrix-vector product which can be performed by element-based operations
(Section 5.9.1). For problems with many degrees of freedom (> 1.0 · 105) the multigrid
method (Section 5.4) represents a much more efficient solver method. However, the present
implementation does not include the multigrid method for B-spline finite elements. It
shall only be mentioned that Höllig et al. (2002) presented the multigrid method for web-
splines (weighted extended B-splines). As an alternative option, it could be considered to
implement B-splines finite elements into an existing multigrid environment with bilinear
finite elements. Therefore Section 5.10.4 briefly discusses a transfer operator between a
mesh of B-splines finite elements and a mesh of bilinear finite elements.
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4.5.7 Example: Homogeneous Two-Dimensional Problem

In this example, the approximation quality of B-spline finite elements is evaluated with
respect to variable order of B-splines (p-version) and variable size of elements (h-version).
Therefore a sufficiently complex example had to be selected. The analytical solution is
known such that the error analysis is accurate. The analytical solution of this example is

F = Re ((x + iy)η) (4.77)

where F is the Airy function (Meleshko 2003), i is the imaginary unit i2 = −1 and Re
means the real part of a complex number. Any valid solution to Airy’s function F follows
the condition ∆∆F = 0. The stresses are defined as

σxx = F,yy , σyy = F,xx , σxy = −F,xy (4.78)

These stresses are applied as boundary conditions in terms of load px and py to the system
shown in Fig. 4.8. The load functions shown in Fig. 4.8 qualitatively correspond to Eq. 4.77
with η = 5 which is Fη=5 = x5 + 10x3y2 + 5xy4. For η = 5 the analytical stress solution is

σxx = −20x3 + 60xy2 , σyy = 20x3 − 60xy2 , σxy = 60x2y − 20y3 (4.79)

For the boundaries where either x = 0, y = 0, x = 1 or y = 1 it is straightforward to
define the tractions px and py from these stresses. The inner potential energy Πi of the
system is defined as

Πi =
1

2

∫ 1

x=0

∫ 1

y=0

σT ε dx dy (4.80)

For η = 5 the inner potential is Πi(η = 5) = 3291
7
. The inner potential of the finite

element solution will be less, or equal in case it corresponds to the analytical solution.

x 

y 

W 

py px 

H 

py 

py 

px 

py 

Figure 4.8: Homogeneous system with W=1 and H=1
under higher-order polynomial loads px and py along its
boundaries.

+40 

-20 

Figure 4.9: B-spline finite element solution of
stress σxx to problem of Fig. 4.8 for k = 4.
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Figure 4.10: Convergence of error with respect to polynomial order k for element size h = 8
128
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Figure 4.11: Convergence of error with respect to element size h for the example η = 5

The relative error of the inner potential of the finite element solution to the analytical
solution is a reference value for the accuracy of the finite elements. In Figs. 4.10 and 4.11
this error is labeled as relative error in energy. These diagrams show the convergence of
this error with respect to order of B-splines k (Fig. 4.10) and element size h (Fig. 4.11).

It follows from these diagrams that it is much more efficient to decrease the error by an
increase of polynomial order k than by an increase of element number (or equivalent de-
crease of element size). It is a well known fact that the p-version is better for homogeneous
problems than the h-version. This example shows that implementation of the proposed
B-splines finite elements and the routine of defined higher-order polynomial load func-
tion is accurate. A limit of tolerance due to limited computational precision is carefully
assigned to the dimension 10−12 of relative error in energy. Values below practically corre-
spond to the exact solution. As for example for η = 5 the stress functions are at maximum
of polynomial order 3, then the corresponding displacement function is at maximum of
order 4. Therefore B-spline finite elements of the order k = 4 shall lead to the exact solu-
tion which is shown to be true in Fig. 4.10 (within the tolerance of precision). Figure 4.9
illustrates the corresponding solution of stress σxx.
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According to (Zienkiewicz and Taylor 1997) some error convergence rate estimators are
briefly outlined. Assuming that the exact displacement solution can be approximated by
Taylor series, the displacement solution of the finite elements only include terms up to the
order k. Then, the error only includes terms of the order k + 1 or higher. Therefore this
error is estimated to converge by the order O(hk+1). The strains are the first derivatives
of the displacements such that the error in strains is assigned to one order below O(hk).
Accordingly, an estimate of the convergence rate of the inner potential Πi (Eq. 4.80) leads
to the order O(h2k). For the example in Fig. 4.11, the convergence rate estimator is O(h2)
for k = 1, O(h4) for k = 2 and O(h6) for k = 3, which fits quite well to the achieved
results as illustrated in Table 4.1. Therefore without proof the results indicate that the
convergence rate estimator is also applicable to B-spline finite elements of variable order k.

Error(2h) / Error(h)

a priori h = 8s h = 4s h = 2s h = 1s

k = 1 4 3.9904 3.9973 3.9992 3.9998

k = 2 16 16.043 16.012 16.003 16.003

k = 3 64 60.710 63.577 - -

Table 4.1: Convergence rates with respect to the results presented in Fig. 4.11.

4.6 Multiphase Finite Element Concept for Hetero-

geneous Solids

4.6.1 Mechanical Problem with Material Discontinuity and
Substitute Problem with Continuous Material Function

The multiphase finite element concept is introduced for the mechanical analysis of hetero-
geneous solids. Before evaluating the corresponding finite element formulation, it is useful
to show the main characteristics of the fundamental mechanical theory with respect to
heterogeneous materials. Furthermore the original mechanical problem of heterogeneous
material will be substituted by a transformed problem which will also converge to the
exact solution while it initially appears less effective. However, it will be shown that this
transformation cures a severe defect of the multiphase finite element solution, while the
induced error by the substitute problem is comparatively low.

As a principle example of a heterogeneous material, in Fig. 4.12 an inclusion (Ω1) in a
matrix material (Ω2) is shown. Without the inclusion, the illustrated problem corresponds
to the boundary value problem of linear elasticity as stated in Section 3.2. Additional
compatibility conditions can be formulated for the rigid bonded interface between Ω1

and Ω2 which is denoted as Γ12. Rigid bond is expressed by U 1 = U 2 on Γ12 where the
superscript i refers to the domain Ωi. In terms of stresses and strains, the compatibility
conditions are

σ1
nn = σ2

nn , σ1
nt = σ2

nt , ε1
tt = ε2

tt , on Γ12 (4.81)
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Figure 4.12: Original problem with discontinuity of
material
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Figure 4.13: Substitute problem with continuous
material

where the indices n and t correspond to the normal and tangential directions of the
interface, vn and vt on Γ12, as sketched in Fig. 4.12. Invoking the constitutive relationship
of plane stress (Section 3.2.2) leads to

εi
nn =

1− ν2
i

Ei

σnn − νiεtt (4.82)

σi
tt = νiσnn + Eiεtt (4.83)

εi
nt =

1 + νi

Ei

σnt (4.84)

which highlights that (in combination with Eq. 4.81) apart from some possible exceptions
for different materials (E1 6= E2 and/or ν1 6= ν2), the following inequalities may occur

ε1
nn 6= ε2

nn , ε1
nt 6= ε2

nt , σ1
tt 6= σ2

tt , on Γ12 (4.85)

For the subsequent approach it is especially important to note that some strains will not
be continuous at a material discontinuity. However, the B-spline basis of the introduced
finite elements for a polynomial order of k ≥ 2 is always continuous in its derivatives
and therefore only enables continuous strain fields. This discrepancy of continuity or
discontinuity as described would lead to a severe defect if the B-Spline finite element
method is applied to the original problem (Fig. 4.12).

Instead, a transformed problem is introduced (Fig. 4.13). The discontinuous material
field is approximated by a smooth, continuous material field. The following conditions are
introduced.

Ω3 ⊂ Ω1 , Ω4 ⊂ Ω2 , (4.86)

with

E3 = E1 , E4 = E2 , ν3 = ν1 , ν4 = ν2 , (4.87)

The material in Ω5 is defined such that

E5(X) = E3 and ν5(X) = ν3 on Γ35 (4.88)

E5(X) = E4 and ν5(X) = ν4 on Γ45 (4.89)
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The defined material transition in Ω5, as well as its boundaries Γ35 and Γ45, is assumed
to be sufficiently smooth. The material transition in Ω5 is monotonic in a section perpen-
dicular to Γ35 or Γ45. Then, with the definition that

st −→ 0 (4.90)

which corresponds to
Ω3 −→ Ω1 , Ω4 −→ Ω2 , (4.91)

a continuous substitute problem is generated which will converge to the original problem
and therefore to the exact solution. However, for finite values of st, the width of the
transition zone Ω5 (Fig. 4.13), all strains and stresses will be continuous in the substitute
problem. The B-spline finite elements can well be applied to the substitute problem, as
B-spline finite elements are effective in the approximation of smooth solutions.

4.6.2 Description of Multiphase Finite Elements

Finite element meshes which are aligned to phase boundaries are the conventional way
to analyze heterogeneous materials. But aligned mesh generation can become very com-
plex, especially with regard to irregular shapes and three-dimensional models. Alterna-
tively, an unaligned projection on a grid of conventional finite elements is demonstrated
in (Häfner, Eckardt, Luther and Könke 2006). It is possible to refine the discretization
of the mesoscale geometry by multiphase finite elements (Steinkopff, Sautter and Wulf
1995; Zohdi 2001; Zohdi and Wriggers 2005) without increasing the number of elements
or degrees of freedom.

In the preparation of an element stiffness matrix for each integration point i the integrands
K̄

e
i will initially be prepared and stored for a Young’s modulus E = 1 in matrix C (Eq.

4.56). Based on these parts K̄
e
i the assembly of specific element stiffness matrices e with

different Young’s modulus in each integration point (Ee
1 . . . Ee

n) is very fast established by

Ke(Ee
1 . . . Ee

n) =
n∑

i=1

Ee
i K̄

e
i (4.92)

where in comparison to Eq. 4.56 the two sums have been reduced to one sum over i =
1 . . . n with n = nxny. For finite elements of homogeneous material the order of the
integrand only depends on the order of B-splines k (Eq. 4.56). With both, the shape
functions and material function, being polynomials, a higher number of integration points
can be determined such that the integration will be exact (Section 4.5.3). Otherwise, if
an element crosses an interface a higher number of integration points generally increases
the integration accuracy. Fig. 4.14 illustrates the idea of an adapted, different number of
integration points according to the material defined within the finite element.

It is pointed out that the evaluation of Ke as in Eq. 4.92 will increase the effort of the
conjugate gradient method by means of the global matrix-vector product (Sections 4.5.6
and 5.9.1), but only for heterogeneous elements. The number of degrees of freedom does
not increase.

By the combination of the multiphase concept and B-spline elements, the geometrical
resolution and the approximation quality of each finite element can be controlled based
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Ω3 Ω4 Ω5 

Figure 4.14: Adapted number of integration points in multiphase finite elements.

on an efficient local formulation. It is pointed out that only in combination with smoothing
of the material function as defined by the substitute problem (Section 4.6.1) smooth stress
solutions can be achieved. Otherwise, also with classical finite elements the multiphase
concept leads to defective jumps in tractions along an material interface. Subsequently,
some examples are introduced to test the proposed method in the Sections 4.6.3 to 4.6.6
and a final discussion of the overall error is found in Section 4.6.7.

4.6.3 Example: One-Dimensional Multiphase B-Spline Finite
Elements

A one-dimensional example of a bar with material discontinuity is presented. The system
corresponds to that of Fig. 4.15. The load function is p(x) = 1

40
x− 0.5kN

cm
and F = 10kN.

 p(x) 

x  interface 

multiphase finite element 

(a) 
(b) 

F 

Figure 4.15: Bar system with material discontinuity and finite element discretizations

The length of the bar is 100 cm. The area of the section is constant 5 cm2. A material
discontinuity is located at the center of the bar at x = 50 cm. The Young’s modulus of the
left half (0 ≤ x < 50 cm) is E1 = 3000 kN

cm2 and that of the right half (50 < x ≤ 100 cm) is
E2 = 6000 kN

cm2 . The problem is analyzed by B-spline finite elements of order k = 2 in two
variants. In the first example the bar is modeled by six B-spline finite elements. Three
elements left of the material discontinuity obtain the parameter E1 and three elements
of the right the parameter E2 (Fig. 4.15(a)). In the second example the bar is modeled
by seven finite elements (Fig. 4.15(b)). The three left most and right most B-spline finite
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Figure 4.16: Analytical solutions and finite element solutions, marked by ∗, for B-spline finite elements
(left) and multiphase B-spline finite elements (right) for a loaded one-dimensional tension bar with ma-
terial discontinuity (left) and linear material transition within one finite element (right) in terms of
displacement u (magnified by factor 100), strain ε (magnified by factor 1000) and stress σ.

elements are assigned to the parameters E1 and E2, respectively. In the center there is a
multiphase B-spline finite element based on a linear material transition function from E1

to E2. The results of this example are shown in Fig. 4.16. In the variant of the multiphase
element, it is visible that the stress solution is continuous and less deviating from the
exact solution. Here, the exact solutions correspond to the original problem (Fig. 4.16,
left) and to the transformed problem (Fig. 4.16, right).

4.6.4 Example: Elastic Circular Inclusion in a Matrix Based on
Plain Grid Discretization

According to the provided theory on multiphase finite elements, an example of an elastic
circular inclusion is introduced (Fig. 4.17). The inclusion and the matrix material are
isotropic. The Young’s modulus of the matrix is Ematrix = 100000 and of the inclusion is
Einclusion = 200000. The Poisson’s ratio of both materials is νmatrix = νinclusion = 0.2. The
images of various grid discretizations of the spherical inclusions are shown in Fig. 4.18. The
continuous material field, in terms of Young’s modulus, is achieved by simple averaging
of nodal values as illustrated in Figs. 4.19 and 4.20.

This example provides a basic study of the proposed method with respect to the mechan-
ical analysis of materials with several inclusions as e.g. in concrete or other comparable
heterogeneous solids. The example is well suitable as the analytical solution for a circular
inclusion in an infinite plate is available. It is documented in (Kachanov, Shafiro and
Tsukrov 2003). The defined ratio 16 : 1 of plate dimension (W, H, in Fig. 4.17) to the
diameter of the inclusion (D in Fig. 4.17) is assumed to be an acceptable approximation
to which the analytical solution fits. It is therefore regarded as reference solution to this
example. Here, it shall only be noted that in the analytical solution the stress state within
the inclusion is constant, e.g. for this example the stresses are σxx = 825

68
≈ 12.132 and

σyy = 25
68
≈ 0.3676. The analytical solution of stress σxx is shown in Fig. 4.22. The finite

element solution of Model 2 with usual bilinear finite elements or, equivalent, B-spline
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Figure 4.17: Two-dimensional solid with circular
inclusion under uniaxial stress px=10 (W=H=128,
D=8).

(a)  (b)  (c)  

Figure 4.18: Pixel models labeled as (a) Model 1,
(b) Model 2 and (c) Model 3.

22

Figure 4.19: Isometric view on Young’s modulus of
two-dim. solid with grid discretization of circular
inclusion

22

Figure 4.20: Continuous Young’s modulus by aver-
aging of nodal values shown in Fig. 4.19

 
 

Figure 4.21: Stress σxx of model in Fig. 4.19 by
classical bilinear finite elements

Figure 4.22: Analytical solution of stress σxx for
system of circular inclusion (Fig. 4.17)

finite elements of order k = 1 is shown in Fig. 4.21. In its comparison to the analytical
solution it is visible by the naked eye that this finite element solution is severely defective
along the grid-based material interface approximation. The same effect is observed for
B-spline finite elements of order k = 2 (Fig. 4.23). However, the application of multiphase
B-spline finite elements of order k = 2 in combination with the transformed model of
Fig. 4.20 leads to an essentially improved solution. As expected the solution of stress is
continuous according to the theory of the substitute problem (Section 4.6.1).

For a qualitative comparison of the discretization by multiphase B-spline finite elements
of order k = 2 to the analytical solution with respect to variable resolution (Model 1 to 3)
two sections are selected as illustrated in Fig. 4.17, labeled as sections 1-1 and 2-2.
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Figure 4.23: Stress σxx of model in Fig. 4.19 by
B-spline finite elements of order k=2

Figure 4.24: Stress σxx of model in Fig. 4.20 by
multiphase B-spline finite elements of order k=2

All Figs. 4.25 to 4.28 show that principally the correct dimension in the stresses is
matched4. From Model 1 to Model 3 a slight improvement in accuracy can be seen in
stress σxx of Fig. 4.25. The evaluation of stress σxx of Fig. 4.26 is less clear. On one hand
there is an improvement in accuracy with respect to the minimum and on the other hand
inaccuracies develop at the edges of the center plane. Fig. 4.27 shows that with increasing
resolution the peaks in stress σyy are approximated better. However, the development of
stress σyy in Fig. 4.28 with increasing resolution of the model is more difficult to interpret.
There are parts of improved and worse approximation.

4 In Figs. 4.25 to 4.28 only stress values at the corners of the elements are computed connected by
linear functions.
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Figure 4.25: Stress σxx of section 1-1
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Figure 4.26: Stress σxx of section 2-2-64
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Figure 4.27: Stress σyy of section 1-1
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Figure 4.28: Stress σyy of section 2-2
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Nevertheless, the major conclusion of this example is that the multiphase finite elements
in combination with the transformed problem lead to reasonable results. This is quite a
significant improvement with respect to the former grid discretization where the stresses
are severely defective. This example demonstrates that the basic idea works in principle.
But the achieved results did not lead to a clear conclusion how these models can further
be improved. Therefore this aspect will be examined in the following examples.

4.6.5 Example: Elastic Circular Inclusion in a Matrix Based on
Mapping of Geometry

This example is mostly identical to the prior example. The only, but essential difference is
the effective description of the circle on the finite element mesh. In the foregoing example,
first a plain grid discretization was generated where one finite element either belongs
to the inclusion or to the matrix (Fig. 4.19). Then the material model was smoothed by
averaging of nodal values (Fig. 4.20). The isolines which correspond to Model 2 (Fig. 4.20)
are shown in Fig. 4.29(a). As an improved option the circular inclusion and a circular
transition function (compare to Ω5 in Fig. 4.13) are mapped onto the centers of the
elements, first. Then, the material properties of the nodes are computed as the averages
of the neighboring element centers. This leads to a quite improved topology of material
properties (Fig. 4.29(b)). It is interesting to note that this indirect method apparently
leads to a more accurate geometrical representation than the direct mapping on the nodes
with subsequent bilinear averaging within the finite elements (without illustration).

However, it is clear that some geometrical error is induced by any of these procedures
which needs to be distinguished from the inherent approximation quality of multiphase
B-spline finite elements. Therefore in this example the circle and the transition function are
exactly mapped onto the integration points of the finite elements. This is only possible if an
analytical description of the inclusion is available such as in this case of a circle. However,
for other inclusion shapes such analytical functions are available as well (Section 2.2). The
number of integration points is increased by 2 with respect to one dimension to cover the
heterogeneous material within the finite element.

 

(a) (b) 

Figure 4.29: Isolines of material transition function of (a) model in Fig.4.20, (b) based on mapping of
material function on element centers with subsequent interpolation at nodes.
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(c) 

(b) 

(a) 

Figure 4.30: Stress solution σxx of multiphase B-spline finite elements of order (a) k = 2, (b) k = 3 and
(c) k = 3, finer mesh.

The basic aspect of this example is to analyze if an increase of element number (h-method)
or element order k (p-method) leads to improved results and shows clear convergence.
Fig. 4.30(a) shows the solution of stress σxx for multiphase B-splines of order k = 2. In
Fig. 4.30(b) the order of the elements is k = 3. With a C2-continuous material transition
function and C2-continuous B-spline finite elements this stress solution is not only C0-,
but C1-continuous (in contrast to Fig. 4.30(a)). It appears smoother, but some defective
oscillations are obvious. Halving the mesh size leads to the result of Fig. 4.30(c).

Qualitatively, this result is essentially improved. The increase of order k had less visible
effect. Therefore it is supposed that the h-version is more effective than the p-version
for the heterogeneous case (in contrast to the homogeneous case, Section 4.5.7). From
this example, it is evident that multiphase B-spline finite elements represent a promising
alternative in modeling heterogeneous solids based on orthogonal grids. The required
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(a) (b) (c) 

Figure 4.31: Stress σxx as in Fig. 4.30, but magnified and with element grid (a to c correspond).

number of elements is also reasonable. The element resolution of Fig. 4.30 is shown in
Fig. 4.31. For an effective use and better knowledge of this method further studies are
performed in the following.

4.6.6 Example: Uniaxial Stress Case of One Material Transition

The focus of this example is the exact analysis of the defect in the stress solution for
one material transition according to Fig. 4.32. It is a one-dimensional example but was
computed by the two-dimensional implementation. The Poisson’s ratio is set to zero for
both materials. The parameter study includes a variation of material transition functions
as is shown in Fig. 4.33. The linear function only generates a C0-continuous transition. The
continuity which results from the cubic function is C1 and that of the quintic function is
C2. The material functions will be directly mapped onto the integration points of the finite
elements. Furthermore a variation of element number and variation of element order k is
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Figure 4.32: Two-dimensional solid with one mate-
rial transition zone, px = 1 N

mm2 , W=H=128mm,
D=16mm.
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Figure 4.33: Various material transition functions
for the system of Fig. 4.32
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Figure 4.34: Stress σxx in finite elements of Section 1-1 for C0-continuous linear transition of Young’s
modulus and varying order k of B-Spline finite elements.
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Figure 4.35: Stress σxx in finite elements of Section 1-1 for C1-continuous cubic transition of Young’s
modulus and varying order k of B-Spline finite elements.

examined. The finite element results will be analyzed in terms of error in stress and error
in energy in comparison to the exact analytical solution.

The exact solution to this problem is σxx = 1 N
mm2 in the whole domain. Figs. 4.34 to

4.36 show the multiphase B-spline finite element solutions for a linear transition, a cubic
transition and a quintic transition, respectively. Here, element size is constant h = 4mm.
The varying parameter is the order k of applied B-spline shape functions. Figure 4.34
shows a comparatively good solution for k = 2 and a change for the worse for k = 3. This
can be explained as B-splines of order k = 3 are C2-continuous while due to the linear
transition function the exact solution to this problem in terms of displacement is only C1-
continuous. This leads to the significant peaks in the solution at the coordinates x = −8
and x = 8. Further increase of B-spline order k does not cure this defect. Figure 4.35
shows a better solution in stress for k = 3 than for k = 2. The foregoing effect only
occurs for k = 4, but is less severe. Again, a further increase of order k does not lead to
convergence.

Figure 4.36 is included to find out if a further increase of continuity in the material
transition function would essentially increase the possible approximation quality with
respect to an increase of k. In fact, then a relative good solution is achieved for k = 5, but
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Figure 4.36: Stress σxx in finite elements of Section 1-1 for C2-continuous quintic transition of Young’s
modulus and varying order k of B-Spline finite elements.

the effect does not appear to be relevant. Concluding, for best approximation of material
transitions, multiphase B-spline finite elements of order k = 2 or k = 3 are proposed,
as no further improvement can be expected for an increase of k (while the p-version was
much more effective for homogeneous problems).

The Figs. 4.37 to 4.39 deal with the h-version, namely a change of element number mea-
sured in terms of element size h. Figure 4.37 shows the combination of a linear transition
function and B-splines shape functions of order k = 2. The stress σxx converges very effec-
tively with decreasing mesh size. Same effect is observed for the linear transition function
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Figure 4.37: Stress σxx in finite elements of Section 1-1 for C0-continuous linear transition of Young’s
modulus, order k=2 and varying size h of B-Spline finite elements.
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Figure 4.38: Stress σxx in finite elements of Section 1-1 for C0-continuous linear transition of Young’s
modulus, order k=3 and varying size h of B-Spline finite elements.
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Figure 4.39: Stress σxx in finite elements of Section 1-1 for C1-continuous cubic transition of Young’s
modulus, order k=3 and varying size h of B-Spline finite elements.

and k = 3 in Fig. 4.38. Even the discussed defect at x = −8 and x = 8 decreases, which
would not have been clear without this study, but it appears to converge less effectively.

As a further study the combination of cubic transition and k = 3 is shown in Fig. 4.39.
Without the defect the problem converges even faster then for a linear transition and
k = 2 with respect to decreasing mesh size h.

As the major conclusion, it is quite obvious that the h-version is much more effective in
modeling heterogeneous materials than the p-version. Best results are achieved for simple
linear transitions in combination with B-spline functions of order k = 2. This supports the
statement that a grid-based model with simple bilinear mapping functions is reasonable
and a higher-order mapping function will not necessarily lead to essentially improved
answers. Only exception is a cubic transition function in combination with B-splines of
order k = 3. But then it is expected, that in fact the cubic transition function needs to be
exactly mapped which is not easy to assure for arbitrary geometries of grid-based models.
As a further conclusion it is noted that the dimension of error in all examples is within the
acceptable tolerance of a few percent error in stress or essentially below. Again, therefore
the method is well suited for modeling heterogeneous problems.

In all cases multiphase B-spline finite elements of order k = 1 (bilinear) lead to signifi-
cantly worse results which is only summarized in the following final summaries of error in
stress and energy in form of Figs. 4.40 to 4.43. Fig. 4.40 summarizes the maximum error
of stress in the p-version and Fig. 4.41 that in the h-version. Similar trends in the error
of energy are observed for the p-version and h-version in Figs. 4.42 and 4.43, respectively.
It is quite interesting to evaluate the convergence rates of error energy from Fig. 4.43 as
assembled in Table 4.2 and compare them to those of the homogeneous problem.

Error(2h) / Error(h)

h = 4s h = 2s h = 1s

Linear Transition, k = 2 18.041 19.016 18.575

Linear Transition, k = 3 6.2506 7.8595 7.9919

Cubic Transition, k = 2 10.332 20.836 20.213

Cubic Transition, k = 3 107.54 175.00 -

Table 4.2: Convergence rates of error energy as in Fig. 4.43 and assignment of first row to Fig. 4.37,
second row to Fig. 4.38, third row without illustration and fourth row to Fig. 4.39



4.6. Multiphase Finite Element Concept for Heterogeneous Solids 79

-0,04

-0,03

-0,02

-0,01

0,00

0,01

0,02

0,03

0,04

1 2 3 4 5 6 7 8

Linear transition
Cubic transition
Quintic transition

Order k of B-spline finite elements

M
ax

. p
os

iti
ve

 a
nd

 n
eg

at
iv

e 
er

ro
r o

f s
tre

ss
 

Figure 4.40: Maximum error of stress in p-version
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Figure 4.41: Maximum error of stress in h-version
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Figure 4.42: Energy error in p-version
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Figure 4.43: Energy error in h-version

4.6.7 Overall Error Estimation

Several examples showed that the presented multiphase B-spline finite elements can be
applied to the mechanical analysis of heterogeneous materials and in the h-version lead to
good convergence of stress and system energy. These elements were especially designed to
reduce severely defective stresses along interfaces of grid-based models. However, there-
fore a substitute problem was introduced (Section 4.6.1), which already includes an er-
ror in advance. For an accurate assessment of the proposed method, the overall error is
considered. This also allows to identify effectively optimal parameter combinations. The
following sources of error are considered:

Geometrical error The geometrical error refers to any difference between the hetero-
geneous material geometry of the original problem and that of the finite element
problem. Such a difference can have several reasons such as e.g. imprecise geomet-
rical data of the material, the representation by a grid model or the introduction of
a substitute problem (Section 4.6.1).

Discretization error The discretization error denotes the classical approximation error
which results of the finite functional space of the finite elements. This error evaluates
the adequacy of shape functions in the approximation of the exact solution of the
posed problem. It is important to note that the discretization error refers to the
posed problem, which might differ from the intended problem, e.g. by the geometrical
error.
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Numerical error The term numerical error summarizes several possible error sources.
These errors can result from the limited computational precision or from user-defined
tolerances such as in the iterative solution process of the linear equation system. In
any case it needs to be assured that the numerical error is essentially below the
geometrical error and the discretization error.

In (Häfner and Könke 2004) the common basis of error in energy appeared to be most
reasonable to compare different sources of error. However, in this context the effect on
the stress solution is of relevant interest. In the following the overall error, or effective
error, includes the geometrical error and the discretization error. The numerical error is
negligible.

The overall error is estimated with regard to the example of one material transition of
Section 4.6.6. The linear material transition is considered in combination with multiphase
B-spline finite elements of order k = 2. The size of the material transitions zone st (D in
Fig. 4.32) is variable. Only some assumptions allow for a comparison of geometrical and
discretization error. The geometrical error only depends on st of the substitute problem.
The geometry is exactly mapped onto the elements which are based on a sufficient number
of integration points. If st = 0 the geometry corresponds to the original problem (compare
to Section 4.6.3).

In example of Section 4.6.6 the analytical stress solution of the substitute problem corre-
sponds to that of the original problem. However, the effective stiffness is changed due to
the material transition zone. This can be expressed in error of potential energy. A relative
error of the stress is assigned to the square root of relative error of energy. This is an
assumption which presumes that the error of stress due to the geometrical error is equally
distributed over the domain. The discretization error causes local defects in the stress
solution. It follows that an equally distributed error and a maximum local error are of
different character. However, Figs. 4.44 and 4.45 illustrate the relationship of these errors
where the effective error is the sum of geometrical error and discretization error.
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Figure 4.44: Effective error of energy
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Figure 4.45: Effective maximum error of stress

With respect to the relative error of energy the introduction of a material transition zone
(st > 0) is always disadvantageous. However, the dimension of the relative geometrical
error of 0.5% at st = 8 in Fig. 4.44 is comparatively low and tolerable. The errors in stress
according to Fig. 4.45 are essentially decreased by introduction of the material transition
zone in contrast to the original problem (st = 0). For size h = 4 of elements the lowest
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effective error is achieved for st = 8, for h = 1 it is st = 4. Also in the effective error
of stress the proposed method converges with decreasing mesh size h but less fast as the
pure discretization error. However, this is a successful result of the introduced substitute
problem. It is highlighted that the number of degrees of freedom connected to a specific
mesh size h (h = 1 or h = 4) in Fig. 4.45 remains unchanged.

4.7 Conclusions

The present chapter provides transparent access to B-spline finite elements by simple one-
dimensional examples which are comprehensible by hand calculation. Two-dimensional
B-spline finite elements are developed which are of variable order k. In a complex ho-
mogeneous problem these elements achieve exemplary convergence rates. They are highly
accurate, as tested up to the order k = 5. Even with respect to the variable order k, only
a few element stiffness matrices are required to create and solve the global finite element
problem on a uniform grid. By the use of iterative solvers a global stiffness matrix needs
not to be stored such that the memory demand can be reduced to a minimum of essen-
tially required vectors. Moreover, the presented element-based modeling on uniform grids
is ideally suited for an effective use of the multigrid method.

The multiphase finite element concept extends the B-spline finite elements of variable or-
der k to their application in the mechanical analysis of heterogeneous solids. Several advan-
tages of grid-based modeling are maintained such that the extension to three-dimensional
modeling of heterogeneous solids remains straightforward. The geometrical description of
different phases within the material is independent of the finite element mesh. Surfaces
of the phases need not to be defined as usually required in aligned meshing. The geom-
etry can originate from pixel models or exact mapping of material functions within the
finite elements. As an essential key, an original problem with material discontinuities is
replaced by a substitute problem with continuous material approximations. The errors of
stress and energy are analyzed with respect to B-spline order k, element size h, as well
as type of material transition function and size st of material transition zone. Therefore
best parameter combinations of this method can be identified.

In contrast to homogeneous materials where an increase of B-spline order k is optimal
(p-version), for heterogeneous materials convergence is almost only achieved by refining
the mesh (h-version). Apart from the considerate use of cubic B-spline finite elements
for heterogeneous materials, bilinear material transition functions in combination with
quadratic B-spline finite elements appear optimal and robust. An ideal size of the material
transition zone is approximately assigned to the size of two to four elements (2h to 4h).
Finally, the effective error, as sum of discretization error and geometrical error, from the
substitute problem is estimated. Also for the effective error the substitute problem leads
to a successful trade-off. While the effective energy error only slightly increases, severe
errors in the stress solution effectively decrease by an essential magnitude. Although
the effective error of stress converges less fast than the pure discretization error within
the substitute problem, the presented method establishes a substantial improvement for
grid-based modeling. Therefore multiphase B-spline finite elements are proposed as novel
alternative in the mechanical analysis of heterogeneous solids.



Chapter 5

Numerical Model:
Iterative Solver Methods

5.1 Introduction

The possibility to increase the model size by resolution in comparison to standard pro-
cedures would be valuable. As one major problem the possible resolution of finite ele-
ment models is generally restricted due to (a) computation times and even more critical
(b) memory demand. Direct solver methods require the storage of a global stiffness matrix
and the corresponding memory demand limits the problem size. Iterative solvers can be
based on a local element-based formulation while orthogonal grids consist of geometrical
identical elements. The element-based formulation is short and transparent, and therefore
efficient in implementation. A variation of the material properties in elements or inte-
gration points is possible. The multigrid method is a fast iterative solver method, where
ideally the computational effort only increases linear with problem size. This is an optimal
property which is almost achieved in the present implementation. In fact, no method is
known which scales better than linear. Therefore the multigrid method gains in impor-
tance the larger the problem becomes. But for heterogeneous models with very large ratios
of Young’s moduli the multigrid method considerably slows down by a constant factor.
Such large ratios occur in certain heterogeneous solids, as well as in the damage analysis of
solids. An important remedy is found in the multigrid preconditioned conjugate gradient
method. Various multigrid cycles are tested and results from three-dimensional analysis
are presented.

5.2 Problem Statement and Notation

In the static case the finite element method leads to the linear equation system

K u = f (5.1)

where K denotes the stiffness matrix, f is the vector of prescribed forces and u is the
solution, the displacement vector which is initially unknown. The corresponding theory
of the finite element formulation is given in Section 4.2. In the following discussion of
iterative solver methods it is assumed that the problem is of the form as in Eq. 5.1 and the
vector u corresponds to the displacements of the effective degrees of freedom. In the scalar

82
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variable uk
i the superscript k denotes the k-th iteration and the subscript i indicates the

i-th element of the vector. The increment of displacements ∆uk after the k-th iteration is

∆uk = uk+1 − uk (5.2)

and with
fk = Kuk (5.3)

the increment of forces ∆fk is
∆fk = fk+1 − fk (5.4)

The error ek is defined as the difference between the iterative displacement approximation
uk after the k-th iteration and the solution vector u.

ek = uk − u (5.5)

The residual rk is the difference of the prescribed force vector f and the effective right
hand side fk after the k-th iteration

rk = f − fk (5.6)

Hence, from Eqs. 5.1, 5.4, 5.5 5.6 it can be derived that

−K ek = rk (5.7)

5.3 Basic Iterative Solver Methods

5.3.1 Stationary Iterative Methods

As identifying characteristic, stationary iterative methods can be expressed in the simple
form

uk+1 = Quk + q (5.8)

where Q and q are placeholders for a matrix and a vector, respectively, both independent
of iteration step k. Among others, stationary iterative methods, such as e.g. the Gauss-
Seidel method, may act as smoothers within the later proposed multigrid method. A
brief introduction to these methods is provided in the following. Further mathematical
background of these iterative methods is treated in e.g. (Barrett et al. 1994; Hackbusch
1991; Young 1991).

The considered problem is a linear equation system of the form K u = f (Eq. 5.1). Then
it is trivial to introduce any regular matrix S, called the splitting matrix, as follows

K = S + (K − S) (5.9)

The linear equation system can be rewritten as

Su = (S −K) u + f (5.10)

and the iterative scheme of the splitting method is defined as

uk+1 = S−1
(
(S −K) uk + f

)
(5.11)
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For further analysis of this method it is useful to introduce the iteration matrix M as

M = S−1 (S −K) (5.12)

In consideration of Eq. 5.12 the method of Eq. 5.11 corresponds to the scheme of the
stationary iterative method (Eq. 5.8) with Q = M and q = S−1f . From the iteration
scheme of Eq. 5.8, the definition of the error in Eq. 5.5 and the equality u = Qu + q, it
follows that

ek+1 = Mek (5.13)

The spectral radius ρ of a matrix is its largest absolute eigenvalue. The stationary iterative
method converges if and only if the spectral radius ρ of the iteration matrix M satisfies
the condition

ρ(M) < 1 (5.14)

Then it converges for any initial start vector u0 and any right hand side f .

5.3.2 Jacobi Method

In case of the Jacobi method the diagonal D of the system matrix K is chosen as splitting
matrix SJ = D. Then, analogous to Eq. 5.9 the decomposition reads as

K = D + (K −D) or K = D + (−L−U ) (5.15)

where (−U ) denotes the strictly upper triangle and (−L) denotes the strictly lower tri-
angle of the system matrix K. Thus, in accordance to Eq. 5.11 the matrix form of the
Jacobi method is defined by

uk+1 = D−1
(
(L + U ) uk + f

)
(5.16)

Correspondingly, the index form of the Jacobi method results as

uk+1
i =

1

Kii

(
fi −

n∑
j=1, j 6=i

Kiju
k
j

)
(5.17)

5.3.3 Gauss–Seidel Method

In case of the Gauss–Seidel method the splitting matrix is chosen as SGS = (D −L).
Then, analogous to Eq. 5.9 the decomposition reads as

K = (D −L) + (K − (D −L)) or K = (D −L) + (−U ) (5.18)

Thus, in accordance to the splitting method of Eq. 5.11 the Gauss–Seidel method is

uk+1 = (D −L)−1 (Uuk + f
)

(5.19)

Some further algebraic transformations of this equation are required for the derivation of
the index form of the Gauss–Seidel method, such as

Duk+1 −Luk+1 = Uuk + f (5.20)
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and

uk+1 = D−1
(
Luk+1 + Uuk + f

)
(5.21)

where the index form is evident.

uk+1
i =

1

Kii

(
fi −

i−1∑
j=1

Kiju
k+1
j −

n∑
j=i+1

Kiju
k
j

)
(5.22)

5.3.4 Comparison of Jacobi- and Gauss–Seidel Method

In the computation of the i-th element uk+1
i in the (k + 1)–iteration, the Gauss–Seidel

method already includes all available iterates uk+1
j with j = 1 . . . (i − 1), while the Ja-

cobi method only uses the uk
j with j = 1 . . . N of the (k)–iteration. This is the only, but

momentous difference in the algorithms of these two methods. In other words, while the
Jacobi method adds all increments simultaneously only after cycling through all degrees
of freedom, the Gauss–Seidel method adds all increments successively as soon available.
As an advantage of the Gauss-Seidel method, one vector is sufficient to update its vec-
tor elements i successively in contrast to the Jacobi method where an additional vector
is required. However, in practical problems this difference of memory demand is rather
not relevant. As the operations for the iteration of different vector elements do not coin-
cide in the Jacobi method, it is not dependent on the nodal ordering and parallelization
is straightforward possible. In the Gauss-Seidel method the nodal ordering influences
the convergence behavior. For regular grids specific nodal orderings are summarized in
(Hackbusch 1985), such as the red–black, lexicographical, zebra-line or four-color order-
ing. Advanced algorithms are required for successful parallelization of the Gauss-Seidel
method or uncontrolled splitting of the process leads to the so-called chaotic Gauss-Seidel
method. The convergence of both these stationary iterative methods is dependent on the
spectral radius of the corresponding iteration matrix M as stated in Eq. 5.14. In general,
if both methods converge, the convergence of the Gauss-Seidel method is better as each
operation reverts to the latest data. The Jacobi method converges if the system matrix
K is strictly diagonally dominant as a sufficient condition (Hackbusch 1991).

|Kii| >
n∑

j=1, j 6=i

|Kij| for all i (5.23)

This does not apply to the considered structural finite element problems. However, conver-
gence can be achieved by additional damping. The Gauss-Seidel converges if the system
matrix K is strictly diagonally dominant or if the system matrix K is positive definite.
The second condition is true, if the finite element model is properly restrained and stable
(Bathe 1996). Besides the use as stand-alone iterative solvers, the damped Jacobi method
or the Gauss–Seidel can be applied as smoothers within the multigrid method.
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5.3.5 Symmetric Gauss-Seidel Method

The symmetric Gauss-Seidel Method bases on two half steps, the classical Gauss-Seidel
iteration, labeled as forward sweep (fGS), and additionally a backward sweep (bGS), with
the splitting matrices

SfGS = D −L and SbGS = D −U (5.24)

The following equations together describe one step of the symmetric Gauss-Seidel method

uk+ 1
2 = (D −L)−1 (Uuk + f

)
(5.25)

uk+1 = (D −U )−1
(
Luk+ 1

2 + f
)

(5.26)

By condensation of uk+ 1
2 , it is straightforward to derive the effective splitting matrix

SsGS = (D −L)D−1(D −U ) (5.27)

of the symmetric Gauss-Seidel method and its effective iteration matrix

M sGS = (D −U )−1L(D −L)−1U (5.28)

Among other things, this matrix form of the iteration matrix is valuable for convergence
analysis. However, for implementation issues it is reasonable to consider just the index
form of the symmetric Gauss-Seidel method. The forward sweep corresponds to the Gauss-
Seidel method of Eq. 5.22 assuming that i counts from 1 to n. Then in the subsequent
backward sweep i counts backwards from n to 1. The symmetric Gauss-Seidel method has
special properties. Summarily, it is generally not twice as fast convergent as the Gauss-
Seidel method which results from analysis of the iteration matrix. On the other hand by a
specific implementation with buffering of certain data, one iteration step of the symmetric
method counts less operations than two of the Gauss-Seidel method. Nevertheless with
respect to advanced solver methods, these details are rather marginal and will not be
considered any further in this work. But as an essential advantage of the symmetric
version, it is a well suited preconditioner.

5.3.6 Relaxation Methods

Relaxation methods are stationary iterative methods. Thus, they can also be presented
in the form of Eq. 5.8. For each of the previously introduced methods, there also exists a
corresponding relaxation method.

In comparison to the preceding methods, the relaxation methods propose to scale each
increment by a constant relaxation factor ω. The general form of the relaxation methods
is given by the following short algorithmic expression

uk+1
i := (1− ω) uk

i + ωŭk+1
i (5.29)

where for each individual index i, the temporary variable ŭk+1
i is computed as uk+1

i of
the Jacobi method in case of the simultaneous over-relaxation method (JOR method)
or as uk+1

i of the Gauss–Seidel method in case of the successive over-relaxation
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method (SOR method). Then, if ω = 1 this relaxation scheme is identical to the Jacobi
and the Gauss–Seidel method, respectively.

The optimum relaxation factor can theoretically be derived from the spectral radius
(largest absolute eigenvalue) of the iteration matrix. But as this is expensive, several
methods on the practical determination of ω are proposed in (Hackbusch 1991; Young
1991). Usually in finite element analysis the optimum relaxation for the SOR method is
between 1.3 and 1.9 (Bathe 1996). For a finite element model of a heterogeneous solid
(Häfner and Könke 2004), the convergence of the JOR method was achieved by a heuristic
damping factor of ω = 0.8.

5.3.7 Conjugate Gradient Method

The conjugate gradient method has been developed by Hestenes and Stiefel (1952). In
contrast to the method described in 5.3.1, the conjugate gradient method is instationary.
It is presumed that the matrix K ∈ Rn×n and the vector f ∈ Rn are real and that the
matrix K is symmetric (K = KT) and positive definite

uTKu > 0 for all u 6= 0 (5.30)

Then, the minimization problem of the quadratic form F (x) = min

F (u) =
1

2
uTKu− fTu (5.31)

is equivalent to setting its derivative

grad F (u) = Ku− f (5.32)

equal to the zero vector
grad F (u) = 0 (5.33)

The conjugate gradient method is an iterative minimizer of the provided quadratic form
and thus an iterative solver method for the linear equation system Ku = f . As an
important characteristic of the corresponding algorithm, the quadratic form is always
minimized from an approximate vector uk in the direction of a provided search vector
pk 6= 0, which can be written as

F (uk + λ pk) = min (5.34)

with both uk and pk are constant vectors ∈ Rn and a scalar variable λ ∈ R. In detail this
leads to the following parabolic function with respect to λ(

1

2
pkT

Kpk

)
λ2 +

(
pkT

Kuk − pkT
f
)

λ +

(
1

2
ukT

Kuk − ukT
f

)
= min (5.35)

This yields that the quadratic form is minimized for

λ =
pkT (

f −Kuk
)

pkTKpk
(5.36)
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The ideal search direction pk would be the error ek, but this would presume the knowl-
edge of the exact solution u. Therefore, the negative gradient of the quadratic form at
uk represents the best intuitive search direction from the local view of uk. Then, with
Eqs. 5.32, 5.3 and 5.6, the search direction corresponds to the residuum rk

− grad F (uk) = f −Kuk = rk (5.37)

With pk = rk in Eq. 5.36, the following equations can be defined

λk =
rkT

rk

rkTKrk
(5.38)

uk+1 = uk + λkr
k (5.39)

which describe one step of an iterative method which is called the Method of Steepest
Descent due to the property that for any iteration step k the search direction pk is defined
by
(
−grad F (uk)

)
.

The Method of the Steepest Descent is a relevant step towards the Conjugate Gradient
Method, but it turns out that the choice of the search directions pk is not optimal. As
uk+1 is optimized with respect to the previous search direction pk = rk, it is clear that
successive search directions are orthogonal or in symbolic form

(
−grad F (uk+1) ⊥ pk

)
.

However, although it can be shown that rk ⊥ rk+1 and rk+1 ⊥ rk+2, it is generally not
true that rk ⊥ rk+2. Therewith uk+2 has lost its optimum with respect to the previously
optimized direction rk.

If uk+1 is optimal with respect to pk 6= 0, then this property is passed to uk+2, if and only if

K pk+1 ⊥ pk (5.40)

and the vectors pk+1 and pk are called conjugate. In the conjugate gradient method the
search directions are pairwise conjugate. As each new direction is derived from the actual
remaining residual and conjugate to the prior search direction, it is also conjugate to all
previous search directions. Thus a system of conjugate search directions is obtained or
equivalent a system of orthogonal residuals. This property can be proofed by induction.
With the initial values

r0 = f −Ku0 ; p0 = r0 (5.41)

the following equations describe the algorithm of the conjugate gradient method

λk =
rkT

pk

pkTKpk
(5.42)

uk+1 = uk + λkp
k (5.43)

rk+1 = rk − λkKpk (5.44)

pk+1 = rk+1 − rk+1T
Kpk

pkTKpk
pk (5.45)

Eq. 5.42 corresponds to Eq. 5.36. Eq. 5.44 is equivalent to rk+1 = f −Kuk+1. As doc-
umented in e.g. (Hackbusch 1991) and with regard to an efficient implementation, it is
possible to replace Eq. 5.42 by

λ =
rkT

rk

pkTKpk
(5.46)
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and Eq. 5.45 by

pk+1 = rk+1 +
rk+1T

rk+1

rkTrk
pk (5.47)

By exact arithmetic the conjugate gradient method will reach the exact solution of an
n-dimensional problem after n steps. In theory this method can be regarded as a direct
solver. However, due to numerical round-off errors the orthogonality is lost and such an
ideal result is not achieved. In practice, with respect to a reasonable error tolerance the
conjugate gradient method can generally be terminated after considerably less than n
steps. This supports the view of the conjugate gradient method as an iterative method,
while an iterative method should not converge to the exact solution (even or especially
in theory) after n steps. Thus the conjugate gradient method is labeled as semi-iterative
method.

5.4 Multigrid Method

5.4.1 Basic Ideas of the Multigrid Method

The term multigrid method describes an iterative solver strategy rather than one certain
algorithm. It is transparent to the FE practitioner’s intuition that somehow a coarse mesh
solution of a physical problem is a relative good approximation for the same problem on
a fine mesh. Therefore certain operators need to be defined to transfer the problem from
the fine to the coarse mesh and to transfer the solution in reverse direction. While it is
clear, that a coarse mesh solution requires essentially less computational effort than the
fine mesh solution. Then, a coarse mesh solution might provide a good start vector for
the iterative process on the fine mesh. In a hierarchy of meshes one might adaptively step
from the coarsest mesh to the finest mesh and start each iterative process on a certain
mesh by an (approximate) solution of the previous coarser mesh. However, it is important
to note that this scheme does not yet really touch the potential of the multigrid method.
Assuming that for each mesh one of the introduced classical iterative solver methods is
applied, the convergence of the iterative process becomes penally slow on the finest mesh.
Then again, the current disequilibrium on the finest mesh, namely the current residual,
can be regarded as a new physical problem and the same adaptive procedure through
all meshes provides a fast approximation and accelerates the solution process on the
fine mesh. This kind of the algorithm is called coarse grid correction. Again, this example
rather sketches the basic idea. The sophisticated algorithm of the multigrid method applies
certain schemes of problem and solution transfers in e.g. so called V- or W-cycles, while
on the individual meshes the solution is improved by one or a few iteration steps of the
classical iterative solver methods. These methods are referred to as smoothers, apparently
as local disequilibrium is quickly improved or smoothed, while the global disequilibrium
reduces very slowly when applied on a fine mesh. The multigrid method can be treated
as stationary iterative solver method, as e.g. illustrated in (Wesseling 1992). For further
introduction to the theory of multigrid methods it is referred to (Hackbusch 1985; Briggs
1991; Bramble 1993; Wesseling 1992; Joppich 1996).
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5.4.2 Algorithms of the Multigrid Method

The multigrid method is applied to solve a linear equation system. Here, it is assumed
that this equation system corresponds to a finite element problem on a uniform orthogonal
mesh. This mesh, which defines the problem, is referred to as the finest mesh. It is assumed,
that there exists a hierarchy of m+1 meshes i = 0 . . . m, where m denotes the finest mesh.
The problem is defined as

Km um = fm (5.48)

The index c refers to any coarser mesh 0 ≤ c < m. The items (a) to (g) outline the
algorithm of one coarse grid correction:

(a) Pre-Smoothing: The actual vector is uk
m. One or a few classical iteration steps are

applied.

(b) Evaluation of residual forces on the finest grid

rk
m = f −Kmuk

m (5.49)

(c) Restriction: Transfer of residual forces from fine grid m to coarse grid c by a cor-
responding matrix P c

m. In practice, the matrix-vector product corresponds to an
algorithm.

rc := P c
m rk

m (5.50)

(d) Correction: The actual coarse grid problem is then

Kc uc = rc (5.51)

Starting by an initial vector u0
c = 0, one or a few iteration steps k∗ of a classical it-

erative solver method yield an improved approximation uk∗
c which is also a potential

correction of the problem on mesh m.

(e) Prolongation: Interpolation of the correction uk∗
c of grid c onto the fine mesh m by

a corresponding matrix P m
c . Analogous to step (b) an algorithmic implementation

of this operation is usual.
∆um := P m

c uk∗

c (5.52)

(f) The displacement increment on mesh m is added to the current displacement vector
on mesh m which leads to a temporary variable û.

ûm = uk
m + ∆um (5.53)

(g) Post-Smoothing: Only after one or a few classical iteration steps on ûm the correction
is complete and generates the next approximation uk+1

m .
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Figure 5.1: Various multigrid cycles with the following steps: prolongation (↗), restriction (↘), one or a
few smoothing iterations (◦) and a large number of smoothing iterations according to length of box (�).

Equation 5.51 states a problem similar to Equation 5.48. Therefore the algorithm can be
restarted for the problem of Eq. 5.51. For m = 4 such a recursive procedure is illustrated
in Fig. 5.1 by the V-cycle. Generally it is proposed to solve the problem exactly by a
direct solver on the coarsest mesh i = 0. In analogy to the shape of the letter V, also
the possibility of a W-cycle is included in Fig. 5.1 (Wesseling 1992). Moreover, a F-cycle
is illustrated. By the defined operations of restriction, prolongation and smoothing, it is
straightforward to construct any of these or also other cycles. Some further details are
provided in the benchmark of different cycles (Section 5.11.2).

In the present approach also a modified cycle is implemented. It is illustrated on the right
of Fig. 5.1. It requires mesh transfer operators between the finest and any coarser mesh.
It is designed to balance the computational effort on the different meshes. The proposed
number of iteration steps si on mesh i is

si = c(m− i)2 (5.54)

where c is a heuristic scalar factor. The observed convergence in the examples of (Häfner,
Eckardt, Luther and Könke 2006) was good for c = 1 and best for c = 3 . . . 5.

5.5 Multigrid Preconditioned Conjugate Gradient

Method

The Sections 5.3 and 5.4 introduce to the conjugate gradient method and classical iterative
solver methods as a basis of the multigrid method. But before an efficient combination
of these methods, in terms of the multigrid preconditioned conjugate gradient method, is
presented, this topic is motivated with respect to the present engineering application.

The multigrid method is demonstrated as a very effective, iterative solver method for
the mechanical analysis of heterogeneous material samples in (Häfner, Eckardt, Luther
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and Könke 2006). However, an increase of the ratio of Young’s moduli between inclusion
and matrix material leads to a significantly slower solution process. The reason can be
assigned to the worse conditioning of the problem as well as to the worse material represen-
tation on coarse grids. For a similar problem, the Poisson’s equation with large coefficient
jumps, it was shown in (Tatebe 1993) that the multigrid preconditioned conjugate gra-
dient method shows an essentially superior convergence rate over the multigrid method.
In fact, the considered conjugate gradient acceleration can principally be applied to any
iterative method (Wesseling 1992). Such an acceleration is not required or even disadvan-
tageous, if the algorithm of the multigrid method is well designed and appropriate for the
considered problem. Otherwise, one can try to identify and reduce the essential defect by
e.g. additional local smoothing (Wesseling 1992) or advanced algebraic transfer operators
(Bayreuther 2004). A potential improvement, which is less dependent of the considered
problem, is given by applying the multigrid method as a preconditioner of the conjugate
gradient method. An efficient combined preconditioning by the multigrid method and
an adaption to shell elements is proposed in (Gee 2004). In the present context multigrid
preconditioning will be examined with respect to the aforementioned analysis of heteroge-
neous materials, whereas all global operations are formulated by effective, element-based
procedures (Sections 5.7 to 5.10), such that the storage of a global stiffness matrix is
superseded. This leads to a substantially reduced memory demand which is particularly
relevant for achieving a high-resolution analysis on the material level.

A linear equation system Ku = f can be preconditioned by a matrix H−1 as follows.

H−1Ku = H−1f (5.55)

The matrix H−1 should be symmetric and positive definite (Tatebe 1993). The condi-
tions of the multigrid preconditioner to match these properties are examined in (Tatebe
1993). According to (Wesseling 1992) the multigrid method will potentially provide a valid
preconditioner if the smoother is symmetric1. For a derivation of the preconditioned con-
jugate gradient method a matrix E is defined which satisfies H−1 = ETE as exemplified
in (Wesseling 1992). However, a final back substitution leads to an algorithm which only
includes H−1.

The convergence is improved by Eq. 5.55 if the condition number of the preconditioned
matrix (H−1K) is lower than that of the original matrix K, which can be determined
from the analysis of eigenvalues (Hackbusch 1991). If the preconditioning matrix would
be H−1 = K−1 then after one iteration step the exact solution u is found. In this sense,
an ideal matrix H−1 is a good, but reasonably efficient approximation of K−1. With
respect to the initial search direction, the vector p0 = H−1r0 would correspond to the
error −e0 (Eq. 5.7), if H−1 = K−1 (Section 5.3.7). An adequate matrix H−1 leads to
an improved initial search direction p0. Therefore the preconditioned conjugate gradient
method applies the following start conditions.

r0 = f −Ku0 ; r̃0 = p0 = H−1r0 (5.56)

1In the following benchmark of the multigrid preconditioned conjugate gradient method (Section 5.11)
only the plain Gauss-Seidel method (Section 5.3.3) has been applied instead of the symmetric Gauss-
Seidel method (Section 5.3.5). This implementation of the algorithm showed stable convergence in our
examples. For comparison also the symmetric Gauss-Seidel has exemplary been tested, but in the tested
examples a relevant difference was not recognized.
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The following equations of the preconditioned conjugate gradient method are adopted
from (Tatebe 1993) in the notation of the conjugate gradient method in Section 5.3.7.

λk =
r̃kT

rk

pkTKpk
(5.57)

uk+1 = uk + λkp
k (5.58)

rk+1 = rk − λkKpk (5.59)

r̃k+1 = H−1rk+1 (5.60)

pk+1 = r̃k+1 +
r̃k+1T

rk+1

r̃kT
rk

pk (5.61)

In each iteration step preconditioning only takes place in Eq. 5.60 and generates a new
vector r̃k+1. For the present multigrid preconditioning the matrix H−1 is not explicitly
build, but the operation defined in Eq. 5.60 is replaced by a multigrid cycle for the residual
rk+1 and its solution is assigned to r̃k+1. Apart from this final transfer, it is noted that the
multigrid cycle for Eq. 5.60 needs to be performed on an own, individual set of variables
which is independent of the variables in Eqs. 5.57 to 5.61. The preconditioned version of the
method preserves a system of conjugate directions (Section 5.3.7), while each increment is
optimized for each improved search direction based on the multigrid method. Thus, with
respect to the present application, it follows that this optimization leads to considerably
improved increments, if the stiffness of the coarse meshes is generally overestimated with
further reference to Section 5.10.1.

5.6 Error Measures

Generally it is assumed that the exact error e is not known, such that an error measure
is constructed in terms of the residual r. In the following error measures the set A defines
the sequence of all degrees of freedom with a prescribed force (also if equal to zero) and
B all those with a prescribed displacement. The Euclidean norm of residual forces (in A)
is a usual measure

εk
a =

[∑
i∈A

(rk
i )

2

] 1
2

(5.62)

It is more objective to use the relative measure

εk
r =

[∑
i∈A

(rk
i )

2

] 1
2

[∑
i∈A

(
fi

)2
+
∑
j∈B

(
fk

j

)2] 1
2

(5.63)
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similar to (Parsons 1997). It is noted that in (Parsons 1997) part of the set B, of degrees
of freedom with prescribed displacements, is probably not included. In (Häfner, Eckardt,
Luther and Könke 2006) the following measure is proposed

εk
E =

∑
i∈A

∣∣rk
i u

k
i

∣∣
∑
i∈A

fiu
k
i +

∑
j∈B

fk
j uj

(5.64)

This measure can be interpreted in terms of relative error in energy. A practical com-
parison of these measures is performed in the benchmark of Section 5.11.2. Generally the
considered algebraic error in solving the linear equation system shall be considerably lower
than other error sources as e.g. the discretization error of finite elements. With respect to
an overall error efficiency, errors from various sources would be comparable by a measure
in terms of error in energy (which is discussed in the context of B-spline finite elements
in Section 4.6.7).

5.7 Elaborate Properties of Solid Finite Elements

5.7.1 Scaling of Solid Finite Elements

A finite element is denoted isoparametric if the displacements U within the finite element
are evaluated by the same interpolation functions, assembled in N (X), as the element
coordinates X

X = N (X)x (5.65)

U = N (X)u (5.66)

where it is implied that the nodal coordinates x are arranged in the same order as the
coordinates of nodal displacements u. With regard to the multigrid method hierarchical
finite element meshes will be defined with isoparametric finite elements being similar in
shape but various in size. The matrices of these similar finite elements at various scale
follow a certain relationship which will subsequently be evaluated.

It is assumed that the finite element geometry of an initial size is given in a coordinate sys-
tem Z. This finite element will be mapped to a coordinate system X. The corresponding
geometry and interpolation is then given by

X = N (Z)x (5.67)

U = N (Z)u (5.68)

The procedure follows (Bathe 1996; Zienkiewicz and Taylor 1997). Therefore the following
equality of partial derivatives is introduced

∂

∂Z
=

∂X

∂Z

∂

∂X
,

∂

∂Zi

=
∂Xj

∂Zi

∂

∂Xj

(5.69)

with the Jacobian matrix J defined as

J =
∂X

∂Z
, Jij =

∂Xj

∂Zi

(5.70)



5.7. Elaborate Properties of Solid Finite Elements 95

The Jacobian matrix can be calculated by establishing the partial derivatives of X with
respect to Z in terms of N (Z)x according to Eq. 5.67. For regular mappings the inverse
of the Jacobian matrix can be created which provides the inverse relationship

J−1 =
∂Z

∂X
(5.71)

For the special case that the element is scaled by a constant factor c, expressed by x = cz,
it follows that

Jij = δijc (5.72)

which directly leads to

∂

∂Zi

= c
∂

∂Xi

and
∂

∂Xi

=
1

c

∂

∂Zi

(5.73)

From the kinematics it follows that the strain-displacement matrix B(X) exactly includes
only terms of first-order partial derivatives with respect to Xi. Then, with Eq. 5.73 the
following relationship to B(Z) holds

B(X) =
1

c
B(Z) (5.74)

The integral over the domain of the mapped geometry ΩX(X) can be replaced by an
integral over the domain of the initial geometry ΩZ(Z)

dΩX = detJdΩZ (5.75)

where detJ is the determinant of the Jacobi matrix. According to Eq. 5.72 and the
dimension D of the domains, ΩX and ΩZ , the determinant of the Jacobi matrix is

detJ = cD (5.76)

with D=1, 2 or 3. Therewith the element stiffness matrix of the finite element scaled to
X by the constant factor c results as

KX = CT,D

∫
ΩX

B(X)TCB(X)dΩX (5.77)

where CT,D is a constant term. For three-dimensional elements the constant term
is CT,D=3 = 1. For two-dimensional elements the thickness t is constant and there-
fore CT,D=2 = t. Analog, for one-dimensional elements the area A is not included in
the integral which leads to CT,D=1 = A. With Eqs. 5.74 to 5.76 the stiffness matrix of
Eq. 5.77 is established in terms of Z

KX = cD−2

(
CT,D

∫
ΩX

B(Z)TCB(Z)dΩZ

)
(5.78)

This means that the stiffness matrix of the scaled element KX is (cD−2)-times the stiffness
matrix of the initial element KZ

KX = cD−2KZ (5.79)

Herewith, this characteristic is generally shown for solid finite elements of any dimen-
sion, independent of number of nodes per element and independent of the initial element
geometry. For two-dimensional elements (D = 2) this means that the stiffness matrix of
an element does not change, if the element is scaled by a factor c. Otherwise, (D 6= 2),
Eq. 5.79 establishes a simple relationship to create stiffness matrices for similar finite
elements of different size based on an initial stiffness matrix.
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5.7.2 Variation of Elastic Material Properties

For linear elastic materials the Young’s modulus E can be factored out of the material
tensor C(E, ν)

C(E, ν) = EC(1, ν) (5.80)

in contrast to Poisson’s ratio ν. In straight equivalence this property is also true for the
material matrix C of the finite element method. Under the condition that the Young’s
modulus Ee is constant within the domain of the finite element e, it can as well be factored
out of the element stiffness matrix

Ke(Ee, νe) = EeKe(1, νe) (5.81)

For a regular, uniform grid of finite elements which only vary in Young’s modulus Ee,
this characteristic enables a fast evaluation of element stiffness matrices based on one
initial matrix Ke(1, νe). The equality of Eq. 5.81 can be transfered to linear algebraic
operations, such as the matrix–vector product of Ke(Ee, νe) and an arbitrary vector ve

(EeKe (1, νe)) ve = Ee (Ke (1, νe) ve) (5.82)

where the term of the right hand side counts less operations. Thus, it is neither required to
explicitly build nor to store the stiffness matrices for finite elements with various Young’s
modulus to perform such operations on the element level.

The procedure is different for finite elements with various Poisson’s ratio. It is possible
to split the element stiffness matrix into parts, where each part is of equal order with
respect to Poisson’s ratio, such that it is possible to assemble element stiffness matrices
of various Poisson’s ratio efficiently.

The current implementation only includes operations according to Eq. 5.82. The theoreti-
cal range of Poisson’s ratio is limited to ν = [0.00; 0.50]. For phases in concrete this range
usually reduces to ν = [0.15; 0.25]. It would be possible to cover the occurring range by
a predefined set of stiffness matrices at equidistant Poisson’s ratios, e.g. fifty-one stiffness
matrices would cover the full range by an accuracy of ν = ±0.005. For a very high number
of different Poisson’s ratio in the elements, this can be reasonable, as the usual variation
of Poisson’s ratio is less significant for the mechanical behavior than the usual variation
of Young’s modulus. Furthermore, it is quite seldom that more than two effective digits
of the Poisson’s ratio are provided anyway. Otherwise, ideal for a low number of differ-
ent Poisson’s ratios, as in the implementation, a direct representation of initial stiffness
matrices for all occurring Poisson’s ratios is useful.

In fact, with the identities of Eq. 5.79 and 5.81 for finite elements of various Young’s
modulus and various element size (but similar shape and equal Poisson’s ratio), only one
initial finite element stiffness matrix is required. On the one hand this theoretical aspect
is practical for implementation. Moreover, with respect to various Poisson’s ratios and
various element types, as in the B-spline finite element method (Chapter 4), the number
of initial element stiffness matrices to be built can drastically be reduced. Especially for
B-spline finite elements of higher order, the corresponding gain in generation effort and
memory requirement is relevant.
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5.8 Definition of Global Finite Element Problem on

Orthogonal Grid

The priorly stated principle of virtual displacements leads to the finite element formulation
which is applicable to problems of structural mechanics in general. Clearly, general finite
element programs include the possibility to compute finite element problems on orthogonal
grids. Due to their flexibility these programs usually include a element table to store the
node numbers of each element and a node table to store the coordinates of each node.
Moreover, the effective finite element problem will be stored in a global stiffness matrix.
The solver method will be of a general kind for sparse matrices. For all post-processing
during or after computation the various tables need to be recalled. Thereby all element
formulations will be based on a general description which is flexible in geometry.

Subsequently a special formulation is introduced for two- and three-dimensional finite
elements on orthogonal grids with focus on high computational performance with low
memory demand in respect to this particular problem. It will especially be applicable to
the mechanical analysis of heterogeneous solids on the mesoscale, where a macroscopic
simple domain of a corresponding specimen is sufficient.

Figure 5.2 shows a two-dimensional mesh of nex×ney elements and nnx×nny nodes where

nnx = nex + 1 (5.83)

nny = ney + 1 (5.84)

The variables

ie = 0 . . . (nex − 1) (5.85)

je = 0 . . . (ney − 1) (5.86)

refer to the elements and

in = 0 . . . (nnx − 1) (5.87)

jn = 0 . . . (nny − 1) (5.88)

refer to the nodes. The coordinates (x,y) of a node located at (in, jn) is defined as

x = in la (5.89)

y = jn lb (5.90)

where la and lb mean the element size in the corresponding direction. It follows that the
total dimensions lx and ly of the mesh are

lx = nex la (5.91)

ly = ney lb (5.92)

The numbering of elements pe and nodes pn is defined according to

pe = ie + je nex (5.93)

pn = in + jn nnx (5.94)

so that pe ∈ [0 ; (nexy − 1)] with nexy = nexney and pn ∈ [0 ; (nnxy − 1)] with nnxy =
nnxnny. The finite element problem can be defined on vectors of corresponding dimensions.
Such essential vectors are the displacements ux and uy, the type of boundary condition2

2Type of boundary condition is e.g. ”0” for prescribed force or ”1” for prescribed displacement.
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Figure 5.2: Two-dimensional, uniform, orthogonal,
mesh
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Figure 5.3: Three-dimensional, uniform, orthogonal,
mesh

bTx and bTy and values of boundary condition bV x and bV y. For each element an individual
Young’s modulus can be defined and therefore a corresponding vector vE is allocated. By
an integer vector vI each element can link to a specified material. The material definition
includes the Poisson’s ratio for linear analysis and may include several other variables such
as the stress limit for nonlinear analysis. Therewith the basic finite element definitions are
outlined. Iterative solver methods additionally require some vectors such as displacement
increments and other swap memory. Furthermore for graphical processing some additional,
primarily static memory is appropriate. For the linear elastic analysis, a summary of the
overall memory demand is provided in (Häfner, Eckardt, Luther and Könke 2006) and in
Section 5.11.1.

The extension to a three-dimensional mesh as shown in Fig. 5.3 is perfectly straightfor-
ward. For the three-dimensional mesh of nex × ney × nez elements and nnx × nny × nnz

nodes only the following definitions need to be added.

nnz = nez + 1 analog to Eqs. 5.83, 5.84 (5.95)

ke = 0 . . . (nez − 1) analog to Eqs. 5.85, 5.86 (5.96)

kn = 0 . . . (nnz − 1) analog to Eqs. 5.87, 5.88 (5.97)

z = kn lc analog to Eqs. 5.89, 5.90 (5.98)

lz = nez lc analog to Eqs. 5.91, 5.92 (5.99)

Equivalently, the element numbering pe and node numbering pn is extended.

pe = ie + je nex + ke nexy analog to Eq. 5.93 (5.100)

pn = in + jn nnx + kn nnxy analog to Eq. 5.94 (5.101)

Also the number of vectors needs to be extended, as e.g. by uz, bTz, bV z and so on.
With respect to various operations of the proposed implementation, it is most appropri-
ate to store these vectors of concurrent meaning, but various orientation (x, y or z), in
one continuous data field. For the displacements this means a continuous vector field3

u of (ux, uy, uz) so that global vector operations with u are simply defined, while the
subvectors remain directly accessible.

3Without consideration of boundary conditions.
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5.9 Element-based Global Operations

A two-dimensional and three-dimensional uniform, orthogonal grid of finite elements is
considered. Due to the prior definitions, for both cases, iterative solver methods can be
applied without storage of the global stiffness matrix. Therefore some global operations
will be prepared based on operations of a local finite element topology.

5.9.1 Global Matrix-Vector Product

For the global matrix-vector product Kv, of global stiffness matrix K and arbitrary
global vector v, Eq. 4.10 is recalled. It follows that this global matrix-vector product can
be formulated as a sum of matrix-vector products on the element level

Kv =
∑

e

(
K̄ev

)
=
∑

e

(
K̄ev̄e

)
(5.102)

with element stiffness matrix K̄e and corresponding displacements v̄e of element e where
the bar over the symbols highlights the assignment to global degrees of freedom. However,
it is more practical to perform these operations on the element level within local degrees
of freedom, also found in (Parsons 1997). For the element e the appropriate components
of v are gathered in ve. The local operation Keve is performed and the result is added
to the corresponding components of the global result vector. This procedure is performed
for all elements, in analogy to Eq. 5.102 (r.h.s.).

5.9.2 Operations on Finite Elements Stencils

As one basic idea of the finite element method a body will be divided into parts such
that each displacement interpolation function has only small support in the domain of
the body. Each displacement interpolation function, or shape function, is assigned to a
degree of freedom at a specific node. Therefore, the direct interaction radius of this node
is limited. Considering a specific node, a direct stiffness relationship will only be defined
to nodes which are attached to the same elements4.

As a result, an adequate global numbering implied, the global stiffness matrix will be
sparse. Among other things, this is an advantageous characteristic for direct solver meth-
ods. Special data structures have been developed to store sparse matrices. The following
operation is considered

fi =
∑

j

Kijuj (5.103)

where i and j refer to the global degrees of freedom. For large matrices K only a small
fraction of entries Kij will not be zero. With data structures of sparse matrices all, or
most, zero entries are not even processed at all to evaluate the product of Eq. 5.103. The
same effect is achieved by only including nodal degrees of freedom which refer to the same

4This is generally true, but with B-spline finite elements (Chapter 4) the support of the shape functions
will increase and cover several elements dependent on the order of the B-splines.
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elements as the degree of freedom i, which motivates a local node-by-node iterative solver
method without storage of a global stiffness matrix.

Such a local scheme will especially be efficient if it is recurrent. Then, it is labeled as finite
element stencil. This principle will be exemplified for uniform orthogonal grids of two-
dimensional four-node finite elements and three-dimensional eight-node finite elements.
However, it is noted that the fundamental idea is more general, as previously introduced,
and may be transfered to finite elements of other shape (e.g. triangular) or of other
polynomial order, while it can also be regarded as sparse data structure technique.

On a uniform, orthogonal grid of finite elements, for any inner node the topology to its
neighboring nodes is identical. The finite element stencil is similar to the finite difference
stencil while the first is based on the principle of virtual displacements and the latter
refers to a direct discretization of the differential equation (Hackbusch 1985).

5.9.3 Stencil for Grid of Two-Dimensional Four-Node Elements

For a uniform orthogonal grid of finite elements, the degrees of freedom (dof) of any
interior node can locally and temporarily assigned as (9,10) which refers to the horizontal
and vertical component, respectively (Fig. 5.5). 

(1,2) (3,4) (5,6) 

(7,8) 
(9,10) 

(11,12) 

(13,14) (15,16) (17,18) 

E1 E2 

E3 E4 

(1,2) (3,4) 

(5,6) (7,8) 

Figure 5.4: Dof of one element
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dc

Figure 5.5: Dof of 2× 2 element patch

The element stiffness matrix with Young’s modulus E = 1 is denoted as basic element
stiffness matrix K̄(µ) = Ke(1, µ). Then, the stiffness of the center node can be assembled
as follows

K̂9,9 = EaK̄(µa)1,1 + EbK̄(µb)3,3 + EcK̄(µc)5,5 + EdK̄(µd)7,7 (5.104)

K̂9,10 = EaK̄(µa)1,2 + EbK̄(µb)3,4 + EcK̄(µc)5,6 + EdK̄(µd)7,8 (5.105)

K̂10,10 = EaK̄(µa)2,2 + EbK̄(µb)4,4 + EcK̄(µc)6,6 + EdK̄(µd)8,8 (5.106)

The superscript a to d refers to the system of one element according to Fig. 5.4. The hat-
symbol denotes the reference to the 2 × 2 element patch of Fig. 5.5. The corresponding
residual forces r̂9 and r̂10 are calculated by

r̂9 = f̂9 −
8∑

i=1

(
EaK̄(µa)1,iu

a
i + EbK̄(µb)3,iu

b
i + EcK̄(µc)5,iu

c
i + EdK̄(µd)7,iu

d
i

)
(5.107)

r̂10 = f̂10 −
8∑

i=1

(
EaK̄(µa)2,iu

a
i + EbK̄(µb)4,iu

b
i + EcK̄(µc)6,iu

c
i + EdK̄(µd)8,iu

d
i

)
(5.108)
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for any interior node, or after correct assignment of ua..d to û and corresponding assembly
of K̂9,i and K̂10,i from Eqs. (5.107) and (5.108) by

r̂9 = f̂9 −
18∑
i=1

K̂9,iûi (5.109)

r̂10 = f̂10 −
18∑
i=1

K̂10,iûi (5.110)

Boundary nodes can be included by omitting the terms of inexistent neighboring elements.
Local equilibrium at this node with respect to the degree of freedom i only, is achieved
by adding the increment ∆ûi to ûi.

∆ûi =
r̂i

K̂ii

(5.111)

Such an increment can either refer to Eq. 5.17 of the Jacobi method or to Eq. 5.22 of the
Gauss-Seidel method (Section 5.3, especially 5.3.4). Local equilibrium for both degrees of
freedom û9 and û10 is established by the local increment vector[

∆û9

∆û10

]
=

[
K̂9,9 K̂9,10

K̂10,9 K̂10,10

]−1 [
r̂9

r̂10

]
(5.112)

For four rectangular finite elements of same Poisson’s ratio and same shape several prior
equations can be shortened as due to the equalities

K̄(µ)1,1 = K̄(µ)3,3 = K̄(µ)5,5 = K̄(µ)7,7 (5.113)

K̄(µ)1,2 = −K̄(µ)3,4 = K̄(µ)5,6 = −K̄(µ)7,8 (5.114)

K̄(µ)2,2 = K̄(µ)4,4 = K̄(µ)6,6 = K̄(µ)8,8 (5.115)

e.g. the Eqs. 5.104 to 5.106 can be simplified to

K̂(µ)9,9 = (Ea + Eb + Ec + Ed)K̄(µ)1,1 (5.116)

K̂(µ)9,10 = (Ea − Eb + Ec − Ed)K̄(µ)1,2 (5.117)

K̂(µ)10,10 = (Ea + Eb + Ec + Ed)K̄(µ)2,2 (5.118)

5.9.4 Stencil for Grid of Three-Dimensional Eight-Node Ele-
ments

The extension of the stencil from the two-dimensional to the three-dimensional problem
is straightforward. Nevertheless, the number of degrees of freedoms essentially increases.
The notation is analog. The superscript a to h refers to the system of one brick element
according to Fig. 5.6. The hat-symbol denotes the reference to the eight brick elements
of Fig. 5.7. In this figure only the degrees of freedom (1, 2, 3) which are assigned to the
highlighted node will subsequently be relevant. The stiffness of this node is assembled by

K̂1,1 = EaK̄(µa)1,1 + EbK̄(µb)4,4 + . . . + EhK̄(µh)22,22 (5.119)

K̂2,2 = EaK̄(µa)2,2 + EbK̄(µb)5,5 + . . . + EhK̄(µh)23,23 (5.120)

K̂3,3 = EaK̄(µa)3,3 + EbK̄(µb)6,6 + . . . + EhK̄(µh)24,24 (5.121)
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Figure 5.7: 2× 2× 2 brick elements

and the residual forces are

r̂1 = f̂1 −
24∑
i=1

(
EaK̄(µa)1,iu

a
i + EbK̄(µb)4,iu

b
i + . . . + EhK̄(µh)22,iu

h
i

)
(5.122)

r̂2 = f̂2 −
24∑
i=1

(
EaK̄(µa)2,iu

a
i + EbK̄(µb)5,iu

b
i + . . . + EhK̄(µh)23,iu

h
i

)
(5.123)

r̂3 = f̂3 −
24∑
i=1

(
EaK̄(µa)3,iu

a
i + EbK̄(µb)6,iu

b
i + . . . + EhK̄(µh)24,iu

h
i

)
(5.124)

or in a generic form where α = 1 . . . 8 means a . . . h in the index.

r̂j = f̂j −
8∑

α=1

Eα

24∑
i=1

K̄(µα)[3(α−1)+j],iu
α
i (5.125)

Analog to Eq. 5.111 the increment according to the stationary iterative method can be
computed for the three-dimensional case.

5.9.5 Local Schemes of Advanced Finite Elements for Hetero-
geneous Material

In the prior sections constant material properties are assigned to each element. This leads
to plain pixel or voxel discretization. This method is applicable to obtain reasonable
overall properties of a heterogeneous material sample, but due to the grid discretization
there will be errors in the stress solution along material interfaces.

It is possible to improve the accuracy of the geometrical discretization by advanced fi-
nite elements while maintaining a uniform orthogonal mesh. One option are multiphase
B-spline finite elements as presented in Chapter 4. This discretization type is illustrated in
Fig. 5.8 (left). The large black dots indicate integration points to each of which individual
material properties can be assigned. Thus a smooth transition of material properties is
possible within a finite element. As all finite elements are based on the same topology,
similar local schemes as described in Section 5.9.1 to 5.9.4 can be created and the storage
of a global stiffness matrix is not required.

The same is principally possible for other advanced finite elements with additional shape
functions which are declared as internal degrees of freedom (finite elements with em-
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Figure 5.8: Discretization of heterogeneous material by a multiphase finite element (left), a finite element
enriched by additional shape functions (center) and an aligned triangular mesh (right).

bedded discontinuities) or as global degrees of freedom (extended finite elements). As a
condition the material interfaces is not completely variable but assigned to a finite pre-
defined number of possibilities. In Fig. 5.8 (center) from corner to corner of one edge
there are nine different settings, marked by a short line. According to this pattern there
are (23 · 7 + 15)4/2 = 352 different possible material interfaces which can be assigned to
the element. The stiffness matrices need to be stored decoupled for the different material
phases in the element. Then, it is possible to include such finite elements into a local
scheme of a uniform grid, based on a comparatively low number of predefined element
stiffness matrices. And the storage of a global stiffness matrix would not be required.

5.9.6 Local Schemes of Irregular Triangular Mesh

This section shall only briefly highlight that also for a irregular mesh of triangular finite
elements (Fig. 5.8 (right)), required parts of a global stiffness matrix can efficiently be
assembled based on a comparatively low number of element stiffness matrices. As the
element stiffness matrix is invariant with respect to linear scaling of the finite element
(Section 5.7.1), only the angles α and β are required to determine the relevant shape of
the finite element (Fig. 5.9). With the definition that α ≤ β ≤ γ it follows that there are
the following bounds on α and β

0◦ <α ≤ 60◦ (5.126)

α ≤β < 90◦ (5.127)

Hence, for an allowed tolerance of ±0.5◦ there are only about 3600 different elements
stiffness matrices required. Especially for very large models with ≥ 106 degrees of freedom
such an element library represents an effective alternative to storing a global stiffness
matrix. Global operations on these elements can be performed as illustrated in Fig. 5.9.
The global degrees of freedom ue are transformed into local degrees of freedom ūe. These
can be multiplied by the basic stiffness matrix K̄

e
(α, β) to obtain the effective force

vector f̄
e
. A multiplication with the Young’s modulus of this element is also required.

Then the force vector can be transformed back into the global coordinate system f e. In
addition for each element only a transformation angle and a triangle shape type (with
respect to α and β) needs to be stored. It is further noted, that this principle is not limited
to the three-node triangular finite elements as long as a definition is unique (e.g. nodes on
center of element edge). It is only a matter of model size when it becomes more efficient
to use a predefined library of finite elements. This supports the basic idea of the present
approach to reduce the memory demand to a minimum.
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Figure 5.9: Scheme of establishing a product of element stiffness matrix and displacement vector in a
global coordinate system X based on a triangular element with angles α and β in a local coordinate
system X̄.

5.10 Transfer Operators

5.10.1 Fine-to-Coarse Mesh Transformation of Young’s Modu-
lus

A finite element mesh of a heterogeneous material sample is considered. Here, one indi-
vidual Young’s modulus is assigned to each element of a uniform orthogonal grid. As an
example in Fig. 5.10 the relevant finite element mesh is at level 7. All coarser grids of
finite elements shall represent a good approximation of the heterogeneous material dis-
tribution which is defined on the finest mesh. Therefore it is possible to define adequate
algebraic operators as discussed in (Bayreuther 2004). However, in this approach only the
geometric multigrid method is considered such that the local scheme of finite elements
can be applied on each mesh without additional memory demand for storing matrices of

 
 
 
 

Level           3                                    2                                1           0 

Level           7                                    6                                5           4 

Figure 5.10: Definition of Young’s modulus on finest mesh (Level 7) and corresponding coarse grid ap-
proximations of Young’s modulus (Level 6 to 0)



5.10. Transfer Operators 105

operators or stiffness matrices of coarse grids. A doubling of mesh size means that four
finite elements of the original mesh are represented by one element on the next coarser
mesh. This corresponds to a kind of homogenization. An adequate effective Young’s mod-
ulus of this element is in between the Reuss bound and the Voigt bound (Section 3.3.4).
But as the original patch of elements might have different effective stiffnesses with respect
to different directions, according to the prior definitions, such an anisotropic property can
not be assigned to one coarse finite element. In this approach just the Voigt bound is
applied which corresponds to the arithmetic mean of the various original Young’s moduli.
Therefore the coarser meshes will effectively be too stiff, which will result in slower but
stable convergence. For larger ratios of Young’s modulus in the heterogeneous material
this defective overestimation of stiffness will become more severe (which explains the rem-
edy by the multigrid preconditioned conjugate gradient method in connection with the
last paragraph of Section 5.5). For the Reuss bound the iteration process can become
instable. The Hashin-Shtrikman bound (Section 3.3.4) would be an appropriate alterna-
tive to define effective Young’s moduli on coarser meshes based on the finest mesh. This
option would establish an approximation which is closest to the original problem. But for
some problems this choice might not be convergent5. For the sake of solving stability, the
Voigt bound is applied. A corresponding example is shown in Fig. 5.10.

5.10.2 Restriction: Fine-to-Coarse Mesh Transformation of
Forces

The starting point is any arbitrary vector of forces on a fine mesh. A best possible,
equivalent representation of such forces on a coarse mesh is intended. There are several
different restriction operators defined in connection with the multigrid method (Wesseling
1992). The applied restriction operator corresponds to the fundamental finite element
definition with respect to the mechanical problem.

f e =
∑

i

(
N e

at Xi

)T
F i (5.128)

The vector F i denotes a point load6 at position X i within the element e. This load
is assigned to the force vector f e of element e by the evaluation of the element shape
function N e at coordinate X i. In Fig. 5.11 a force F i (×-symbol), e.g. from a finer mesh,
is assigned to the nodal force vector of the lower left node f 1 (gray node) of a bilinear
finite element. This yields

f 1,i =

(
1− sx,i

hx

)(
1− sy,i

hy

)
F i (5.129)

With respect to an implementation it can further be utilized that in the considered ex-
ample the relevant values of the fractions

sx,i

hx
and

sy,i

hy
are limited to s

h
∈
[
0; 1

4
; 1

2
; 3

4

]
. A

corresponding predefined template minimizes the computational effort in contrast to the
formal symbolic definition of Eq. 5.128. An extension to three dimensions is straightfor-
ward.

5Any underestimation of coarse grid stiffness can lead to a relevant overestimation of displacement
increments from coarse grid correction and thus to oscillating behavior.

6In the present context, for the computation of an equivalent coarse mesh residual, the problem of a
singularity does not apply.
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Figure 5.11: A rectangular four-node finite element of size hx × hy and some selected point loads located
at (sx,i, sy,i), which may result from the nodal disequilibrium of a finer mesh, relevant with respect to
the gray node of the element (lower left corner).

5.10.3 Prolongation: Coarse-to-Fine Mesh Interpolation of Dis-
placements

The relationship to determine the displacement U at coordinate X i within an element e
with nodal displacements ue is defined by the interpolation or shape function N e.

U at Xi
= N e

at Xi
ue (5.130)

For usual finite elements the displacement at a coordinate of a node corresponds to the
nodal value of the degree of freedom. Therefore the basic Eq. 5.130 is sufficient to construct
any coarse-to-fine mesh interpolation operator. Again, specific templates can reduce the
computational effort.

5.10.4 Transfer Operators for B-Spline Finite Elements

A multigrid method for web-splines7 is presented in (Höllig, Reif and Wipper 2002). As
an alternative method the convergence of B-spline finite elements could be accelerated
by coarse grid corrections from the present, existing multigrid method for bilinear finite
elements. This only requires transfer operations between a mesh of classical, bilinear
finite elements (B-splines of order k = 1) and a mesh of B-Spline finite elements of order
k = 2 with an identical number of elements. The B-spline finite element problem is only
transfered to the bilinear finite elements and then the present multigrid method with
bilinear finite elements can be applied. After each cycle the displacement increment is
transfered to the B-spline mesh again. After that smoothing is performed on the finest
mesh of B-spline finite elements. It is assumed that the transfer operators need to be
reasonably adequate, but not exact, as each coarse grid correction step is always an
approximation only.

The restriction operator is not discussed in detail. From the residual forces of a B-spline
finite element one could retrieve corresponding body loads pe

b or surface loads pe
s, which

7Web-splines means weighted extended B-splines. Web-splines are introduced to model a curved do-
main which is not aligned to a grid. Such an extension of B-splines along the boundary of the domain
assures that each finite element shape function has sufficient support for a stable numerical analysis. In
the interior of the domain the web-splines principally correspond to B-splines (Chapter 4).
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Figure 5.12: A piecewise, linear function (•) is ap-
proximated by quadratic B-splines. The values at
(◦) denote the coefficients which are assigned to the
individual B-spline functions.
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Figure 5.13: Another example, analog to Fig. 5.12.

can be compiled into a corresponding element force vector f e by Eq. 4.8. The prolongation
operator is more involving. A C0-continuous displacement solution of linear finite elements
can not exactly be mapped onto a B-spline finite element space which is C1-continuous by
definition. An exact interpolation of B-splines through all nodal values would require to
build and solve an equation system. This would be very costly. Alternatively an intuitive
operator is introduced and exemplified for one-dimensional examples.

For the transfer of a linear displacement field this operator is exact. This will be clear with
respect to the following example and in connection with the first example of bar elements
(Fig. 4.5). Figure 5.12 shows four piecewise linear functions with nodal values (•) on
U = −1

4
x2 + 2x. The coefficients, or degrees of freedom, of B-spline shape functions are the

mean values (◦) of neighboring nodal values. At the boundary the nodal values correspond
to the B-spline coefficients. Figure 5.12 shows an adequate approximation of the piecewise
linear function by B-splines of order k = 2. Another example is shown in Fig. 5.13.
Here, the transformation appears less accurate. However, as a global approximation it is
reasonable and appropriate to the purpose of coarse grid correction.

The two-dimensional counterpart is illustrated in Fig. 5.14. The B-spline coefficients cor-
respond to an evaluation of the bilinear solution at coordinates marked by a circle (◦).

 

Figure 5.14: Coordinates for evaluation of coefficients which are assigned to bivariate B-spline functions;
the two-dimensional analogy to Figs. 5.12 and 5.13.
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5.11 Benchmark

The present benchmark evaluates the characteristics of the proposed multigrid methods
in the mechanical analysis of heterogeneous solids. In this benchmark classical finite el-
ements of linear order were applied. Sections 5.11.1 to 5.11.3 refer to various aspects of
the multigrid method in its application to two-dimensional models. Some corresponding
results from three-dimensional models are presented in Section 5.11.4.

5.11.1 Memory Demand

For the orthogonal grids of nnx×nny nodes all data is stored in vectors of length (nnxnny).
In total thirteen vectors of 64-bit precision (double) are allocated for: Young’s modulus,
Poisson’s ratio, displacements (x,y), displacement increments (x,y), residual forces (x,y),
swap memory (2), values of boundary conditions (x,y) and values of post-processing.
Additionally three vectors of 32-bit precision (integer) are allocated for: material type and
type of boundary condition (x,y). In total this leads to 116 bytes per node. A problem of
2048× 2048 elements includes 8.4 million degrees of freedom. For this mesh the multigrid
method can be applied based on a hierarchy of eleven meshes (with 1024, 512 . . . 2 elements
along the side). Altogether these meshes include 5600603 nodes. For the provided 116 bytes
per node this yields 620 MB. In the corresponding computation the operating system
shows a memory usage of 623 MB. It is true that some memory could be shared and the
precision be reduced where it is not needed. Nevertheless, as only essential vectors are
stored, it is clear that the memory usage is close to a possible minimum for the proposed
method and in general low for such a large finite element problem.

5.11.2 Computation Times and Convergence

First, a previous benchmark of the multigrid method from (Häfner, Eckardt, Luther and
Könke 2006) is presented by Fig. 5.15. It is included to show the relevant effects which
motivated for further developments. The study is based on a two-dimensional model of
concrete. The applied load cases, Ex. 1 and Ex. 2, are illustrated in Fig. 5.15. Both load
cases have been tested for different ratios R of Young’s modulus between aggregates and
matrix (R=2/1, R=4/1 and R=8/1). The allowed error tolerance was εE = 1.0 · 10−6

(Eq. 5.64). The tests were computed on a single processor with clock frequency 2.8 GHz
(also the following examples). In this benchmark the computation time increases approx-
imately by the order of N1.1 for N degrees of freedom. This is almost linear and therefore
close to the theoretical optimum (Parsons 1997). However, following examples show that
the order can still be decreased. Figure 5.15 illustrates another important effect. The
solution time of the multigrid method increases with increasing ratio of Young’s modulus
R. One relevant effect results from the decreasing quality of the interpolated material
distribution on the coarse meshes. However, also the problem on the fine mesh can be
considered as worse conditioned. This topic is in the focus of Section 5.11.3.

The benchmark of Fig. 5.15 was only based on the modified multigrid cycle (Fig. 5.1), as
documented in (Häfner, Eckardt, Luther and Könke 2006). After that the implementation
has been prepared such that other multigrid cycles can be performed. The algorithm can
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Figure 5.15: Computation times of multigrid method according to modified cycle

follow any list of numbers which describe a valid multigrid cycle. The algorithm detects
whether the next number means restriction or prolongation. The end of the list (cycle) is
marked by {-1}. For example the F-cycle for the levels 0 . . . 4 of Fig. 5.1 is described by
the list

F-cycle: {4, 3, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 4,−1}

An additional list of equal length describes the number of smoothing steps on each level.
Thus, also the modified cycle can simply be included into this scheme. For testing a
new cycle it is only required to write an algorithm which creates the corresponding list.
Otherwise, it is also simply possible to create or edit a cycle in usual text file format and
load it into the program. However, for large cycles an algorithm is preferable. For example
the list from the W-cycle for the levels 0 . . . 7 is graphed in Fig. 5.16.

For various cycles a new benchmark has been performed. A typical model of the study is
illustrated in Fig. 5.17. It is a two-dimensional model of concrete. The side length of the
square is 100 mm. The aggregates sizes range in the interval 4 mm to 32 mm. They are
graded according to the Fuller curve. The volume of aggregates is about 50 %. The ratio
of Young’s modulus between aggregates and matrix is R=2/1. The load case corresponds
to the mixed boundary conditions of Fig. 3.4. An example of a stress solution is shown
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Figure 5.16: W-cycle for the levels 0 . . . 7
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Figure 5.17: Typical concrete sample of present
study

Figure 5.18: Normal stress in horizontal direction
from model of Fig. 5.17

in Fig. 5.18. The results of the benchmark are summarized in Fig. 5.19. The error tolerance
was εE = 1.0 ·10−6 (Eq. 5.64). For all model sizes the solution times of V-, F- and W-cycle
are almost identical. Smoothing is performed by the Gauss-Seidel method. The number of
smoothing loops in each cycle step was set to 1. The solution times of the modified cycle
are about three times larger. It is observed that the number of cycles for achieving the
solutions principally remains constant for different model sizes. In the present example
the number of cycles was 14 for the V-cycle, 11 for the F- and W-cycle, and 9 for the
modified cycle, except from two cases where the number of cycles differed by 1. It is
clear that a certain cycle may just step above or below the defined error tolerance, which
decides over the number of cycles. It is most interesting to analyze the order to which the
computational effort increases with increasing model size. If the model size increases by
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Figure 5.19: Computation times of multigrid method for various cycles
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Figure 5.20: Convergence of multigrid method

the factor a and the computational effort increases by the factor b, then with ax = b the
variable x denotes the described order. It is evaluated by x = loga(b) which is equal to
x = log10(b)/ log10(a). For the V-cycle the computation time was 3.44 seconds for 5122

elements and 60.44 seconds for 20482 elements. It follows that a = 17.59, b = 16 and
x = 1.034. Also for the F- and W-cycle an order of about 1.03 is observed (Fig. 5.19).
The present example confirms the order 1.1 for the modified cycle from (Häfner, Eckardt,
Luther and Könke 2006). It can be summarized that the effort of the multigrid method
only increases (almost) linear with problem size in the present mechanical analysis of
heterogeneous solids. Especially with respect to very large models, this represents an
important characteristic.

Besides, the convergence behavior is analyzed with respect to the three error measures
from Eqs. 5.62, 5.63 and 5.64. Figure 5.20 illustrates the convergence of the V-cycle from
the present example. As introduced before, the relevant error tolerance of the present
example εE = 1.0 · 10−6 (Eq.5.64) is achieved after the 14th V-cycle. It is noted that
the relative error measures (Eqs. 5.63 and 5.64) are invariant to scaling of applied forces
and prescribed displacements. Therefore these measures are proposed. The relative error
measure in terms of energy (Eq. 5.64) is especially descriptive for engineers. If the error is
not extremely localized, then a relative error of energy from the solution of εE = 1.0 · 10−4

is sufficient for many practical purposes. Often the discretization error of finite elements
is larger. In general the multigrid method tends to distribute the remaining solution error
over the domain. A solution with an error below εE < 1.0 · 10−6 can be considered as very
accurate. Even far below this error level (after the 14th cycle), the graphs of Fig. 5.20 in-
dicate stable convergence. The convergence is only limited by the computational precision
(double format with 15 digits) which leads to a sudden horizontal trend in the diagram.

For further analysis of the implemented multigrid method, it is quite interesting, how the
computational effort is distributed between the different routines. Figure 5.21 shows the
distribution for the V-cycle with one pre- and post-smoothing step on each level. How-
ever, the illustrated distribution only refers to the present implementation. As expected
the smoothing process and the computation of residual forces for restriction are most
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Figure 5.21: Distribution of computational effort between different routines of V-cycle

expensive. As in one V-cycle the residual forces are computed once on each level and
smoothing is performed twice, the relationship of 21% to 44% is reasonable. Restriction
and prolongation are efficient for orthogonal grids. Vector operation denotes processes like
setting vectors to zero or adding an increment. It is noted that, except for Fig. 5.15, the
computation times from evaluating the solution error after each cycle is not included in
the present studies. It is convenient that the results do not depend on type and frequency
of observed error. Work load distributions such that in Fig. 5.21 indicate which routines
are relevant for improving efficiency.

5.11.3 Computation Times for Large Ratios of Young’s Modulus

The results of the first benchmark of Fig. 5.15 indicate that the computation times of the
multigrid method essentially increase with increasing ratio of Young’s modulus between
the phases. As prepared in Section 5.5 the present work proposes a remedy by the multigrid
preconditioned conjugate gradient method. The multigrid method and the preconditioned
version are compared for ratios of up to R = 200/1 in Fig. 5.22. For further reference
results from the conjugate gradient method are included. The three diagrams refer to the
different model sizes of about 32000, 131000 and 524000 degrees of freedom. As expected,
only for small models the efficiency of the conjugate gradient method is comparable to
that of the both multigrid methods. For the low ratio R = 2/1 the multigrid method is a
few percent more efficient than the multigrid preconditioned conjugate gradient method.
For all model sizes the multigrid preconditioned conjugate gradient method is significantly
less sensitive to an increasing ratio R and considerably more efficient than the multigrid
method. This marks an important improvement with respect to (Häfner, Eckardt, Luther
and Könke 2006). Moreover, it is observed (without illustration), that the preconditioned
version is more efficient for boundary conditions of the type SUBC (Fig. 3.1). The results
of Fig. 5.22 are all based on the modified cycle. Figure 5.23 compares the two variants with
different cycles for a ratio of Young’s modulus R = 200/1. The results of the modified cycle
are not quite the same in Fig. 5.22 and Fig. 5.23. This may be due to different analysis and
model parameters. However, the results within one diagram are consistent. In the present
examples the multigrid method is generally most efficient with one smoothing step on
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Figure 5.22: Computation times of conjugate gradient method (CG), multigrid method (MG) and multi-
grid preconditioned conjugate gradient method (MGCG) in the analysis of two-dimensional concrete
models. Inclusion volume is 40%. The ratio of Young’s modulus is set to R = 2/1, R = 20/1 and
R = 200/1. The model size is: 32000 (left), 131000 (right) and 524000 (top) degrees of freedom.
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Figure 5.23: Comparison between multigrid method (white bars) and multigrid preconditioned conjugate
gradient method (gray bars) for a ratio of Young’s modulus R = 200/1 with respect to different cycles.
Model size: 131000 degrees of freedom.

each level. However, for the preconditioned version two smoothing steps were performed
on each level for best efficiency. The considered large ratios of Young’s modulus R occur
in certain heterogeneous materials or in damage analysis.
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Figure 5.24: Three-dimensional concrete model
with 212 inclusions based on 1283 voxels

Figure 5.25: Normal stress σxx for deformation in
x-direction (MBC) of model shown in Fig. 5.24

5.11.4 Computation Times of Three-Dimensional Models

Three-dimensional modeling is straightforward by grid-based procedures. Section 5.8 in-
troduces to the global numbering scheme for three-dimensional models. The local for-
mulation for three-dimensional finite elements is prepared in Section 5.9.4. First results
from the latest implementation of the multigrid method for three-dimensional models in
Mulgrido are presented. Figure 5.24 shows a geometrical model of concrete similar to
those applied in the present study. Figure 5.25 illustrates the stress solution σxx for a
deformation in x-direction according to mixed boundary conditions (MBC). The compu-
tation times from three-dimensional models are presented in Fig. 5.26 with reference to
results of Fig. 5.19 from two-dimensional models. The ratio of Young’s modulus between

0,1

1

10

100

1000

100000 1000000 10000000

V-Cycle, 3D Model

V-Cycle, 2D Model

Degrees of freedom 

Ti
m

e 
[s

]

Figure 5.26: Computation times of multigrid method for three-dimensional models with reference to
two-dimensional models from Fig. 5.19. (Note: hidden triangle of graph is located at {98304; 3.48})
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Figure 5.27: Comparison of computation times from the multigrid method in application to three-
dimensional models with respect to the different cycles for a ratio of Young’s modulus R=2/1. Model
size: 262000 degrees of freedom.

the phases was R=2/1. Only about 100 inclusions have been modeled such that these are
well presented by the smaller models. The same error tolerance as for the two-dimensional
models εE = 1.0 · 10−6 (Eq. 5.64) has been applied. For the three-dimensional model only
12 V-cycles were required to reach the defined error tolerance in contrast to 14 V-cycles
for the two-dimensional model (Section 5.11.2). Similar to Fig. 5.21 the largest compu-
tational effort was spent on smoothing operations and computing residual forces. From
the local formulations of Sections 5.9.3 and 5.9.4 follows that there are essentially more
arithmetic operations necessary to compute the residual force of one degree of freedom for
the three-dimensional model than for the two-dimensional model. This explains that in
spite of less required multigrid cycles the computation of the three-dimensional model is
more expensive. Moreover, several loops are required for each node in three-dimensional
models to collect the residual forces from the neighboring elements. In the implementation
of two-dimensional models the computation of a residual force can be written into one
equation. Thus, there is still some potential to increase the efficiency of the implementa-
tion for three-dimensional models. Nevertheless, the present absolute computation times
of the multigrid method for three-dimensional models are competitive. It is most relevant
how the computational effort scales with increasing model size. For the model with 323

elements the computation time was 3.48 seconds and for that with 1283 elements 262.12
seconds (V-cycle). Recalling the formulation ax = b of page 110, it follows that a = 64,
b = 75.3 and thus x = 1.039. This is an excellent result. For both the F- and W-cycle
even an order of x = 1.022 was determined. For the modified cycle it was x = 1.09. This
confirms the results from two-dimensional models. Also for three-dimensional models the
computational effort from the multigrid method (almost) increases linear with increasing
model size in the present implementation. The computational effort from the different
cycles is compared in Fig. 5.27.

5.12 Conclusions

The present work introduces to stationary iterative solver methods in the matrix form
and prepares for the later applied index form. For the conjugate gradient method, the
multigrid method and multigrid preconditioning of the conjugate gradient method, some
relevant fundamentals for an implementation of these methods are provided. The com-
plexity of the general problem is reduced by utilizing certain properties of solid finite
elements and defining a clear global numbering system. Based on the discussed index
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form, element-based global operations lead to a compact and efficient formulation of the
heterogeneous finite element problem on orthogonal grids in two and three dimensions.
Moreover, similar local schemes are outlined for advanced finite elements of an orthogonal
mesh or triangular elements of an irregular mesh. The transfer operators of the multigrid
method are adequately derived by the fundamental equations of solid finite elements. Be-
sides, also the transfer of the heterogeneous material to coarser grids is discussed. With
regard to B-spline finite elements, an intuitive transfer operator is exemplified for the
one-dimensional problem. Transparent access to the memory demand of two-dimensional
finite element models is provided. A modified multigrid cycle with balanced computational
effort between all grids is successfully applied. Based on a list of levels any valid multigrid
cycle can be performed. A benchmark of the V-, W- and F-cycle indicates that the com-
putation times only increase by the order 1.03 with respect to increasing model size. The
same order is achieved for three-dimensional models. This is very close to the optimal
result of linear order (1.00). Objective error norms are introduced in terms of relative
norm of residual and relative error energy. The convergence of the multigrid method is
uniform and stable until the limit of computational precision is reached. As a major con-
clusion of the present chapter, the multigrid preconditioned conjugate gradient method
is essentially more efficient for large ratios of Young’s modulus in the material than the
multigrid method. This is significant for damage analysis (Chapter 6).



Chapter 6

Numerical Model:
Aspects of Damage Simulation

6.1 Introduction

In the previous chapters grid-based methods are prepared for the linear elastic analysis
of heterogeneous solids. The present chapter discusses an extension to damage simulation
for bilinear finite elements. The direct stress solution of standard bilinear finite elements
is severely defective, especially along material interfaces. Various nonlocal formulations
are applied to improve the stress solution. Such a corrective data processing can either
refer to input data in terms of Young’s modulus or to the obtained finite element stress
solution, as well as to a combination of both. A damage-controlled sequentially linear
analysis is applied in connection with an isotropic damage law. By a high resolution of
the heterogeneous solid, local isotropic damage on the material subscale allows to sim-
ulate complex evolution of damage regions. Therefore certain anisotropic effects can be
simulated. Then a complex constitutive law on the macroscale is replaced by a simpler
constitutive law on the mesoscale. Thus, a close relationship between subscale geometry
and material behavior is achieved. Based on an effectively global secant stiffness the analy-
sis is numerically stable. The iteration step size is controlled for an adequate simulation of
the damage path. This requires many steps, but in the iterative solution process each new
step starts with the solution of the prior step. The present chapter discusses some relevant
numerical aspects of the proposed grid-based concept for a stable damage simulation of
heterogeneous solids.

6.2 Notes on Grid-Based Data Structure

In arbitrary finite element meshes a node table with nodal coordinates and an element ta-
ble which stores element type and corresponding interconnected nodes is required. Based
on a predefined mesh topology (Section 5.8), the computational effort and memory de-
mand of the grid-based finite element problem is considerably low. For the linear problem
the memory demand is summarized in Section 5.11.1. Figure 6.1 (a) shows the material
type. A usual pixel image can be read into the finite element program and each different
color will be interpreted as an individual material type. One constitutive law and one
Poisson’s ratio can be assigned to each material type. The material type identifies the
different materials within the heterogeneous solid and generally its number is countable.
In Fig. 6.1 (a) three different material types are defined for inclusions, matrix mater-
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(a) (b) (c) 

Figure 6.1: Small heterogeneous material sample of 64× 64 finite elements in terms of (a) material type,
(b) Young’s modulus and (c) individual phases.

ial and interfacial transition zones. Figure 6.1 (b) shows the defined Young’s modulus
which is principally decoupled from the material type. It is possible to assign one specific
Young’s modulus to all elements of one material type. But the Young’s modulus can also
be modified in any way, e.g. for modeling some randomness. In Fig. 6.1 (c) each color
indicates an area of neighboring finite elements of the same material type. The data of
Fig. 6.1 (c) is generated automatically from Fig. 6.1 (a). It is used within the nonlocal
approach where it is useful to average stress values only within a considered inclusion and
neglect values of the matrix material or neighboring inclusions. Additional data layers
are required in damage simulation, such as e.g. damage parameter and equivalent strain.
Grid-based processing is quite efficient for application of a nonlocal formulation, because
distances and directions between nodes or elements can effectively be determined.

6.3 Nonlocal Formulations

6.3.1 Nonlocal Formulation for Recovery of Strains/Stresses

The motivation of a nonlocal formulation for damage simulation is given by the items (a.1)
to (a.3) in Section 3.4.3. Independent of a damage material law, nonlocal formulations
can be applied to improve the strains and stresses of a linear elastic finite element solu-
tion. Within this context the meaning of nonlocal formulations is extended to averaging
techniques in general. It is highlighted that the finite element analysis is still based on
a local formulation. Averaging is only applied to reduce local errors in the strain/stress
solution. There are the following characteristics of emerging errors in finite elements:

b.1 In displacement-based finite elements the classical discretization error is related to
limited approximation quality of shape functions due to limited order or limited
resolution of finite elements.

b.2 The orientation of the finite element influences the error distribution. A systematic
element orientation supports a systematic error with respect to a certain direction,
especially in terms of strains and stresses.
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Figure 6.2: Stress solution σxx before (on the left) and after nodal interpolation of element stress at
nodes (on the right) for uniaxial load of material sample (Fig. 6.1) in x-direction.

b.3 In common grid-based finite element models smooth surfaces of material phases are
transformed into an angular discretization which leads to severe defects in the stress
and strain solution independent of element order or resolution.

As in the present approach a nonlocal formulation of damage modeling is applied anyway,
nonlocal averaging of the linear elastic solution does not increase the fuzziness, but may
significantly improve the defects according to (b.1) to (b.3). Especially, the error of stresses
according to (b.3), the grid-based discretization, can effectively1 be corrected. There are
various nonlocal formulations to improve the strain or stress solution of finite elements:

c.1 The use of a weighting function (Section 3.4.4),

c.2 averaging of element values at nodes and

c.3 special techniques such as patch recovery based on selected superconvergent points.

Nonlocal averaging according to (c.1) is automatically included in the subsequent nonlocal
damage formulation. However, it is reasonable to reduce the error mainly induced by grid-
based discretization in advance. Figure 6.2 shows the effect on nodal averaging of the stress
solution σxx. Similar good results are achieved for σyy and σxy (without illustration). The
corrected stress solution is continuous and also the gradients as well as the isolines of
stresses are recovered. Figure 6.3 shows the isolines of the stress solution according to
Fig. 6.2 (left); and Fig. 6.4 that of Fig. 6.2 (right). In Fig. 6.3 it is obvious that almost
all isolines are aligned horizontally. Although the nonlocal formulation of the damage
will smooth the defect, it is assumed that an improved stress according to Fig. 6.4 will
further reduce the mesh directional bias (the present implementation does not include
this correction.).

As a further and rather unusual treatment of the problem an averaged material represen-
tation is introduced. Therewith the original problem is replaced by a substitute problem

1Corrective post-processing only improves the solution of bilinear finite elements in terms of stresses,
but not in terms of energy. A significant remedy of defective stresses along material interfaces is achieved
by multiphase B-spline finite elements (Section 4.6). However, the present implementation of this method
in Mulgrido does not include damage simulation. It is proposed to apply multiphase B-spline finite
elements in future damage simulation.
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Figure 6.3: Isolines of stress σxx in Fig. 6.2, left.

 

Figure 6.4: Isolines of stress σxx in Fig. 6.2, right.

(a) (b) 

(c) (d) 

Figure 6.5: Normal stress in direction of uniaxial tension of circular inclusion on uniform grid of bilinear
finite elements: (a) direct element solution, (b) stress interpolated at nodes, (c) stress of model with
nonlocal Young’s modulus, (d) a combination of (b) and (c).

similar as described in Section 4.6.1. The substitute problem is only introduced to improve
the stress solution in grid-based modeling and shall principally correspond to the same
problem. It is noted that an averaged material representation is achieved by nonlocal
averaging of Young’s modulus, but in contrast to Section 4.6.2, here only one Young’s
modulus is assigned to one bilinear finite element. The effect of this averaging in the
material model on bilinear finite elements is shown in Fig. 6.5. From there it is concluded
that good recovery of stress values is achieved by nodal averaging. An additional slight
smoothing of Young’s modulus might further improve the result, but, clearly, this option
needs to be treated carefully. It is included as an alternative option which can be useful
within the present or similar context.
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6.3.2 Nonlocal Formulation of Damage Law

For the nonlocal formulation of the considered damage law (Section 3.4.2), the local
equivalent strain ε̃ of Eq. 3.46 is replaced by its nonlocal counterpart. In the finite element
model the integral of Eq. 3.52 is replaced by a sum on discrete points according to

f̄(x) =

∑
i∈A(x)

α0(x− ξi)f(ξi)∑
i∈A(x)

α0(x− ξi)
(6.1)

The sequence A(x) only includes source points ξi which are within the same individual
phase (Fig. 6.1 (c)) as effect point x to avoid averaging over different materials. It follows
that the denominator in Eq. 6.1 can be different for different x. In the present implemen-
tation the coordinates of source points refer to the center of elements2. It is reasonable
to restrict element size h in relation to the interaction radius R of the weighting function
by h ≤ R

3
(Jirásek 1999).

On the defined uniform, orthogonal grid the weighting function can be applied as a prede-
fined discrete stencil, which can arbitrarily be trimmed along phase or model boundaries.
Therefore nonlocal formulations on uniform grids are quite effective. Furthermore as the
local equivalent strain only includes the positive parts of stresses, it appears more accu-
rate to apply nonlocal averaging already to the stresses in Eq. 3.47. From this it follows
that there are several possible variations of the method which need to be considered for
achieving an optimal result.

6.3.3 Nonlocal Formulation in Adaption to Heterogeneous Ma-
terial

Besides stabilizing the numerical mechanical analysis, the nonlocal formulation also re-
flects the observed development of damage in material. Specific crack band width or size
of damage region occurs in different materials. It depends on a specific internal length of
each material. For heterogeneous materials it essentially results from the microstructure.
Then, the type and size of weighting function not only determines the smoothing radius
of post-values as shown in Fig. 6.6, but will also define the size, as well as the curvature,
of the developing damage region. In this regard, various weighting functions, such as the
Gauss distribution function and the bell-shaped function (Section 3.4.4), show perceivable
differences (Jirásek 1999).

To track the physical phenomenon, concrete material is selected. It is a comprehensible
explanation that material points in the closest neighborhood around an inclusion in a
generally weaker matrix will not be damaged independently of each other. In this per-
ception the aggregate will “distribute” the damage. From a combined experimental and
numerical approach, it is adopted in (Ferrara and di Prisco 2002) that the material char-
acteristic length is roughly equal to the maximum aggregate size. In a numerical study

2The stresses at the center of bilinear rectangular finite elements are denoted superconvergent. How-
ever, in combination with nodal averaging of Section 6.3.1, a more accurate numerical integral based on
nodal values would be useful to reduce the mesh dependency as best as possible.
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(a) 

(b) 

(c) 

(d) 

Figure 6.6: Nonlocal equivalent strain in center of elements according to bell-shaped function with (a)
R=1, (b) R=5, (c) R=10 and (d) R=15 of specimen in Fig. 6.1 with side length 100.

in (Feist 2004) the interaction radius is set to the triple of the maximum aggregate size
which also confirms the principle idea. With respect to damage modeling on the mesoscale,
the relevant size may be related to the largest aggregate size which is not explicitly mod-
eled, as included aggregates will interact intuitively.

6.3.4 Nonlocal Formulation for Grid-Based Modeling of Mate-
rial Interfaces

The present approach discusses the possibility of a purely grid-based approach for ideal
data structures, optimal embedding into the multigrid method and extension to three-
dimensional modeling. In this context a possibly novel idea for modeling material inter-
faces on a grid shall only be mentioned.

Besides the stress values also the stress directions can be recovered. By a proper defini-
tion of a multiphase material also the orientation of a (one-pixel thick) interface can be
approximated by a nonlocal formulation, as indicated in Fig. 6.7. With both strain and
interface directions being approximated, a special interface solution can be applied, e.g.
isotropic softening of interface elements is defined only for positive normal stress perpen-
dicular to the orientation of the interface. A corresponding method requires some kind

Figure 6.7: Interpolation of directions to approximate the interface orientation based on plain grid dis-
cretization
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of regularization with respect to element size, another weighting function for directions,
as well as several additional considerations. It is highlighted that this concept presumes
a very high resolution of the material, which represents a basic principle of the present
approach of grid-based modeling.

6.4 Damage-Controlled Sequentially Linear Analysis

Damage processes describe a nonlinear behavior. There are various iteration procedures to
solve the corresponding nonlinear problem. Load-controlled methods will fail to converge
after an ultimate load is reached and a global softening behavior can not be simulated.
A displacement-controlled analysis enables to step beyond an ultimate loading. However,
a snap-back can not be detected by displacement-control. Snap-back behavior describes
the phenomenon that for equilibrium on the nonlinear path, both, the load as well as the
displacement will be reduced. Such a behavior can refer to an actual brittle behavior of a
material or structure. But it will also occur due to an unrealistic linear softening branch
in the material model or unregularized strain localization in the numerical model (Jirásek
1999). The arc-length method is an advanced iteration procedure which potentially covers
post-peak behavior as well as snap-back. For example, recently the arc-length method has
been demonstrated for simulating of such damage processes in concrete by Most (2005).

The present article follows a sequentially linear approach similar to (Rots and Invernizzi
2003). This method mitigates the problem to achieve a stable numerical iteration pro-
cedure. In fact, each iteration step is performed by linear analysis based on the secant
stiffness matrix. The sequentially linear approach covers post-peak behavior, snap-back
and is any case stable, at least from a numerical point of view. The algorithm is outlined
by the following steps:

(1) Perform a linear elastic analysis with unit load.

(2) Determine a critical load factor for a small increase of damage, e.g. such that exactly
one element of the model will pass the peak point in the stress-strain diagram.

(3) Scale displacement solution according to critical load factor and record actual status
of load and displacement.

(4) Update damage variables according to this scaled displacement solution.

(5) Build a new secant stiffness matrix. For the scalar damage law only a modified field
of Young’s modulus is stored (Eq. 3.51). Continue with item (1).

The linear elastic analysis in each new iteration is based on the modified field of Young’s
modulus (Eq. 3.51). However, the initial field of Young’s modulus is still required to
update the damage variables. This iteration scheme is declared as damage-controlled. In
each step a small additional, controlled damage occurs.

From the documented algorithm it follows that in each iteration step the actual load limit
is a little bit overestimated, as it is already used to initiate a small damage increment for
the next iteration step. However, it is also possible to achieve exact equilibrium. Then,
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for the actual damage situation the linear secant solution is scaled by a load factor just
that in no element additional damage will occur. Then this describes the maximum load
for which the current damage state is still exactly valid.

There are various possible measures to control the damage process. In (Rots and Invernizzi
2003) the linear secant solution is scaled such that the stress in the most critical element
corresponds to the ultimate stress. A possible criterion to induce additional damage is
that the maximum strain which was detected in any of the finite elements in the last
load step, will be increased by a predefined factor just above 1. It is possible to apply
local or nonlocal measures of strains or stresses. Moreover, the damage could directly be
controlled based on the damage variables ω (Eq. 3.48) of the finite elements. Neverthe-
less, any of these measures can be reduced to an over-estimation of the actual valid load
factor on the actual secant stiffness to continue the damage process. If the damage in-
crements of any measure will be small enough, then there will be no (relevant) difference
in the damage path. An ideal damage increment is small enough such that the damage
simulation is accurate, but at the same time possibly large for achieving best efficiency.
In the present approach the increment corresponds to one additional damaged element
(while the stiffness of all previously damaged elements is also updated). This represents
a relative small increment. However, the computational effort of each step according to
the multigrid method (Section 5.4) is minimal in comparison to other solver methods.
The solution of the last step can be applied as the start vector of the actual step. In
general a decrease of the damage step size results in a decrease of iteration time per step.
The reduction of effective computation time by starting each load step from the previous
converged solution, instead of the zero vector, is analyzed in Section 6.5.3. Generally the
simulation of damage processes on the material level requires several steps to detect the
correct damage path, if it is sensitive to multiple bifurcation. The evolution of damage
around numerous inclusions with simultaneous loading and unloading of different regions
can not accurately be approximated in a few steps. In the following Section 6.5 the pro-
posed method of damage simulation is analyzed with respect to some relevant numerical
aspects.

6.5 Numerical Examples

6.5.1 Effects of Mesh Orientation and Mesh Size

The first example is dedicated to analyze mesh directional bias of the damage develop-
ment on an orthogonal grid. The applied isotropic damage law for tension (Section 3.4.2)
operates on nonlocal equivalent strains. Nonlocal equivalent strains are computed by a
weighting function according to Eq. 6.1 which represents the numerical counterpart of
Eq. 3.54. The (local) equivalent strains (Eq. 3.45) are derived from principal stresses
(Eq. 3.47) which are based on the stress solution of finite elements. However, the direct
stress solution of finite elements shows certain defects which have been summarized by
the items (b.1) to (b.3) in Section 6.3.1. These are the classical discretization error (b.1),
a systematic error from orientation of finite elements (b.2) and local defects along ma-
terial interfaces due to grid discretization (b.3). While the nonlocal formulation is also
motivated by other important reasons (Section 3.4.3), nonlocal weighting also essentially
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(a) (b) (c) 

(d) (e) (f) (g) (h) 

Figure 6.8: All images except (f) and (g) show the degraded Young’s modulus (blue) according to damage.
(a) horizontal tension, (b) diagonal tension, (c) as (b) but without nonlocal weighting, (d) direction of
applied tension between (a) and (b) with slight deviation of damage orientation, (e) same as (d) but
graphical output is not interpolated, (f) nonlocal equivalent strains according to (e), (g) equivalent strains,
(h) same loading as (d) but severe deviation from angle without nonlocal formulation.

compensates local defects of the stress solution according to the items (b.1), (b.2) and
(b.3). Especially defects according to (b.3), which only occur due to the orthogonal grid
are automatically reduced. The improvement of the stress solution can directly be visu-
alized by isometric stress plots (similar to Figs. 6.3 and 6.4). However, there remains the
question if the nonlocal correction also effectively corrects mesh directional bias of the
damage progress. In other words the focus of the following example is mainly on the effect
of item b2.

The present example is a plane stress problem of a circular inclusion (16 mm diameter)
in a quadratic plate (100 mm side length). The model is discretized by 64 × 64 classi-
cal bilinear finite elements. The Young’s modulus of the inclusion is 200000 N/mm2 and
that of the matrix is 100000 N/mm2 . The nonlocal radius of the bell-shaped function
(Eq. 3.55) is 5 mm. The limit elastic strain is ε0 = 1.0 · 10−4 and ductility is determined
by εf = 1.7 · 10−4 (Eq. 3.48). Uniaxial tension tests in various directions are performed:
in horizontal direction (0◦), in diagonal direction (−45◦) and in the direction in between
(−22.5◦). Displacement boundary conditions are applied to avoid rigid body motion only.
Rigid support is on lower left corner and horizontally sliding support on lower right corner
of square, such as in Fig. 3.1.

The results are illustrated in Fig. 6.8. From Fig. 6.8 (d) follows that to a large extent
mesh directional bias has been reduced by the nonlocal formulation in comparison to the
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Figure 6.9: Load-displacement curves for uniform, orthogonal meshes with different element sizes

local formulation of Fig. 6.8 (h). However, in Fig. 6.8 (d) the damage region does not
exactly develop perpendicular to the applied direction of uniaxial tension (about −19◦ in-
stead of −22.5◦). This can result from the large expansion of the damage region while the
specimen is asymmetric to the corresponding direction of applied uniaxial tension. It is
useful to repeat the example with a larger specimen size. If the deviation persists, then an
improvement might be achieved by previous averaging of stresses at nodes (Section 6.3.1).
Undoubtfully, the application of higher-order elements as introduced in Chapter 4 rep-
resents a more promising option. Nevertheless, the present example still indicates only
relative small mesh directional bias. Especially, the local equivalent strain of Fig. 6.8 (g)
shows the inclined damage orientation across the elements.

The next example considers the dependence from the size of finite elements on the sim-
ulated damage behavior. The examined effect can mainly be associated to the discussed
item b1. And if the interaction radius only covers one or a few elements, then there is
only a small correction to expect from the nonlocal formulation. Thus, the major ques-
tion arises: how many elements need to be within the interaction radius for a proper
simulation of damage? The square model from the previous example is scaled to the
size 64 mm× 64 mm. The nonlocal radius of the bell-shaped function (Eq. 3.55) is set to
7.5 mm. All other parameters remain. Uniaxial tension in horizontal direction is applied.
The load factor 1 corresponds to an edge load of 2 N/mm2. The response from the dam-
age behavior is tracked by the load-displacement relationship with respect to the center
coordinate of the right edge of the square. The test is performed for three different sizes
of square finite elements: 0.5 mm, 1 mm and 2 mm side length. The result is illustrated in
Fig. 6.9. There is hardly any difference between the graphs for the elements of size 0.5 mm
and 1 mm until almost complete softening. Thus, the example shows no (relevant) depen-
dence from mesh size for these finer discretizations. The graph from element size 2 mm is
still quite close to the other graphs until a certain significant point where the specimen
is already heavily damaged. This significant point is part of the subsequent study. The
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present example shows that according to the nonlocal formulation a dependence on the
mesh size can effectively be avoided. The ratio of the interaction radius to element size of
the coarsest mesh was 7.5 mm / 2 mm = 3.75. The ratio of 3.75 appears still acceptable.
This result is in accordance to the guide value 3 of Jirásek (1999).

From the presented examples follows that mesh directional bias and dependence from
mesh size can be avoided to the largest extent by the nonlocal formulation. Moreover,
it is supposed that even defects from the inaccurate geometrical representation of in-
terfaces (b.3) can be reduced, similar as for (b.1) and (b.2). In combination with the
correct parameter settings, grid-based damage simulation can be quite accurate. This
statement represents the major conclusion from the present subsection. Undoubtfully, the
result also depends on the accuracy of the material law and on corresponding material
parameters. For example, certain problems require to include a damage formulation for
compression. Nevertheless, the present examples also highlight that a complex, anisotropic
damage behavior on the macroscale can be simulated by a simpler damage formulation
on the mesoscale. This valuable option represents one major item from the motivation
and objectives of the general research on direct modeling of heterogeneous solids. Due to
the uniform grid, damage can equally grow or initiate somewhere in the model without
the need of remeshing. But in general this advantage is computationally expensive. The
efficiency of the proposed multigrid methods for damage simulation is in the focus of
Section 6.5.3.

6.5.2 Study of Damage Progress

The graphs of Fig. 6.9 show a snap-back. After reaching the peak load, both load and
displacement become smaller. This means that the applied parameter settings lead to
an effectively quite brittle material behavior. If the nonlocal radius R is increased then
more energy is absorbed by the damage process (in a one-dimensional example, the ab-
sorbed energy corresponds to the enclosed area of the load-displacement curve). Also the
peak load slightly increases. This effect is shown in Fig. 6.10. The graph of interaction
radius 7.5 mm corresponds to that of element size 1 mm of Fig. 6.9. The model and all
parameter settings also correspond. Five states states of this graph A . . . E have been se-
lected. The corresponding damage process zone and the normal stress σxx are illustrated
in Fig. 6.11. In the very first iterations damage develops symmetrically on the left and on
the right side of the inclusion. State A shows that the further damage progress decides
for the right side. It is noted that the width of the inclusion is 11 elements and the total
width of the model is 64 elements. Thus, the inclusion can not be quite in the center.
It is effectively half an element left and half an element below of the model center. It
is clear that the stress σxx is low within the damaged region but large above and below
it. The damage region almost increases symmetrically to a horizontal axis until state C.
Then the damage growth decides for the lower part, while the upper damage process zone
does hardly increase anymore. In state D the damage zone is close to the lower edge. The
edge is broken in state E. However, state E represents quite a special snap-shot, because
the width of the lower damage zone is not yet fully developed and some normal stress is
still transfered. In the next few iterations this changes and the damage on the lower part
completely develops. The corresponding deformation states B . . . E are shown in Fig. 6.12.
The present study provides some information about the special curvature of the graphs
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Figure 6.10: Load-displacement curves for different interaction radii of the weighting function

A B C D E 

Figure 6.11: Damage process zone (in red), images on the top, and normal stress σxx below (red marks
high stress and blue low stress) according to the five, marked states A to E of Fig. 6.10

in Figs. 6.9 and 6.10. Now, it can also be understood what it means that the graph of
element size 2 mm in Fig. 6.9 is different after state D. In fact, in the coarser mesh, even
after state D, the damage develops symmetrically. The reason results from the simple fact
that on the coarse mesh the inclusion with the selected width of six elements has exactly
been put in the center of the model. Thus, the final deviation of the 2 mm graph in
Fig. 6.9 from the other graphs may mainly result from this apparently, minor and ignored
difference. In fact, if the inclusion of the width 11 is put half an element above the center,
then the damage breaks through the upper edge. Then, state E is horizontally mirrored.
This is clear due to symmetry, but has also been tested to exclude other effects. This
observation indicates that apparently minor changes of the microstructure can lead into
essentially different damage processes and observed damage behavior on the macroscale.
It is proposed to perform many small steps such that each damage state, which decides
over the following damage growth, can accurately be detected. If the problem is sensitive
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Figure 6.12: Magnified deformation according to states B . . .E of Fig. 6.10

to the microstructural arrangement in this way, then it is proposed to perform a statistical
analysis based on many simulations. For the linear elastic behavior in terms of effective
properties this is exemplified in Chapter 7.

Some additional results are presented. Figure 6.13 shows various load-displacement curves
with respect to a modification of the parameter εf (Eq. 3.48). All other parameters are
equal to the model of Fig. 6.9 with element size of 1 mm. The graphs show that with
increasing ductility the peak load and the absorbed energy increases, but the typical shape
of the curves principally remains. In (Häfner, Eckardt, Luther and Könke 2006) results
from geometrical modeling and linear elastic analysis are presented. Two corresponding
images are shown on the left of Fig. 6.14. It was predicted that cracks will initiate at
zones where very large stresses occur (black zones in center image of Fig. 6.14). For
further interest damage simulation has been performed on this geometry. In fact, damage
initiates on the left side of the large inclusion (which is located in the upper right half).
The developed damage distribution after several iterations is illustrated in the right image
of Fig. 6.14 in terms of equivalent strains (large equivalent strains are black). While the
damaged region is larger, the equivalent strains are only large in a very localized region
(similar to image (g) of Fig. 6.8) which appears like a discrete crack. This result exemplifies
the proposed analysis for a model with several inclusions.
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Figure 6.13: Load-displacement curves for different ductility in terms of parameter εf

 

Figure 6.14: Geometrical model of inclusions in a matrix (left). Mises stress from linear elastic analysis
(center). Local equivalent strain from damage simulation according to uniaxial tension in horizontal
direction (right).

6.5.3 Computational Effort

Numerical efficiency is a key aspect of the present grid-based approach. The multigrid
method has been applied as fast iterative solver method for the linear elastic analysis of
heterogeneous solids in Chapter 5. The major characteristics are low memory demand,
low computation times and the computational effort only increases linear with increasing
size of the problem. It is favorable, that the efficiency is also possibly high for the proposed
damage simulation. Therefore the damage simulation is performed according to a damage-
controlled sequentially linear analysis as introduced in Section 6.4. Then each load step
corresponds to a linear elastic analysis with a new distribution of Young’s modulus Ê
(Eq. 3.51) in the model. The modified Young’s modulus Ê represents the current damage
state and can be interpreted as secant stiffness. It follows that there is no modification
of the multigrid method required for damage simulation, except that the applied Young’s
modulus is Ê instead of the initial Young’s modulus E (Eq. 3.51) of the undamaged model.
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Figure 6.15: Comparison of the number of iterations per load step between the multigrid method (MG)
and the multigrid preconditioned conjugate gradient method (MGCG)

As according to the damage law (Section 3.4.2) in each element the secant stiffness Ê is
always positive, the global stiffness matrix (which is neither created nor stored) remains
positive definite and the finite element element problem numerically stable (for confidence
it is possible to define a lower limit of Ê such as 1.0 · 10−12 which is far below E, but not
zero). Thus it is possible to run a stable simulation up to complete damage. In the present
concept it is proposed that in each load step one finite element enters the damage state.
This is done for precisely controlling the damage evolution and achieving an accurate
solution. It would also be possible that in each load step two or more elements enter the
damage state. In the present approach the number of load steps and number of damaged
finite elements are equal.

The present example corresponds to that of Fig. 6.9 with element size 1 mm, but with in-
teraction radius 5 mm. The multigrid method and the multigrid preconditioned conjugate
gradient method are applied. For both cases, the W-cycle with three smoothing steps on
each level is performed. And in both cases each load step starts from the zero vector. The
error tolerance for each load step was εr = 1.0 · 10−6 (Eq. 5.63). The number of cycles
per load step is compared in Fig. 6.15. From the beginning the preconditioned version
requires less cycles. But it also needs to be considered that the cycle of the preconditioned
version requires more operations. A critical point is reached at about 410 load steps. In
the present example this load step corresponds to the situation when the damage reaches
the edge (similar to state E of Fig. 6.12). In both methods the number of cycles increases
here. However, the number of cycles from the plain multigrid method increases essentially
more. The advantage of the preconditioned version is significant. It follows that for dam-
age simulation the preconditioned version should be applied. One reason lies in the large
ratios of Young’s moduli which occur within the model due to damage (Section 5.11.3).
The sudden increase of cycles at about load step 410 can be explained by the change from
a uniaxial tension problem into a bending problem (compare state D and E of Fig. 6.12).
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Figure 6.16: Number of iterations per load step of the multigrid preconditioned conjugate gradient
method, when (a) each load step starts from the zero vector or (b) each load step starts from the
solution vector of the last load step.

Only the multigrid preconditioned conjugate gradient method is considered in the follow-
ing. In the previous example the iteration of each load step started from the zero vector.
It is examined how the number of iterations changes if each load step starts from the solu-
tion of the last load step. For the same parameters as in the foregoing example the result
is shown in Fig. 6.16. Graph (b) indicates a relevant reduction compared to graph (a).
In the first 100 load steps the number of iterations reduces from 719 to 321 which means
only 45% of the previous effort. After all 500 load steps the ratio is 5398 to 3311 which
still yields a reduction to 61%. In this case the error tolerance for each load step was
εr = 1.0 · 10−6 (Eq. 5.63). For a error tolerance of εr = 1.0 · 10−8 the two corresponding
values are 52% for 100 load steps and 68% for 500 load steps. Thus, the larger the error
tolerance, the larger is the gain from the previous solution. Altogether roughly half of
the computational effort represents a relevant saving. But as in each load step there is
only one additional damaged element, while clearly all other damaged elements are also
updated, it could have been expected that the previous solution provides an even better
start vector for the next load step. It follows that the gain from the previous solution
should be larger for a smaller element size. Therefore the test is repeated for a mesh with
element size 0.5 mm instead of 1 mm (the meshes are shown in Fig. 6.9). There the effort
reduces to 37% for 400 load steps and to 53% for 2000 load steps (without illustration)
based on an error tolerance of εr = 1.0 · 10−6. Thus, the gain from the previous solution
is larger for a smaller element size, but the improvement is not quite essential. On the
other hand, for half the mesh size the same damage region corresponds to four times the
number of damaged elements (or load steps).

According to a very rough estimation, for increasing model size there is a linear increase
of computational effort per load step and a linear increase of number of load steps. Thus,
in total the computational effort of damage simulation increases about by quadratic or-
der with respect to model size. A corresponding test has been performed. A computer
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with 1.1 GHz processor was used. For element size 1 mm (64 × 64 finite elements, 8447
degrees of freedom) the computation time for 500 load steps was 82.22 seconds. For element
size 0.5 mm (128× 128 finite elements, 33279 degrees of freedom) the computation time
for 2000 load steps was 1214.22 seconds. Recalling the formulation ax = b (page 110), this
yields a = 33279/8447 = 3.94, b = 1214.22/82.22 = 14.77 and thus an order of x = 1.96.
The present example confirms the supposed quadratic order. This principally also means
that the order could roughly be linear, if the load step (damage increment) increases linear
with model size. However, this has not been tested. Here this study ends. For future appli-
cation it is indicated to rethink the required error tolerance, the size of the load steps and
to consider further options to improve the start vector of the next load step. In any case,
a significant reduction of computational effort has been achieved by the preconditioned
version in comparison to the plain multigrid method (Fig. 6.15).

6.6 Conclusions

Nonlocal damage modeling on orthogonal grids is exemplified by an isotropic material law
with exponential softening for tension. A damage-controlled procedure of linear steps is
performed, which means that from one step to another only a certain increment of dam-
age occurs. Defects of stresses from the grid-based solution of bilinear finite elements can
significantly be improved by nonlocal post-processing. The uniform grid supports an effec-
tive implementation of nonlocal averaging by a predefined discrete representation of the
weighting function. Within a reasonable parameter space, only low sensitivity to mesh
orientation and mesh size is observed in the present examples. From this follows that
grid-based procedures can be prepared for an accurate simulation of damage. Certain
damage-induced anisotropic mechanical behavior on the macroscale can be simulated by
an isotropic damage formulation on the mesoscale. According to the uniform grid the dam-
age can both equally grow and initiate somewhere within the domain without the need of
remeshing. This advantage over an irregular also means an increased model size. However,
the applied multigrid method (Chapter 5) is developed for best efficiency in linear grid-
based mechanical analysis of very large models. For damaged models a relevant remedy
is achieved by the multigrid preconditioned conjugate method. An investigated example
shows that minimal changes of the microstructure can initiate different damage mecha-
nisms up to different macroscopic failure. If the mechanical response of a heterogeneous
solid is sensitive in such a way, then it is recommended to perform a statistical analysis
based on different possible geometrical arrangements of the microstructure. However, the
present work only includes a corresponding statistical study for the effective linear elastic
mechanical behavior (Chapter 7). The present chapter documents the first successful steps
to extend the proposed grid-based approach to damage simulation of heterogeneous solids
and thus prepares for future developments.



Chapter 7

Study on Effective Mechanical
Behavior

7.1 Apparent Properties of Various Specimen Sizes

Homogenization is exemplified for two-dimensional models of heterogeneous solids ac-
cording to Section 3.3. The constitutive relationship for homogenization with respect to
homogeneous boundary conditions is defined as

 〈σ11〉
〈σ22〉
〈σ12〉

 =

 Capp
11 Capp

12 Capp
13

Capp
21 Capp

22 Capp
23

Capp
31 Capp

32 Capp
33

 〈ε11〉
〈ε22〉
2〈ε12〉

 (7.1)

for the two-dimensional problem (analog to Eq. 3.11). The considered square model of
side length 100 contains ten circular inclusions of diameter 20. The Young’s modulus of
the inclusions is Eincl. = 400000 and that of the matrix is Ematrix = 100000. The Poisson’s
ratio of both phases is νincl. = νmatrix. = 0.2. Table 7.1 shows the obtained results for
homogeneous displacement boundary conditions and Table 7.2 those for homogeneous
traction boundary conditions. Also in the numerical model it is satisfied to a high precision
that Cij = Cji for i 6= j. A magnification of the corresponding deformation states is
illustrated in Figs. 7.1 and 7.2.

Load case 〈ε11〉 〈ε22〉 2〈ε12〉 〈σ11〉 〈σ22〉 〈σ12〉
ε011 = 0.01 0.01 ≈ 0 ≈ 0 1486.8385 306.34816 0.03024534

ε022 = 0.01 ≈ 0 0.01 ≈ 0 306.34816 1506. 8239 -0.01221561

2ε012 = 0.01 ≈ 0 ≈ 0 0.01 0.03024534 -0.01221561 592.30535

Table 7.1: Numerical results of average strains 〈ε〉 and stresses 〈σ〉 over the domain Ω for homogeneous
displacement boundary conditions. In this table (·) ≈ 0 means | · | < 10−18

Load case 〈ε11〉 〈ε22〉 2〈ε12〉 〈σ11〉 〈σ22〉 〈σ12〉
σ0

11 = 1.00 7.17827 · 10−6 −1.53176 · 10−6 −4.23663 · 10−9 1.00 ≈ 0 ≈ 0

σ0
22 = 1.00 −1.53176 · 10−6 7.18477 · 10−6 2.67115 · 10−8 ≈ 0 1.00 ≈ 0

σ0
12 = 1.00 −4.23663 · 10−9 2.67115 · 10−8 1.73984 · 10−5 ≈ 0 ≈ 0 1.00

Table 7.2: Numerical results of average strains 〈ε〉 and stresses 〈σ〉 over the domain Ω for homogeneous
traction boundary conditions. In this table (·) ≈ 0 means | · | < 10−11

134



7.1. Apparent Properties of Various Specimen Sizes 135

(a)                                 (b)                               (c) 

Figure 7.1: Deformed specimen for homogeneous
displacement boundary conditions

 

(a)                              (b)                            (c) 

Figure 7.2: Deformed specimen for homogeneous
traction boundary conditions

The apparent properties Capp
ε according to homogeneous displacement boundary condi-

tions result from Table 7.1 as

Capp
ε =

 148683.85 30634.816 3.0245336
150682.39 −1.2215607

sym. 59230.535

 (7.2)

All three load cases of Table 7.2 are required to solve for any entry of Capp
σ from the

homogeneous traction boundary conditions which yields

Capp
σ =

 145949.07 31115.778 −12.231000
145817.86 −216.29494

sym. 57476.77

 (7.3)

The eigenvalues λ of (Capp
ε −Capp

σ ) are evaluated according to the fundamental equation

det(Capp
ε −Capp

σ )− λI = 0 (7.4)

where I is the identity matrix. For the present case the eigenvalues are

λ1 = 4981.3956 , λ2 = 2635.2283 , λ3 = 1736.4511 (7.5)

All eigenvalues are positive. Thus, the inequality (Capp
ε > Capp

σ ) which follows from
Eq. 3.25 is satisfied for this numerical example. From mixed boundary conditions, as
discussed in Section 3.3.3, the apparent Young’s modulus Eapp

m = 148034.37 and apparent
Poisson’s ratio νapp

m = 0.20570461 are obtained. The applied plane stress case and the
assumption of ideal isotropic material behavior lead to the following apparent material
properties Capp

m for mixed boundary conditions.

Capp
m =

 148034.37 30451.352 0
148034.37 0

sym. 58791.51

 (7.6)

In this example it follows from the analysis of eigenvalues that also the inequalities of
Eq. 3.32 (Capp

ε > Capp
m ) and (Capp

m > Capp
σ ) hold. However, in further examples this was

not always true. This can be explained as the proposed homogenization procedure for these
mixed boundary conditions presumes ideal isotropy, which is not exactly valid. Numerical
errors might also cause a change of inequalities, but only if the two material matrices
are quite close. Nevertheless, it can be concluded, that the proposed homogenization
procedure with specific mixed boundary conditions (Section 3.3.3) leads to a reasonable
approximation of apparent properties by only one load case.
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100 200 400 800 

10 incl. 

40 incl. 

160 incl. 

640 incl. 

Figure 7.3: Four specimen with different side length: 100, 200, 400 and 800 (not drawn to scale). In all
models the area fraction of circles is 31.415%. The diameter of circles is 20. The geometrical arrangement
of circles in the different models is random and independent of each other.

For the specimen of side length 100 with ten inclusions it was demonstrated that Capp
ε and

Capp
σ represent upper and lower bounds of Capp

m , respectively. These are also the bounds
of the effective properties Ceff as given by Eq. 3.25. With increasing size of specimen the
apparent properties will converge to the effective properties. This effect is examined in
the following. Figure 7.3 shows four specimen of different size. It includes the undeformed
state of the specimen with side length 100 from the previous example (Figs. 7.1 and
7.2). In the same way as exemplified before, for all specimen of Fig. 7.3 the apparent
properties have been determined. The result is shown in Fig. 7.4. The graphs KUBC and
SUBC represent the average (Capp

11 + Capp
22 )/2, respectively. The result of MBC has been

determined according to the average from a load case in x- and y-direction. The averages
have been calculated to reduce the effect from possible anisotropy of these specimen. It
follows from Eqs. 7.2 and 7.3 that this is a minor correction. Fig. 7.4 illustrates that
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Figure 7.4: Apparent properties of the specimens shown in Fig. 7.3 according to homogeneous displace-
ment boundary conditions (KUBC), homogeneous traction boundary conditions (SUBC) and mixed
boundary conditions (MBC). (Abbreviations are defined in Section 3.3.2)
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the graphs KUBC and SUBC principally converge with increasing size of specimen, and
furthermore that MBC is bounded by KUBC and SUBC. For double side length of the
specimen the distance between KUBC and SUBC approximately halves. The exact factors
from Fig. 7.4 are 0.47, 0.54 and 0.55 (sorted after increasing size of specimen). It is
concluded that the present results are consistent with the provided theory of Section 3.3.
With respect to the following study, it is decided that it is sufficient to consider only
mixed boundary conditions.

7.2 Statistical Study of Random Arrangements

The models from the foregoing section (Fig. 7.4) only represent one possible geometrical
arrangement of inclusions. The results may vary with varying geometrical arrangements.
This random effect is analyzed in the present section based on numerous different geo-
metrical arrangements. For the evaluation of the results, it is briefly introduced to some
fundamental equations of statistics (Bosch 1993).

For a set of n samples Xi with i = 1 . . . n the mean value M(X) is defined as

M(X) =
1

n

n∑
i=1

Xi (7.7)

The variance VAR(X) represents a certain measure of scatter

VAR(X) =
1

n− 1

n∑
i=1

(Xi −M(X))2 (7.8)

The standard deviation S(X) is the square root of the variance.

S(X) =
√

VAR(X) (7.9)

The range R = max(X) −min(X) represents a further measure of scatter. However, for
a comparison of different random sample sets, it is more adequate to compare quantiles.
For the present purpose the following definition of an α-quantile Q(X)α is sufficient:
100 α % of the n samples Xi are smaller than Q(X)α.

It is useful to determine confidence intervals on the mean value with respect to number
of samples. The following confidence interval is only exact for a normal distribution.
Otherwise acceptable approximations can be achieved, if the number of samples n is
larger than 30 (Bosch 1993). The probability that the mean value is in the confidence
interval [

M(X)− z1−α
S(X)√

n
; M(X) + z1−α

S(X)√
n

]
(7.10)

is 1 − 2α where z1−α denotes the quantile of the standard normal distribution. Such
quantiles are provided by tables in most textbooks of statistics. For example, if the quantile
is z0.995 = 2.57583, then Eq. 7.10 represents the 99% confidence interval.

For arbitrary distribution types the 1− 2α confidence interval for the variance is approx-
imately[

S(X)2 − z1−α

√
m4 − (S(X)2)2

n
; S(X)2 + z1−α

√
m4 − (S(X)2)2

n

]
(7.11)
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for a large number of samples (Bosch 1993), where the variable m4 is defined as

m4 =
1

n

n∑
i=1

(Xi −M(X))4 (7.12)

The 1 − 2α confidence interval of the standard deviation is obtained from the (positive)
square roots of the interval bounds in Eq. 7.11.

If for each sample two characteristics X and Y are obtained and examined, it is often of
interest, if and how the values of X and Y depend on each other. Such a relationship is
quantified by the covariance

COV(X; Y ) =
1

n− 1

n∑
n=1

(Xi −M(X))(Yi −M(Y )) (7.13)

However, the covariance is not invariant with respect to a change of scale. Therefore it is
proposed to apply the correlation coefficient

ρ(X; Y ) =
COV(X; Y )

S(X) S(Y )
(7.14)

The possible range of the correlation coefficients is [−1; 1]. If ρ(X; Y ) = 0 then X and Y
are independent of each other. The closer ρ(X; Y ) is to -1 or to 1, the stronger X and
Y are correlated. For a positive (negative) correlation ρ(X; Y ) > 0 (ρ(X; Y ) < 0), Y is
expected to be large (small), if X is large.

In the following it is briefly commented on probability density function and histogram.
Figure 7.5 shows the probability density function (pdf) of the standard normal distri-
bution. Figure 7.6 presents a histogram based on 100 random samples which have been
generated according to the standard normal distribution. Each bar illustrates the absolute
frequency of samples within the range of the bar, which is denoted as class. Here the class
width is 0.5. The area below any valid probability density function corresponds to 1. The
histogram can be scaled such that total area of bars is also equal to 1. Then, the scaled
histogram represents an approximation of the probability density function. With increas-
ing number of samples the expected approximation quality of the histogram improves. In
the following study such scaled histograms are used and denoted as normalized histogram.
For simplicity the bars are replaced by one graph, as for example the dashed graph in
Fig. 7.6.
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Figure 7.5: Standard normal distribution
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Figure 7.6: Histogram based on 100 samples
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Figure 3.5 illustrates the applied load case. The result is evaluated in terms of deformation
energy. Deformation energy means external work EW , the energy which is required to
deform the body to a specific amount. For the present load case, it is EW = 1

2
(R1u1+). If

u1+ = 1, then it follows that 2EW = R1. The dimensions of the square are the width W and
the height H, with W = H. It follows that, R1 = σb

11H and ε0
11 = 1

W
, and thus σb

11 = R1ε
0
11.

As for the present load case, it is true that ε0
12 = 0 and ε0

22 = 0, it follows that σb
11 = C11ε

0
11.

Finally, it can be concluded that

2EW = R1 = C11 if u1+ = 1 (7.15)

such that it is possible to interpret the result in the diagrams as twice the deformation
energy for u1+ = 1 (or directly as the deformation energy for u1+ = 1

2

√
2), as the resulting

force R1 for u1+ = 1 or an approximation of C11 according to mixed boundary conditions.
This rich interpretation supports the objectivity and meaning of the following results.

The first study examines the influence from random arrangement of inclusions with respect
to varying size of specimen. The applied parameters of the study are analog to that
of Fig. 7.3, only the arrangement of inclusions is random. For each specimen size, 9000
different geometrical arrangements have been analyzed. The result is shown in Fig. 7.7.
With increasing specimen size the mean value of deformation energy decreases by 0.4%
from size 100 to 200 and by further 0.2% from size 200 to 400. With increasing specimen
size the influence from random arrangement decreases. In fact, for double side length the
standard deviation approximately halves. The factors are 0.44 from 100 to 200 and 0.47
from 200 to 400. The 99% confidence interval of the mean value according to Eq. 7.10
is [149299; 149393] for size 100, [148725; 148767] for size 200 and [148437; 148457] for
size 400. The 99% confidence interval of the standard deviation is determined by Eq. 7.11
as [1711; 1779] for size 100, [755; 785] for size 200 and [360; 374] for size 400. From the
evaluated confidence intervals it follows that the achieved mean values and standard
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Figure 7.7: Normalized histograms of deformation energy (Eq. 7.15) for various sizes of specimen, each
based on 9000 samples (class width 100). From size 100 to 400: mean values are 149346, 148746, 148447
and standard deviations are 1745, 770, 367, respectively.
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Figure 7.8: Normalized histograms of deformation energy (Eq. 7.15) for various resolution of meshes,
each based on 6000 samples (class width 500). From coarse to fine mesh: mean values are 149345, 149186,
149070 and standard deviations are 1753, 1750, 1825, respectively.

deviations are reasonably accurate from a statistical point of view. This means that the
number of samples is sufficient.

In the following the numerical error due to finite elements and due to geometrical approx-
imation of the circles is discussed. Only bilinear finite elements have been applied in this
study, but the resolution is relatively high. In the foregoing example the small model of
the dimensions 100×100 is discretized by 256×256 finite elements. For the larger models
the element size is kept constant, such that model size 200 is based on 512× 512 and size
400 on 1024× 1024 finite elements.

For a rough estimation on the dimension of the numerical error, the model of side
length 100 is analyzed based on two refined meshes. The corresponding histograms are
illustrated in Fig. 7.8. The mean values from coarse and finest mesh differ by 0.18%. It
can be concluded that the numerical error of the coarse mesh is larger. For further ref-
erence, the 99% confidence interval from statistics is only about ±0.04% for each mean
value. This highlights that it is principally indicated to apply higher order finite elements
in such studies, for example the proposed B-spline finite elements1. Nevertheless, the nu-
merical error appears not too significant with respect to the following examples. This also
becomes quite obvious from a comparison to subsequent histograms.

A further study is dedicated to analyze the effect from shape of inclusions. Like in the
previous examples, in all models the area fraction of inclusions is 31.415%. The number
of inclusions also remains equal for the different shapes. The Young’s modulus of matrix
is 100000 and that of inclusions is 400000. The Poisson’s ratio is 0.2 for both phases.
Figure 7.9 compares the previous example of circles with ellipsoid inclusions of the aspect
ratio 4:1. The corresponding size of specimen is 100. The histogram directly shows that
the scatter from ellipses is considerably larger. As an explanation it is supposed that

1Only the conjugate gradient method has been introduced for B-spline finite elements. Thus, for a
larger study bilinear finite elements were applied in connection with the more efficient multigrid method.
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Figure 7.9: Normalized histograms of deformation energy (Eq. 7.15) based on 6000 samples each (class
width 500). For circular inclusions and ellipses of aspect ratio 4/1: mean values are 149345 and 151704
and standard deviations are 1754 and 2982, respectively.
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Figure 7.10: Normalized histograms of deformation energy (Eq. 7.15) based on 6000 samples each (class
width 200). For circular inclusions and ellipses of aspect ratio 4/1: mean values are 148449 and 151249
and standard deviations are 368 and 793, respectively.

especially due to rotation of ellipses a larger variety of geometrical arrangements can
develop. With 2982 versus 1754 the standard deviation of deformation energy from ellipses
is 1.7-times larger than that from circles. The mean values differ by 1.6%. Figure 7.10
shows the results from an analog study based on 160 inclusions in a square specimen
of side length 400. Here, the standard deviation from ellipses is 2.1-times larger than
that from circles. The mean values differ by 1.9%. It can be concluded that there is a
certain effect from shape of inclusions on the deformation energy, or on the apparent
properties according to Eq. 7.15. The stiffness tends to increase if ellipsoid inclusions of
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Figure 7.11: Various shapes of inclusions. The geometrical arrangement of inclusions is random.
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Figure 7.12: Normalized histograms of deformation energy (Eq. 7.15) based on 9000 samples each (class
width 500). For circles, squares, triangles: mean values are 149346, 150314, 151210 and standard deviations
are 1745, 1764, 1470, respectively (Pentagon 149802; 1630).

aspect ratio 4:1 are applied instead of circular inclusions. This observed stiffening effect
is in agreement to Tsukrov and Novak (2004) who propose a numerical procedure of
conformal mapping for modeling irregular shapes and moreover present several further
results. However, as there is a relevant overlapping range of histograms in Fig. 7.9, the
stiffening effect is not necessarily observed for two random samples of size 100.

The results from the foregoing example of ellipses motivates a further study on other
inclusion shapes. On the left Fig. 7.11 shows a specimen with a random arrangement of
ellipses of aspect ratio 4:1. It further illustrates specimens with pentagons, squares and
equilateral triangles. Figure 7.11 displays finite element models in original resolution of
256× 256 pixels. The various inclusions shapes are accurately represented. The polygonal
shapes have been generated according to the formula of supershapes (Section 2.2: Eq. 2.3
and Section 2.7: Table 2.2). Figure 7.12 represents the results of the analysis. The his-
togram from the pentagons has not been included. It would be in between the histogram
from circles and that from squares. The ranges of the different examples largely overlap.
This highlights that only a few samples might not quite reflect the observed relationship.
For squares, and even more for triangles, the frequency of effectively stiffer specimen is
larger in comparison to circles. From the basis reference of circles, the mean value from
squares is 0.65% larger, and that from triangles 1.25%. It can be concluded, that there is a
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Figure 7.13: Scatter plot of deformation energies (Eq. 7.15) based on a load case in x-direction and a load
case in y-direction for each sample (10000 samples). Size of specimen is 100. For x- and y-direction: mean
values are 149339 and 149336, standard deviations are 1736.6 and 1735.5. The correlation coefficient
is -0.81.

clear effect from shape of inclusions on the apparent properties. On the other hand, it also
turns out that this effect is limited to at most a few percent of effective stiffness. For the
present small specimen of size 100, the influence from random arrangement of inclusions is
larger. The total range in the histogram of circles is about 7.5% with respect to the mean
value of deformation energy. In summary, there are random effects in heterogeneous solids
which depend on shape of inclusions, arrangement of inclusions and sample size (scale of
observation).

The previous studies on deformation energy are based on one load case of mixed boundary
conditions which can be characterized as a deformation state in x-direction (horizontal).
The present study additionally includes the deformation energy for an equivalent deforma-
tion state in y-direction (vertical) for each sample. The major parameters of this example
correspond to the previous studies. Circular inclusions are applied. For a square specimen
of size 100, Figure 7.13 represents the scatter plot of the deformation energies according
to random geometrical arrangements of inclusion. For some samples the corresponding
geometry is shown. It is principally observed that the deformation energy with respect to
a certain direction increases, if inclusions are aligned parallel to this direction and further-
more if the spaces in between are small. An ideal parallel arrangement of phases yields a
Young’s modulus of 130835 (Reuss) for a deformation perpendicular to phase orientation
and 194248 (Voigt) for a deformation parallel to phase orientation. It is clear, that such an
ideal parallel arrangement of phases can not be created by circular inclusions. However,
the theoretical bounds reflect a strong directional dependency. It is interesting to examine,
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Figure 7.14: Same type of scatter plot as Fig. 7.13,
but size of specimen is 200. For x- and y-direction:
mean values are 148743 and 148756, standard devi-
ations are 780 and 776. The correlation coefficient
is -0.76.
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Figure 7.15: Same type of scatter plot as Fig. 7.13,
but size of specimen is 400. For x- and y-direction:
mean values are 148452 and 148453, standard devi-
ations are 370 and 368. The correlation coefficient
is -0.73.

if and in which quantity such a directional dependency is present in the current example of
circular inclusions. Equation 7.14 yields a correlation coefficient of −0.81 for the samples
shown in Fig. 7.13. This indicates that, in models of randomly arranged inclusions, there
is a strong correlation of effective stiffness between perpendicular directions. From this
very small model of ten inclusion it is not known, if this strong correlation is also present
in models of more inclusions. Thus, the study is repeated for a model of size 200 with 40
inclusions and a model of size 400 with 160 inclusions. The scatter plots of these larger
models are given in Figs. 7.14 and 7.15. In analogy to Fig. 7.7, the scatter of deformation
energy decreases with increasing specimen size. The computation according to Eq. 7.14
leads to a correlation coefficient of -0.76 for model size 200 (Fig. 7.14) and of -0.73 for
model size 400 (Fig. 7.15). This means that the strong correlation principally persists
for an increasing number of inclusions and does not vanish due to random arrangement
of inclusions. For the present models with randomly arranged inclusions, the descriptive
interpretation is: if the stiffness with respect to a certain direction is relatively large, then
it strongly tends to be relatively low in the perpendicular direction.

A further example studies the effect from voids on the deformation energy, with respect
to volume ratio of voids and random arrangement of voids. The result is illustrated in
Fig. 7.16. The influence from volume ratio of voids can best be evaluated from the graph
of mean value. For each marked volume ratio, 10000 different geometrical arrangements
of voids have been analyzed. The observed scatter is included in terms of 0.01 and 0.99
quantiles (the term quantile is introduced on page 137). In the present example with
constant diameter of voids, the effect on the absolute value of deformation energy from
random arrangement of voids is largest between 10% and 40% volume ratio. The maximal
influence from random arrangement corresponds to approximately 5% change of volume
ratio. Nevertheless, for a constant volume ratio of 50% the range of deformation energy
in between quantiles is relatively large in comparison to mean value, in fact, it is about
20% of mean value. This describes a relevant random effect from geometrical arrangement
onto the apparent elastic properties.
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Figure 7.16: Deformation energy (Eq. 7.15) for random geometrical arrangements of voids

The present study highlights that, based on an accurate analysis and on many numerical
experiments, quite precise statistical predictions on the effective material behavior can
be achieved, which could hardly be established by real experiments. Statistical parameter
studies on numerical models represent a relevant option to gain more essential knowledge
of random effects in heterogeneous solids. This also includes characteristics of damage
behavior or other physical properties such as for example thermal conductivity.

7.3 Study of Concrete

Concrete is an important building material. It represents a heterogeneous solid which can
be composed in many different ways to meet certain properties. Section 1.1 provides a
brief introduction to concrete. Figure 1.1 (e) shows a typical cross section geometry of the
real material. Stock, Hannant and Williams (1979) performed experiments on concrete to
examine the effect from volume ratio of aggregates onto the effective2 Young’s modulus.
The aggregates are stiffer than the matrix such that with increasing volume ratio of
aggregates the effective Young’s modulus increases. The observed relationship from the
experiments represents a valuable reference for a comparison of concrete models with real
concrete in terms of linear elastic behavior.

The applied concrete model of the mesoscale consists of two phases: aggregates and cement
stone (Section 1.2). The model supposes ideal bond between the phases. In the experiment
the mean Young’s modulus of the cement stone was determined as 11.6 kN/mm2 and that
of the aggregates as 74.5 kN/mm2. The Poisson’s ratio is not specified by the experiments

2From the definitions of Section 3.3.2 follows that from specimen or models of finite size generally
only apparent properties can be obtained. Apparent properties can serve as an approximation of effective
properties. It is noted that certain bounds are only exactly valid for effective properties. Nevertheless, in
many works and in the following the term effective properties is applied instead of apparent properties.
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Figure 7.17: A comparison of various models to experiments of Stock, Hannant and Williams (1979)

and was defined as ν = 0.2 for both constituents. In the experiment a grading curve of
particle sizes from 0.15 mm to 19 mm was used. For a square, two-dimensional sample
of 100 mm side length, the resolution 2048 × 2048 finite elements leads to an element
size of 0.05 mm. Common bilinear finite elements have been applied in the analysis.
Therefore it was decided to use a grading curve which starts from 0.5 mm such that the
smallest particles in the model can accurately be represented by the finite elements. The
homogenization of Young’s modulus was performed based on mixed boundary conditions
according to Eq. 3.38.

The results of the present finite element model show principally good agreement with the
results of the real experiments (Fig. 7.17). It needs to be considered that there are several
possible reasons for deviation, such as natural deviation of material parameters in real
specimen or type of testing procedure. For example at a aggregate volume ratio of 80% the
determined average Young’s modulus from the tension tests was 41.3 kN/m2 and that from
the compression tests was 39.1 kN/m2 (Stock, Hannant and Williams 1979). Additionally,
for the tension tests of 80% aggregate volume a standard deviation of 2.85 kN/m2 was
estimated based on four tests. From four compression tests the corresponding standard
deviation was 1.52 kN/m2. The observed scatter from the experiments shows that concrete
is subjected to a certain range of randomness. Besides, the Poisson’s ratios of aggregates
and cement stone are not available from the experiments. From the prior arguments clearly
follows that an exact match of the numerical model to these experiments would represent
a random effect or at least a deviation of 2−3 kN/m2 still could be considered as perfectly
accurate.
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Figure 7.18: Magnified cut-out of inclusion-matrix model of concrete on the left and corresponding Mises
stress according to mainly horizontal tension on the right (Häfner, Eckardt, Luther and Könke 2006)

The results from various numerical model are included in Fig. 7.17. In (Li, Zhao, Pang and
Li 1999) a four-phase sphere model is presented. It includes an interfacial transition zone
which generally represents an improvement with respect to the assumption of rigid bond.
But it is noted that the corresponding parameters, such as e.g. thickness and stiffness of
interfacial transition zone, were not specified in (Stock, Hannant and Williams 1979). The
prediction of a previous model (Li, Zhao and Pang 1999) is also included in Fig. 7.17.
The Hashin-Shtrikman bounds are rigorous bounds based on ideal assumptions such as
isotropy or infinite sample size of three-dimensional bodies (Section 3.3.4). For further
orientation, the bounds from Reuss (1929) and Voigt (1889) illustrate the theoretically
possible range of effective Young’s modulus with respect to volume ratio of two phases.
In addition to the diagram published in (Häfner, Eckardt, Luther and Könke 2006), the
recent results of a three-dimensional model from (Wriggers and Moftah 2006) have been
included. At 60% volume fraction of aggregates the deviation to the Young’s modulus of
the compression test is 1.4 kN/m2 and to that from the tension test is 3.1 kN/m2. As the
standard deviation of the experiments (tension test) at 60% was 1.88 kN/m2, the deviation
of this numerical result is not quite significant. Additionally, with respect to the result
of the present model (Häfner, Eckardt, Luther and Könke 2006) at 80% (44.0 kN/m2), it
could be assumed that finite element models generally behave to stiff for higher volume
fractions. But only at 80% the experimental results (page 146) are essentially below the
rigorous Hashin-Shtrikman bound (44.2 kN/m2). The reason for that is not quite clear.
(Besides, it is noted that the experimental results appear unusual at 20% volume ratio.)
The present results are also, but only close below the lower Hashin-Shtrikman bound.
These strict assumptions do not apply to the two-dimensional finite element model with
plane stress condition. For 80% volume ratio of aggregates, the effective Young’s modulus
has additionally be computed on a larger model of 134 · 106 degrees of freedom and a
particle size range of 0.15 mm to 19 mm. This lead to 43.775 kN/m2 (Häfner, Eckardt,
Luther and Könke 2006). A magnified cut-out from a typical concrete model of the present
study is given in Fig. 7.18. In summary, in the present example good agreement of effective
Young’s modulus was obtained between experiment and two-dimensional model. This is
consistent with the statement given in (Guidoum and Navi 1993) that in the estimation of
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Figure 7.19: Effective Young’s modulus of different mixtures

effective Young’s modulus of concrete specimen there is no significant difference between
two- and three-dimensional models. However, in general three-dimensional models are
preferable. The good agreement of the proposed finite element model to the experiment
motivated a further parameter study on concrete mixtures (Häfner, Eckardt, Luther and
Könke 2006). The tests were performed based on a square model of side length 100 mm
with 2048×2048 finite elements. For aggregates and matrix the Poisson’s ratio was set to
0.2. The aggregates of the size range 0.5 mm to 32 mm were graded after the Fuller curve.
The results, shown in Fig. 7.19, indicate that the effective Young’s modulus of concrete
increases overproportionally with increasing aggregate concentration. Furthermore it is
observed that, depending on the aggregate volume ratio, there is no significant increase of
effective stiffness beyond a certain stiffness of aggregates. However, the present analysis
of concrete represents only one of many possible studies which can be performed by the
proposed numerical methods in the mechanical analysis of heterogeneous solids.
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Conclusions

The present work is dedicated to computational methods in the mechanical analysis of
heterogeneous solids. Such simulation methods represent an important counterpart to real
experiments. Simulation provides direct access to investigate the mechanical behavior of
heterogeneous solids in many ways. Moreover, computation provides systematic proce-
dures for improving materials and even developing new materials.

Based on the provided information of a heterogeneous solid, an analog computational
representation is generated. It includes a geometrical model, a mechanical model and a
numerical model. An inadequate assumption or an oversimplification within any of these
models generally causes an essential discrepancy between simulation and experiment.

The initial questions which motivated the present approach are presented in Section 1.3.
All questions (items Q1 to Q5) demand for an improvement of the effective quality with
respect to either the geometrical model or the numerical model. More accurate geometrical
representations of heterogeneous solids shall be generated. The computation times and
especially the memory demand of the numerical model shall be reduced as best possible.
This is important to achieve an adequate resolution of heterogeneous specimen. Otherwise,
the discretization of complex heterogeneous solids tends to be oversimplified. For further
enhancement of the numerical model, improved finite elements shall be developed. Finally,
an extension to damage simulation shall be achieved.

The grid-based strategy represents the proposed key to achieve the declared objectives.
Grid-based procedures are primely suited to develop efficient and numerically stable algo-
rithms for flexible geometrical modeling. By an element-based formulation on a uniform
grid, the storage of a global stiffness matrix is superseded. Therefore the memory demand
essentially reduces. The multigrid method is the solver method of choice for very large
problems. This results from its characteristic that the computational effort only increases
linear with problem size. The multigrid method has effectively been implemented based
on a local finite element scheme. For the uniform grid a special formulation of B-spline
finite elements is developed where the order of B-splines is variable. Several advantages
from the linear analysis can be maintained for the damage simulation.

According to a systematic adaption and combination of grid-based procedures the ef-
fort and complexity of several methods have effectively been reduced. Most of the pro-
posed concepts have been implemented into the new, grid-based finite element program
Mulgrido. Based on a uniform data management the implementation is straightforward
and efficient. Relevant disadvantages, which generally result from grid discretization, have
been corrected by modified methods. The resolution of the geometry can be higher than
that of the finite element grid by employing the multiphase concept to the local formu-
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lation of B-spline finite elements. Moreover, a material transition zone is introduced to
correct the defective stress solution along material interfaces. A selective summary of the
major contributions and the conclusions from the present approach is provided in the
following.

The geometrical model represents the first, intuitive abstraction level of heterogeneous
solids (Chapter 2). The developments started with modeling spheres and ellipsoids. In
grid-based modeling it is not required to define the topology of surfaces. Instead pointwise
information is sufficient. The accuracy of the geometrical model increases with increas-
ing resolution. Three-dimensional modeling is straightforward. The grid-based approach
includes arbitrary, irregular inclusion shapes. Short formulas such as superellipses and su-
pershapes are presented. Thus, a large variety of shapes is available which can be controlled
by only a few parameters. More accurate geometrical representations of inclusion-matrix
materials can be generated by an adaption of the inclusion shape.

An accurate particle-size distribution of aggregates is important for concrete. A grading
curve represents a mass distribution function with respect to particle size. A general
transformation into a distribution function with respect to particle number is developed.
By the inverse distribution function of particle number, adequate sizes of aggregates can
be generated in a natural way. It is a short, convenient formulation to obtain correct
volume ratios of the different particle sizes. The formulation also permits to approximate
the number of aggregates in concrete specimen. Thus, the possible size range of the model
can be anticipated. The volumetric formulation is transformed into a size distribution
function of a section. It provides a proper basis for two-dimensional modeling of concrete.

Separation checks are performed to assure that inclusions do not overlap. Generally an-
alytical formulations are only available for spheres or ellipsoids. Numerical separation
checks are developed for arbitrary shapes of inclusions. For each new inclusion to place
within in the domain, a separation from all previous inclusions needs to be assured. Thus,
in most methods the effort increases overproportional to total number of inclusions. This
negative effect is avoided in the proposed grid-based method. A grid-based image of the
inclusion contour is tested for direct placement on the domain grid. In connection with
accurate grading of particle sizes, a volume fraction of aggregates over 85 % was achieved
by this method in a two-dimensional example. This comes close to the maximum volume
fraction of aggregates in real concrete. Besides, also a prototypical, but quite effective
compaction algorithm is presented.

Digital image-based modeling plays an important role to record and identify two- or
three-dimensional objects or structures. An introduction to the recognition of aggregates
in concrete is provided. Methods and results of an implementation are summarized. Var-
ious use of digital images is demonstrated. A digital image can already represent the
complete geometrical model. It is also possible to add some objects. Or image data can be
recognized as inclusion shapes which can be placed into the domain. This only describes
some selected options. As the basic characteristic a direct link between the real material
and computational model is established in terms of geometry.

With regard to the mechanical model (Chapter 3), the geometry is interpreted as a con-
tinuous assembly of multiple, homogeneous phases, labeled by the term multiphase model.
The fundamental theory of continuum mechanics for homogeneous bodies is provided. It
represents the basis for the finite element formulation. Classical, analytical and modern,
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numerical approaches of homogenization are prepared for the final study on the effective
mechanical behavior of heterogeneous solids. A convenient, alternative solution for mixed
boundary conditions is proposed. An isotropic constitutive law with exponential softening
for tension is documented. Some background of a non-local formulation is prepared which
will be revisited in the numerical model. Based on a high resolution of the heterogeneous
body, the isotropic material law allows for simulating complex damage processes as well
as effectively anisotropic behavior. The present mechanical model is capable of being ex-
tended to improved material laws. Nevertheless, it provides a clear basis for the following
major contributions within the numerical model. The posed mechanical problem is solved
numerically by finite elements.

A special formulation of B-spline finite elements is developed (Chapter 4). It starts by a de-
scriptive introduction to one-dimensional B-spline finite elements. It is important to recog-
nize that the present formulation allows to treat B-spline finite elements similar to com-
mon finite elements with polynomial shape functions. A formulation of two-dimensional
B-spline finite elements is presented which is characterized by the following relevant as-
pects. It is a local, element-based formulation for uniform orthogonal grids. It follows
that all elements (in the inner domain) are similar such that computational effort and
memory demand from element stiffness matrices almost vanish. The polynomial order of
the B-spline finite elements is variable. Therefore the approximation quality of these finite
elements can arbitrarily scaled. Modified B-splines are employed such that the definition
of displacement boundary conditions is straightforward. In an example of a homogeneous
model, the accuracy of the method follows the analytical prediction: the approximation
quality exemplary increases with order of B-splines. For heterogeneous models multiphase
B-spline finite elements are developed. Thereby various material phases can be mapped
onto a variable number of integration points within the finite element, while the variable
order of elements is maintained. This means that the accuracy of geometry within one
finite element and the approximation quality of one finite element can both essentially be
increased. This represents a significant improvement to standard finite element schemes.
However, for the correction of defective stresses along material interfaces, corresponding
transition zones are introduced. Several test cases exemplify this novel method up to the
B-spline order k = 8. An error estimation with respect to various sources and parameters
is included. The B-spline finite problem can effectively be solved without storage of a
global stiffness matrix by iterative solver methods.

For the proposed multigrid methods (Chapter 5), an introduction to several, associated
iterative solver methods is provided. A clear transformation from the matrix form to the
relevant index form is performed. Certain characteristics of solid finite elements are ana-
lyzed for the efficient application to heterogeneous problems. A uniform, global numbering
system is introduced. Element-based operations are prepared for a compact and efficient
formulation of the heterogeneous finite element problem in two and three dimensions. A
similar approach for advanced finite elements of an orthogonal mesh or triangular ele-
ments of an irregular mesh is outlined. Transfer operators of the multigrid method for
restriction, prolongation and for the coarse grid representation of the heterogeneous ma-
terial are discussed. With regard to B-spline finite elements, an intuitive transfer operator
is exemplified for the one-dimensional problem. The implementation is prepared such that
arbitrary multigrid cycles can be performed. A modified multigrid cycle with balanced
computational effort between all grids is successfully applied. The performance of vari-
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ous cycles is tested. The multigrid method shows excellent efficiency for well-conditioned
problems. However, the multigrid preconditioned conjugate gradient method is essentially
more efficient, if large ratios of Young’s moduli occur within the domain. This represents
an important improvement with regard to (Häfner, Eckardt, Luther and Könke 2006) and
is not only significant, but decisive for damage analysis.

Damage simulation is performed (Chapter 6). The focus is on numerical aspects with
respect to the proposed grid-based approach. Therefore a basic, isotropic material law is
sufficient. For each finite element an individual damage state can be stored. Therefore
complex damage distributions can develop. The present implementation only includes
damage simulation for bilinear finite elements. An extension to B-spline finite elements
represents a valuable option for future projects. Nevertheless, severe defects of stresses
from the grid-based solution of bilinear finite elements can significantly be improved by
nonlocal post-processing. This can either be based on nodal averaging of stresses or on
the application of a weighting function to stresses. These procedures denote a significant
improvement of grid-based modeling. Moreover, the uniform grid supports an effective im-
plementation of nonlocal averaging by a predefined discrete representation of the weight-
ing function. Thus, nonlocal averaging is much more efficient than for irregular mesh
geometries. It is shown that the dependency on orientation and size of finite elements is
essentially reduced by the nonlocal formulation. A damage-controlled procedure of linear
steps is performed, which means that from one step to another only a certain increment of
damage occurs. According to the linear analysis the problem remains well defined, inde-
pendent from the degree of damage. The progress of damage can be controlled such that
for example only one element in the domain enters the damage state per iteration step.
Then, the current solution represents a very good start vector for the next iteration step.
The corresponding efficiency is evaluated in some examples. According to the uniform and
small steps of damage progress, the active process zone and unloading of certain regions
is accurately determined. It is summarized that the efficiency from the linear analysis is
maintained, some relevant defects have been corrected and the observed damage behav-
ior is reasonable. Thus, the present grid-based approach has effectively been extended to
damage simulation. The proposed damage simulation on orthogonal grids represents a
prototypical, but quite promising basis for further developments.

A study on the effective mechanical behavior of heterogeneous solids is presented (Chap-
ter 7). A comprehensible numerical example demonstrates the derivation of apparent
properties according to kinematic uniform and static uniform boundary conditions. The
relationship from size of specimen to these upper and lower bounds of effective properties
is examined. The deformation energy according to certain mixed boundary conditions is
equivalent to the linear elastic parameter of the material matrix which couples associ-
ated normal strains and normal stresses of same orientation. Therefore, the deformation
energy is not only an objective and but also significant measure. The effect from differ-
ent geometrical arrangements of inclusions is examined while size and volume fraction of
inclusions always remain constant. Each test case is based on between 6000 and 10000
different geometrical arrangements. Therefore adequate approximations of the probability
density function are achieved. For small specimen with ten circular inclusions a scatter of
deformation energy of about 7.5 % is observed. For the double side length of the specimen
the observed standard deviation of deformation energy approximately halves. A refine-
ment of the mesh shows that a relevant approximation error from finite elements can be
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excluded. A further study considers the influence from inclusion shapes. It is observed that
the mean value of deformation energy increases from circles to pentagons, to squares, to
equilateral triangles and is maximum for ellipsoids of the ratio 4:1. However, the observed
span of mean value is only 1.9%. It can be concluded that there is a clear, but minor
effect from inclusion shape on the mean value of effective elastic properties. For small
specimen with ten inclusions the standard deviation according to random geometrical
arrangement is also about 1%. The volume fraction of inclusions is much more signifi-
cant. A similar study is performed for varying volume fraction and random arrangement
of voids which principally confirms this statement. Moreover, a directional dependency
from random arrangement of inclusions is analyzed for small and larger specimen. It is ob-
served that deformation energies from a load case in x-direction and one in y-direction are
correlated. Finally a study on the effective mechanical behavior of concrete is presented.
In terms of effective Young’s modulus good agreement to real experiments is achieved
for the full range of aggregate volume fractions from 20 % to 80 %. An additional study
shows the influence from volume fraction and ratio of Young’s modulus between aggre-
gate and cement stone on the effective Young’s modulus. The complete homogenization
study of this thesis is based on more than 100000 different geometrical representations.
The comprehensive study is effectively performed by the proposed grid-based approach
from geometrical modeling to efficient iterative solver methods. Especially the flexible and
stable generation of geometries allowed for a study on the effect from shape of inclusions.

The present approach shows certain advantages over other methods. Several disadvan-
tages from classical grid-based modeling have been corrected by improved methods. In
particular, the local formulation of multiphase B-spline finite elements in combination
with material transition zones represents a promising novel alternative of modeling het-
erogeneous solids on orthogonal grids, while the storage of a global stiffness matrix is
superseded. For increasing model size exemplary linear scaling of computational effort
is achieved by the multigrid method. It is demonstrated that the present approach can
effectively be extended for modeling nonlinear behavior of heterogeneous solids. Due to
uniform orthogonal grids, all methods are straightforward to achieve for three-dimensional
analysis of heterogeneous solids. Hence, it is evident that, especially for very large models
of the future, the considered grid-based procedures bear significant potential.
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Häfner, S. and C. Könke (2004). A multigrid finite element method for the mesoscale
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and G. Meschke (Eds.), Proceedings of EURO-C 2003, Computational Modelling of
Concrete Structures, 17-20 March 2003, St. Johann im Pongau, Austria.
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