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ABSTRACT

This thesis concerns the physical and mechanical interactions on carbon nanotubes and

polymers by multiscale modeling.

CNTs have attracted considerable interests in view of their unique mechanical, electronic,
thermal, optical and structural properties, which enable them to have many potential applications.
Carbon nanotube exists in several structure forms, from individual single-walled carbon
nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTSs) to carbon nanotube
bundles and networks. The mechanical properties of SWCNTs and MWCNTs have been
extensively studied by continuum modeling and molecular dynamics (MD) simulations in the
past decade since the properties could be important in the CNT-based devices. CNT bundles and
networks feature outstanding mechanical performance and hierarchical structures and network
topologies, which have been taken as a potential saving-energy material. In the synthesis of
nanocomposites, the formation of the CNT bundles and networks is a challenge to remain in
understanding how to measure and predict the properties of such large systems. Therefore, a
mesoscale method such as a coarse-grained (CG) method should be developed to study the

nanomechanical characterization of CNT bundles and networks formation.

In this thesis, the main contributions can be written as follows: (1) Explicit solutions for the
cohesive energy between carbon nanotubes, graphene and substrates are obtained through
continuum modeling of the van der Waals interaction between them. (2) The CG potentials of
SWCNTs are established by a molecular mechanics model. (3) The binding energy between two
parallel and crossing SWCNTs and MWCNTs is obtained by continuum modeling of the van der

Waals interaction between them.

Crystalline and amorphous polymers are increasingly used in modern industry as structural
materials due to its important mechanical and physical properties. For crystalline polyethylene
(PE), despite its importance and the studies of available MD simulations and continuum models,
the link between molecular and continuum descriptions of its mechanical properties is still not
well established. For amorphous polymers, the chain length and temperature effect on their

elastic and elastic-plastic properties has been reported based on the united-atom (UA) and CG



MD simulations in our previous work. However, the effect of the CL and temperature on the
failure behavior is not understood well yet. Especially, the failure behavior under shear has been
scarcely reported in previous work. Therefore, understanding the molecular origins of

macroscopic fracture behavior such as fracture energy is a fundamental scientific challenge.

In this thesis, the main contributions can be written as follows: (1) An analytical molecular
mechanics model is developed to obtain the size-dependent elastic properties of crystalline PE.
(2) We show that the two molecular mechanics models, the stick-spiral and the beam models,
predict considerably different mechanical properties of materials based on energy equivalence.
The difference between the two models is independent of the materials. (3) The tensile and shear
failure behavior dependence on chain length and temperature in amorphous polymers are

scrutinized using molecular dynamics simulations.

Finally, the influence of polymer wrapped two neighbouring SWNTSs’ dispersion on their load
transfer is investigated by molecular dynamics (MD) simulations, in which the SWNTs' position,

the polymer chain length and the temperature on the interaction force is systematically studied.



Kurzfassung

Die vorliegende Doktorarbeit beschéftigt sich mit den physikalischen und mechanischen
Zusammenhingen von Kohlenstoffnanoréhren (CNT = carbon nanotube) und Polymeren mittels
Multiskalenmodellierung. CNTs haben durch ihre einzigartigen mechanischen, elektrischen,
thermischen, optischen Eigenschaften erhebliches Interesse auf sich gezogen. Thre besonderen

Eigenschaften ermdoglichen viele potentielle Einsatzgebiete.

CNT kommtin vielen strukturellen Variationen vor, von der einwandigen CNT (SWCNT =
single-walled carbon nanotube) iiber die mehrwandige CNT (MWCNT = multi-walled carbon
nanotube) bis zur CNT-biindeln und -netzwerken. Die mechanischen Eigenschaften von
SWCNTs und MWCNTs wurden bereits im letzten Jahrzehnt weitgehend durch
Kontinuumsmodelle und Molekueldynamik (MD) Simulation untersucht. CNT-Biindel und -
netzwerke weisen hervorragende mechanische Leistungen, hierarchische Strukturen und
Netzwerktopologien auf. Diese Strukturen konnten als potentielle energiesparende Materialen

eingesetzt.

Bei der Darstellung von Nanoverbunden bleibt die Anordnung von CNT-Biindeln und -
netzwerken eine Herausforderung. Diese ist aber wichtig, um zu verstehen wie die Eigenschaften
eines solch grofen Systems gemessen und vorhergesagt werden konnen. Daher ist eine
Mesoskalen-Methode some einer Grobkornmethode (CG) =zu entwickelt, um die

nanomechanischen Eigenschafter von CNT-Biindeln und -netzwerken zu untersuchen.
Diese Doktorarbeit liefer Beitrag zur Losung folgendes Punkte:

(1) Explizite Losungen fiir die kohdsive Energie zwischen Kohlenstoffanoréhrchen, Graphit und

Schichttrager werden durch Kontinuumsmodelle der van-der-Waals-Kréfte gefunden.

(2) Das Potential zur grobkérnigen Darstellung von SWCNTs wird durch molekular-

mechanische Modelle nachgewiesen.

(3) Die bindenden Energien zwischen zwei parallelen und kreuzenden SWCNTs und MWCNTs

wird durch Kontinuumsmodellerierung der van-der-Waals-Kréfte zwischen ihnen festgestellt.



Kristalline und amorphe Polymere werden wegen ihrer wichtigen mechanischen und

physischen Eigenschaften zunehmend in moderner Industrie als Baumaterial eingesetzt.

Fiir kristalline Polyethylene (PE) ist, trotz ihrer grolen Bedeutung und numerischer
Modellierung und Simulationen, die Verbindung zwischen molekularer und kontinuierlicher
Beschreibung der mechanischen Eigenschaften noch nicht ausreichend bekannt. Fiir amorphe
Polymere wurde der Effekt von Temperatur und Kettenlédnge auf ihre elastischen und elastisch-
plastischen Eigenschaften untersucht. Die Ergebnisse basieren auf der “united-atom Simulation”,

some Grobkorn- und MD-Simulation.

Allerdings konnten die Effekte der Kettenldnge und Temperatur auf das Bruchrverhalten noch
nicht nachvollzogen warden, insbesondere unter Schubspannung. Daher ist das Verstindis des
molekularen Ursprungs von makroskopischem Bruchverhalten wie Bruchenergie eine

fundamentale wissenschaftliche Herausforderung.
In dieser Thesis soll der Hauptbeitrag aus folgenden Punktesbestehen:

(1) Ein analytisches molekular-mechanisches Modell soll entwickelt werden, um die

groBBenabhingigen elastischen Eigenschaften von kristallinem Polyethylen zu bestimmen.

(2) Es wird gegeigt, dass die zwei molekular-mechanischen Modelle, das “stick-spiral model”
und das “beam model”, stark unterschiedliche mechanische Eigenschaften der Materialien
basierend auf Energiegleichstellung vorhersagen. Der Unterschied zwischen den zwei Modellen

ist unabhéngig vom Material.

(3) Das Fehlerverhalten unter Zug- und Schubspannung, welche abhéngig von der Kettenlénge
und der Temperatur von amorphen Polymeren ist, werden durch MD-Simulation eingehend

gepriift.

Letztendlich wird der Einfluss von Polymeren eingewickelt in die Streuung zweier
benachbarte SWNTs in ihrer Lastverlagerung durch MD Simulation analysiert, in welcher die
Position der SWNTs, die Kettenldnge der Polymere und die Temperatur der Einflusskraft

systematisch untersucht wird.

Vi
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Chapter 1

Introduction

1.1 Background

Carbon nanotubes (CNTs) have been proposed as ideal candidates for multifarious
applications including super-strong materials and nanomechanical devices due to their unique
mechanical, electrical, thermal, and optical properties (Baughman et al., 2002). A fundamental
understanding of their properties is thus significant to ensure the optimum performance of CNTs
in potential applications. In particular, a thorough understanding of their mechanical properties is
essential in designing manufacturing processes or to ensure reliability during operation of
devices. The mechanical properties of CNTs have been extensively studied by continuum
modeling and atomistic simulations in the past decade (Odergard et al., 2002; Zhang et al., 2002;
Chang and Gao, 2003; Li and Guo, 2008) since the properties could be important in the CNT-
based devices. Atomistic-based methods such as classical molecular dynamics (MD) (Iijima et
al., 1996; Yakobson et al., 1996), tight-binding MD (Hernandez et al., 1998; Zhao et al., 2009),
and density functional theory (Sanchez-Portal et al., 1999; Zhang et al., 2007) have been used to
study the mechanical properties of CNTs. However, compared with bottom-up approaches, top-
down approaches may substantially reduce the computational costs and are thus frequently used
in related investigations. By equating the molecular potential energy of nano-materials to the
mechanical strain energy of a representative continuum model, Odergard et al. (2002) obtained a
relation between effective bending rigidity and molecular properties of a grapheme sheet. Chang
and Gao (2003) established an analytical stick-spiral model (SSM) based on molecular
mechanics method and for the first time derived closed-form expressions for the elastic
properties of different SWCNTs. An improved model by Jiang and Guo (2011) was used to
investigate the elastic properties of single-walled boron nitride nanotubes. Li and Chou (2003,

2004) presented a beam model for carbon-carbon bonds based on the molecular mechanics.

Considering the important influence of the van der Waals (vdW) interaction, Ru (2000; 2001)
proposed a continuum shell model to study the buckling of double-walled CNTs. Wang et al.
(2004) extended Ru’s vdW model to capture the buckling characteristics of the multi-walled
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CNTs. The applicability and limitations of the shell models were also discussed. Shen (2004)
presented a traditional cylindrical shell model for the post-buckling of a double-walled CNT
using Ru’s vdW interaction model. He et al. (2005) developed a new vdW interaction model for
not only the post-buckling pressure but also the pre-buckling pressure between any two layers of
multi-walled CNTs, where the influence of interlayer spacing and the tube radius on the
pressures were also considered. Chang (2010) developed an anisotropic shell model to
investigate mechanical behavior of single-walled CNTs, in which the model can be used to

effectively describe the chirality effect on mechanical properties.

Recently, the cohesive properties between double CNTs, multi-CNTs and CNT/polymer
matrix have been studied systematically (Jiang et al., 2006; Lu et al., 2008). However, the above
mentioned studies mainly concerned on the crucial effect of the vdW interactions on the elastic
properties of the multi-walled CNTs, CNT/polymer and the crystalline PE. The crossing CNTs,
CNT/graphene, and CNT/substrate are widely used in CNTs electronic devices. For instance,
Fig.1.1 shows a schematic structure in the experiments (Geblinger et al., 2008; Koening et al.,
2011; Wang et al., 2007). Therefore, the surface vdW forces play a key role on the mechanical
behavior of the crossing CNTs, CNT/graphene and CNT/substrate (Koening et al., 2011; Wang
et al., 2007). A clear understanding of the vdW interactions in these systems is crucial for their

potential applications in the nanoelectromechanical systems and electronic devices.

Suspended loop

Fig. 1.1 Schematic diagram of the carbon nanotube serpentine (CNS) on a stepped substrate (Geblinger et al.,
2008).

Furthermore, CNTs networks feature outstanding mechanical performance and hierarchical
structures and network topologies, which have been taken as a potential saving-energy material

(Xie et al., 2011). In the synthesis of nanocomposites, the formation of the CNTs bundles is a
2



challenge to remain in understanding how to measure and predict the properties of such large
systems (Ajayan and Banhart, 2002; Kis et al., 2004). On the other hand, the dispersion of CNTs
within the matrices and their interfaces are of critical importance to establish efficient load-
bearing performance for large-scale applications (Cranford et al., 2010). However, this problem
has not been solve satisfactorily yet. Zhigilei et al. (2005) developed a mesoscopic model of
individual SWCNTs by full atom MD simulations with MFF potentials. The stretching, bending
and torsion CG potentials of different SWCNTs were reported, while the non-bonded CG
potentials were not considered in this work. Buehler and his group developed a mesoscale model
to study the nanomechanical characterization of CNT buckypaper and bundle formation (Buehler,
2006; Cranford and Buehler, 2010; Cranford et al., 2010). Xu’s group (Xie et al., 2011; Wang et
al., 2012) and Li and Kroger (2012) detailed studied the mechanical properties of the two-
dimensional and three-dimensional CNT networks based on the mesocale model. However, the
potentials of one kind of single-walled CNT (SWCNT) (5,5) were only reported and the torsion
potentials were neglected in these work, and the non-bonded potential of between the two same
CG beads of (5,5) CNTs were only provided based on the full atom MD results (Buehler, 2006).
Actually, the two parameters of their LJ potentials are obtained by fitting the adhesion energy at
the equilibrium distance between two CNTs, and the results are only effective under small
deformation by comparison with full atom MD and the CG MD simulations. These reasons lead
to the limitations for further studying other kind of SWCNTSs since many different SWCNTs

should be often occurred under large deformation in the practical applications.

Therefore, it is significant to establish the coarse-grained (CG) potentials for different
SWCNTs. At the nanoscale, the weak van der Waals interactions govern the structural
organization and the mechanical properties of CNT bundles and networks (Cranford et al., 2010;
Ru, 2001; Zhou et al., 2007). The interactions of individual CNTs in larger-scale structures often
play a critical role in the mechanical characterization of CNT systems. How to provide accurate
CG non-bonded potentials between two same CG beads (especially between two different CG
beads) should be a critical issue so that the reliable results can be obtained from the CG MD

simulations.



Crystalline and amorphous polymers are two of the most fundamental polymers molecular
shapes that have widely been investigated by many researchers due to the important physical and
chemical properties (Boyd et al., 1994; Pant et al., 1993; Zhang and Miiller-Plathe, 2006). For
crystalline polyethylene (PE), despite its importance and the studies of available MD simulations
and continuum models (Karasawa et al., 1991; Zhao et al., 2010a; Nikolov et al., 2002), the link
between molecular and continuum descriptions of its mechanical properties is still not well
established. For amorphous polymers, Glass forming polymers (7<Tg, Tg is the glass-transition
temperature) are of great industrial importance and scientific interest. Their unique mechanical
properties arise from the connectivity and random-walk-like structure of the constituent chains
(Shepherd, 2006). At very small strains, the response is elastic. At slightly larger strains, yielding
occurs when intermolecular barriers to segmental rearrangements are overcome. Following yield,
the material may exhibit strain softening, a reduction in stress to a level corresponding to plastic
flow. At higher strains, the stress increases as the chain molecules orient, in a process known as
strain hardening. Strain hardening suppresses strain localization (crazing, necking, shear banding)
and is critical in determining material properties such as toughness and wear resistance (Hoy and
Robbins, 2007; Hoy and Robbins, 2008). In the other hand, the yield point of the polymers
disappears after 7>7,. In both amorphous and crystalline polymers, the fracture energy depends
on processes that range from breaking of atomic bonds to formation of defect structures on
micron and large scales (Hoy and Robbins, 2007; Hoy and Robbins, 2008). At atomic scale, the
all-atoms (AA) and united-atom (UA) MD methods have been employed to simulate the
mechanical performance of polymers, in which AA method means the full-atomic including
interactions among all C atoms and H atoms (see Fig. 1.2), while UA method means that we treat
the CHs- or CH;- as one UA bead. To reduce computational burdens, a CG MD method has also
been developed to investigate fracture and craze of polymers. For example, the terminal (T) bead
and middle (M) one of a linear polyethylene molecular chain represent CH3-CH,-CH>-, and -
CH,-CH,-CH,-, respectively (see Fig. 1.2c and d). Recently, we have found that the chain length
(CL) and temperature have a large effect on the thermomechanical properties of linear polymers

(Zhao et al., 2010a; Zhao et al., 2010b; Zhao et al., 2013) based on UA and CG MD simulations.



Diamond Lattice Full Atomic

Coarse Grained

Fig. 1.2 Corase-grained (CG) molecular modelling of polyehylene nano-particles by semi-crystalline lattice method,
in which the case of 200 carbon chains with constant chain length of 60 CG beads are packed into a 8nm diametric
particle (The work has been done by us and was not published yet). (a) The template diamond lattice; (b) Full-atomic
model generated by random walk process on the lattice; (c) CG model with terminal (T) and non-terminal middle
(M) beads; (d) Final CG model obtained.

Since the UA and CG potentials limitations, the effect of the CL and temperature on the
failure behavior is not understood well yet. Especially, the failure behavior under shear has been
scarcely reported in previous work (See Fig. 1.2). Therefore, understanding the molecular origins
of macroscopic fracture behavior such as fracture energy is a fundamental scientific challenge

(Hoy and Robbins, 2007).
1.2 Objectives

This thesis is dedicated to develop a multiscale method to accurately describe the cohesive
properties of CNTs and the mechanical properties of crystalline and amorphous polymers, in
which the link between molecular and continuum descriptions of the properties is established

well. The interrelated objectives are included as follows:

(1) Develop a molecular mechanics model to accurately describe the cohesive energy

between CNTs, graphene and substrates.



(2) Determine the CG potentials of SWCNTs based on our analytical results of cohesive
energy between two SWCNTs and the two stick-spiral and beam models.

(3) Establish an analytical solution of the critical length for the mechanical stability and
adhesion between two SWCNTSs (and MWCNTs).

(4) Develop an analytical molecular mechanics model to describe the size-dependent elastic
properties of crystalline PE.

(5) Reveal the difference between the two molecular mechanics models, the stick-spiral and
the beam models, in predicting the mechanical properties of materials based on energy
equivalence.

(6) Propose the fracture mechanism of amorphous polymer for different chain length and
temperature under uniaxial tension and shear.

(7) Reveal the effect of polymer wrapped two neighbouring SWNTs’ dispersion on their

load transfer.
1.3 Outline

The thesis contains nine chapters. The introduction to this study is presented in Chapter 1 and
outlines the background and objectives. Seven separate articles are presented from Chapter 2 to

Chapter 8.

Chapter 2 develops a molecular mechanics model to accurately describe the cohesive energy

between CNTs, graphene and substrates.

The CG model for SWCNTs is established based on the stick-spiral model, beam model and

continuum shell model in Chapter 3.

The critical length for the mechanical stability and adhesion between two SWCNTs (and
MWCNTs) is obtained by a molecular mechanics model in Chapter 4.

Chapter 5 develops a molecular mechanics model to describe the size-dependent on the elastic

properties of crystalline polyethylene.



Chapter 6 reveals the difference between the two molecular mechanics models, the stick-spiral
and the beam models, in predicting the mechanical properties of materials based on energy

equivalence.

Chapter 7 reveals the fracture mechanism of amorphous polymer for different chain length and

temperature under uniaxial tension and shear.

Chapter 8 reveals the effect of polymer wrapped two neighbouring SWNTs’ dispersion on

their load transfer by MD simulations.
Chapter 9 presents the concluding remarks and suggestions for future work.
Note that the references of Chapter 1 can be seen in the other chapters.

Note that all contents of the thesis only contain some publications of my cumulative work

from 2011 to 2013.



Chapter 2

A theoretical analysis of cohesive energy between carbon nanotubes, graphene

and substrates”

Abstract

Explicit solutions for the cohesive energy between carbon nanotubes, graphene and substrates
are obtained through continuum modeling of the van der Waals interaction between them. The
dependence of the cohesive energy on their size, spacing and crossing angles is analyzed.
Checking against full atom molecular dynamics calculations and available experimental results
shows that the continuum solution has high accuracy. The equilibrium distances between the
nanotubes, graphene and substrates with minimum cohesive energy are also provided explicitly.
The obtained analytical solution should be of great help for understanding the interaction
between the nanostructures and substrates, and designing composites and nanoelectromechanical

systems.
2.1 Introduction

As mechanical structures enter the nanoscale regime, the van der Waals (vdW) interaction
plays a significant role (Koenig et al., 2011). Carbon nanotubes (CNTs) and graphene have been
proposed as one of the most promising materials for nanoelectromechanical systems due to their
extremely high Young's modulus and strength. It has been well established that the mechanical
behavior of CNTs and graphene is also strongly influenced by the vdW force (Yakobson et al.,
1996; Ru, 2000; Ru, 2001; He et al., 2005; Jiang et al., 2006; Wang et al., 2007; Lu et al., 2007).
A good understanding of the vdW interactions for two crossing CNTs, CNT/graphene and
CNT/substrate is essential to ensure the optimum performance of CNTs and graphene in

potential applications.

The bottom-up approaches of the atomistic-based methods such as classical molecular

dynamics (MD) (lijima et al., 1996; Yakobson et al., 1996), tight-binding MD (Hernandez et al.,

This work has been published on <<Carbon>> 57, 108-119 (2013).
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1998; Zhao et al., 2009) and density functional theory (Sanchez-Portal et al., 1999; Zhang et al.,
2007; Zhang and Guo, 2008) were widely used to study the mechanical properties of the single-
walled CNTs, multi-walled CNTs, boron nitride nanotubes (BNTs) and graphene sheets under
uniaxial compression/tension, bending and torsion deformation. Compared with the bottom-up
methods, top-down approaches may substantially reduce the computational costs and are thus
frequently used in related investigations. In order to overcome limitations of atomistic
simulations, some typical continuum models were developed and broadly used to clarify the
elastic properties of the graphene sheets, CNTs and BNTs (Hernandez et al., 1998; Govindjee nd
Sackmann, 1999; Vaccarini et al., 2000; Yoon et al., 2003; Chang, 2010) within the framework
of molecular mechanics. Yakobson et al. (1996) used a traditional continuum shell model to
predict the bulking of a single-walled CNT. Compared with the MD simulation, their continuum
solution is considerably effective to characterize the bulkling pattern. The beam model was
developed by Li and Chou (2003, 2004). They assume that the beam elements have circular cross
sections and are always subjected to pure tension, pure bending and pure torsion. The theory was
improved (Tserpes and Papanikos, 2005; Xia et al., 2005; To, 2006; Kasti, 2007; Wu et al.,2008;
Jiang et al., 2009; Jiang et al., 2012) and extended to further calculate the five independent size-
and chirality-dependent elastic moduli of single-walled CNTs using equivalent beam elements
with rectangular section (Li and Guo 2008). The “stick-spiral” model (SSM) was developed by
Chang and Gao (2003). An improved model by Jiang and Guo (2011) was used to investigate the
elastic properties of single-walled boron nitride nanotubes. By extending the beam model and
SSM to crystalline polymers (Zhao et al., 2010), we presented the SSM to investigate the size-
dependent elastic properties of crystalline polyethylene (PE) (Zhao et al., 2011). Based on the
united-atom MD simulations, we further verified the effectivity of the SSM in the crystalline
polymers directly in which the van der Waals interaction between any two polymer chains are
considered (Capaldi et al., 2004; Zhao et al., 2011). In this work, we utilized a united atom
approximation in which the methyl groups (CH,) are represented by a single “atom” or unit, and
the effect of the hydrogen atoms on the polymer’s configuration is accounted for in the potentials
(Waheed, 2005; Shepherd, 2006). Subsequently, we extended to the beam-spring model to obtain
the elastic properties of crystalline PE (Zhao et al., 2012).



Considering the important influence of the vdW interaction, Ru (Ru, 2000; Ru, 2001)
proposed a continuum shell model to study the buckling of double-walled CNTs. Wang et al.
(2003) extended Ru’s vdW model to capture the buckling characteristics of the multi-walled
CNTs. The applicability and limitations of the shell models were also discussed. Shen (2004)
presented a traditional cylindrical shell model for the post-buckling of a double-walled CNT
using Ru’s vdW interaction model. He et al. (2005) developed a new vdW interaction model for
not only the post-buckling pressure but also the pre-buckling pressure between any two layers of
multi-walled CNTs, where the influence of interlayer spacing and the tube radius on the

pressures were also considered.

Recently, the cohesive properties between double CNTs, multi-CNTs and CNT/polymer
matrix have been studied systematically (Jiang et al., 2006; Lu et al., 2007; Lu et al., 2008).
However, the above mentioned studies mainly concerned on the crucial effect of the vdW
interactions on the elastic properties of the multi-walled CNTs, CNT/polymer and the crystalline
PE. The crossing CNTs, CNT/graphene, and CNT/substrate are widely used in CNTs electronic
devices. For instance, Fig. 2.1 shows a schematic structure in the experiments (Anantram and
Leonard, 2006; Zeng et al., 2012). Therefore, the surface vdW forces play a key role on the
mechanical behavior of the crossing CNTs, CNT/graphene and CNT/substrate (Hertel et al.,
1998; Koenig et al, 2011). A clear understanding of the vdW interactions in these systems is
crucial for their potential applications in the nanoelectromechanical systems and electronic

devices.

Fig. 2.1 Schematic diagrams showing the fabrication process of CNTs electronic devices.
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In this paper, we obtain the closed-form expressions on the cohesive energy and the
equilibrium distances between the two parallel CNTs, two crossing CNTs, CNT/graphene and
CNT/substrate from a continuum model based on the Lennard-Jones (LJ) potential. The

analytical expressions are validated by comparing with our MD simulation.

The paper is organized as follows: Section 2.2 shows the detailed process of the present
molecular dynamics simulation. Section 2.3 describes the cohesive energy and the equilibrium
distance for two crossing lines, CNT/graphene and CNT/substrate. In section 2.4, the cohesive

energy for two parallel and two crossing CNTs is obtained. The paper is concluded in section 2.5.
2.2 Molecular dynamics simulation

To validate the continuum model for two crossing CNTs and CNT/graphene, all the MD
simulations are performed using LAMMPS (Plimpton, 1995) with the AIREBO potential. The
potential has been shown to accurately capture the bond-bond interaction between carbon atoms.
The LJ cutoff radius of present AIREBO potential is chosen as 10.2 A, and the vdW interaction
is very weak and can be neglected as the distance is larger than 10.2 A (Chang, 2007; Zhao et al.,
2012). For the MD simulation, we choose the length and width LxW as 14.5x14.5 nm* for two
graphene sheets (Cranfor and Buehler, 2011). For a CNT (50,0) parallel to a graphene sheet, the
length of them are both 21.4 nm and the width of the graphene is 14.2 nm. For two infinite
parallel CNTs, the length of the CNTs is 12.3 nm and the periodic boundary is applied along the
center axis direction. For the crossing angle of 90 degrees, the length of the two CNTs is 21.2 nm.
We keep the initial distance about 15 A between two graphene sheets (or CNTs) where the van
der Waals interactions are very weak and can be neglected. After the energy minimization, the
two sheets (or CNTs) are kept as two rigid sheets (Cranfor and Buehler, 2011). The present
simulation is at 0 K and the distance between two sheets or CNTs is changed with an increment
of 0.1 A per time step based on the deformation-control method, respectively. Afterwards, the
structure is optimized for each displacement increment and the optimized structure is taken as the
initial geometry for the next calculations. The energy minimization is performed using the
conjugate-gradient method. A tolerance of relative energies between minimization iterations is
set at 10™® with a force tolerance of 10™ to ensure a sufficiently minimized system (Plimpton,

1995).
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2.3 Cohesive energy for CNT/graphene and CNT/martix
2.3.1 Cohesive energy between two parallel lines and two crossing lines

In the context of this paper, the energy of the vdW interactions (He et al., 2005; Jiang et al.,

2006) is given by
p 12 p 6
V<h)_4{(;j —(;j } (1)

where 4 is the distance between the interacting atoms, € is the depth of the potential, ¢ is a
parameter that is determined by the equilibrium distance (Yakobson et al., 1996; Chang et al.,

2007). It is obvious that the equilibrium distance 4y between the two points is determined by

orm _,.
oh

minimizing the energy as h=2"°6=1.12250 from

000.0) X
A o
h r
v (x, h)
.
(a)

Fig. 2.2 The coordinate system and a schematic diagram of the two infinite parallel and two crossing lines: (a) two

parallel lines; (b) two crossing lines.

We first study the two special cases which are the cohesive energy between two parallel and
two crossing lines. Fig. 2.2 shows the schematic diagram of two parallel and two crossing

infinite lines.

The cohesive energy per unit length between two parallel lines can be obtained

¢Zinefline = p12 j: V (I") dx > (2)

12



where *=x*+h*, and p is the line density (the number of atoms per unit length).

Substituting Eq. (1) into Eq. (2) gives

— 3
256 A 8 K G)

1 1
¢line—line = 4 < plza6 (637[ 06 372. )’

From the energy minimum condition Oie-ine — () » the equilibrium distance /¢ can be obtained
oh

hop=1.06310.

The total cohesive energy between two crossing lines can be obtained by
¢cross—lines = p12 J:w V(l")dx-'-jo dl s (0<ﬂ§7|:/2) (4)

where 7° = (lcosﬁ—x)2 +h* +(Isin ﬁ)2 , and f3 is the crossing angle in Fig. 2.2b.

Eq. (4) can be rewritten as

1 (637 1 37 1
o sdepiot | oy 2, 5
¢L}"OSS*[II1€S p] Sinﬁ ( 256 AO h]o 8 1 h4 ( )
where
1 36 2
=—log+ 2= |, 6
4 128( 5 63) ©)
it
3

The equilibrium distance hy=1c between two crossing lines is determined by the energy

minimization 9%erussiines _ 0-
Oh

2.3.2 Two infinite parallel graphene sheets

13



In this section, we provide a continuum model to establish an analytical expression for the
distribution of the cohesive energy between two parallel graphene sheets, as shown in Fig. 2.3.
We homogenize carbon atoms on the graphene and represent them by an area density p, where p
is related to the equilibrium bond length of graphene prior to deformation (He et al., 2005; Jiang
et al., 2006; Zheng et al., 2008). From the unit cells and bond lengths, the area density p can be

expressed as p = 4/ [3\/§b2 ] , where b=1.42 A is the bond length of the graphene sheets.

(0, 0)
P upper
z
lower
(x, h)

Fig. 2.3 The coordinate system and a schematic diagram of the two infinite graphene sheets.

=

L

The number of carbon atoms over an area d4 on one sheet is pd4. The distance between one
point (0, 0) on the upper sheet and one point (x, z) (x>0, z=h) on the lower sheet is ¥*=x*+h*. For
a CNT or graphene, €=2.8437mev and 0=3.4 A are adopted from the literature (Chang et al.,

2007; Plimpton, 1995). The cohesive energy ¢ per unit area can be written as

pdA [ V(r)p,d4, i
¢graphene—graphene = dAI = 27Tpl,0u J.O V(F)de , (7)

where *=h*+x*, p=p, and A=A, are the lower and upper area densities and areas, respectively. If

we define p=p,=p, Eq. (7) can be given by

6
_ ) 6| O 1
¢graphene—graphene - 47[10 €0 (Shlo - 2h4 ] ’ (8)
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The equilibrium distance /hy=1c 1is also determined by the energy minimization

a¢gmphem)— graphene 0

Oh

From section 2.3.1, we find that the equilibrium distance between two crossing lines is
identical to the distance of two graphene sheets, since the graphene sheet can be regarded as an

array of lots of lines.

To show the validity of the present continuum model, the distribution of the analytical
cohesive energy with distance by Eq. (8) for the graphene sheets is plotted in Fig. 2.4. The
analytical results are in excellent agreement with the MD results. The minimum value of the
cohesive energy in Fig. 2.4 from our MD simulation and Eq. (8) are both equal to 291 mJ/m* A.

The result is also in good agreement with the latest experimental result 310+30 mJ/m?* (Koenig et
al, 2011).

100 } : . . .
= . graphene MD
= i
= 0 \/ analytical
£ T Eq.(8)
> -
5 |
o -100 + * .
@
2 T '
@ G
® 200f | |
Ll
o i | om ]
[ |
_300 s J | | 1 s 1 L
2 4 6 8 10

distance (Angstrom)
Fig. 2.4 The distribution of cohesive energy with distance between two graphene sheets.

Similarly, it is easy to show that the equilibrium distances between the point/graphene and the
line/graphene (the line is parallel to the graphene sheet) are both 1o. The relationship of the

equilibrium distance can be written as follows: two points /4y=1.1225¢> two parallel lines

15



hy=1.06310 >two crossing lines #y=1c = point/graphene /= line/graphene hy=graphene/graphene

]’l():lO' .
2.3.3 One CNT parallel to one graphene sheet

In view of the importance of the cohesive energy between a CNT and a graphene sheet in the
experiment, we further study the interaction between a CNT and an infinite graphene sheet, in
which the CNT is parallel to the graphene sheet, as shown in Fig. 2.5. The distance from the
central axis of the CNT to the sheet is /4, and #=h'+r;, where /' is the closest distance between the
CNT and the sheet. The area density of the graphene and the CNT are both chosen as p. The
difference of p between CNT and graphene increases with decreasing CNT radius. We
homogenize carbon atoms on the CNT and represent them by an area density p, which may be
slightly different from the area density of graphene due to the curvature effect in the CNT (He et
al., 2005; Jiang et al., 2006). Fig. 2.5 shows the Cartesian coordinates (x, y, z), where z is along
the central axis, and y is the direction normal to the graphene sheet. Without loss of generality
we consider one point (71, 6, 0) on the upper CNT, and one point (x, 4, z) in the graphene sheet,
see Fig. 5. The distance between the two points can be expressed as r=[(r;cosf-x)"+(r sind-
h)*+z*]"?. The cohesive energy between the CNT and the graphene sheet can be obtained from
V(h).

Graphene

Fig. 2.5 The coordinate system and a schematic diagram of a carbon nanotube parallel to one infinite graphene sheet.
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Unlike the analysis in section 2.3.1, the deformation for the CNT is nonuniform. We define

the cohesive energy per unit length (along the central axis of the CNT) stored from the vdW

interactions as

¢CNT —graphene =p J. rde_.- dZJ- dX )
where *=(ricos0-x)’+ (risind-h)*+z*.

Integrating Eq. (9) yields
637 3z
¢CNT—graphene = pzri (4 € 012 ﬁ 1 6 ]2)

where

T is expressed as

T=—

| arctan—FA _arctan 1
9!(}12 9+, \/ﬁ \/ﬁ ’

where 7" =-2835(1284" + 230457 +60485*h° +3360r°h* +3151h).

M is given by
M= l& arctan —— arctanﬂ
- w/ 5 Jr=r )

where h= h'+r), M'=-61"—97h.
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(a) (b)

Fig. 2.6 One CNT (50, 0) parallel to one graphene sheet in our molecular dynamics simulation. (a) side view, (b)

vertical view.

Fig. 2.6 shows a CNT (50, 0) parallel to a graphene sheet in our MD simulation. The free

boundary condition is performed along the center axis of the CNTs. A single-walled CNT can be
denoted by a chiral vector R =n,d, +n,d, or equivalently, the radius » and chiral angle . @, and
G, are the primitive lattice vectors in graphite lattices (Saito et al., 1998), @, =d, =2.46 A. The

radius 7 and chiral angle € in terms of n; and »; are given by

Fig. 2.7 shows the cohesive energy with different diameters of CNTs between CNT/graphene
using our analytical model and MD simulation. The cohesive energy increases with decreasing
CNT radius. The analytical value from Eq. (10) is in good agreement with our MD results, in
which the difference is less than 10%. The difference is mainly caused by the present LJ cutoff
radius of 10.2 A (or 3¢), while the cutoff radius is infinite in the analytical results. (the slight
difference of the area density between CNT and graphene is also a possible reason.). It validates
the accuracy of the continuum model in the description of the cohesive energy between a CNT

and a graphene sheet.
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Fig. 2.7 The distribution of cohesive energy with different distance between one CNT and one graphene sheet using

present analytical model and molecular dynamics simulation.
The equilibrium distance 4o between the CNT and the graphene sheet can be determined by

0 .
W:O from Eq. (10). Since the expression of /y/c is very complicated, the fitting

function can be provided

h,' o =a, b T d T | te, (16)
(rn+¢)  (n+q)

where a1=10.64524, b;=1592.5501, ¢,=3.25323, d,=0.59368 and ¢;=0.9291.

The fitting results from Eq. (16) are shown in Fig. 2.8. The difference between the fitting

results and the analytical results is smaller than 1%.
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Fig. 2.8 The normalized equilibrium distance 4¢/o between one CNT and one graphene sheet for different radii r;.

Fig. 2.8 shows the normalized equilibrium distance /o/c between the CNT and the graphene
sheet for different radii ;. The equilibrium distances decrease with increasing r; when <1.2 A,
while they increase with increasing r; for r1>1.2 A. When r,=0, ho/o=1 for CNT/graphene tend
to that between graphene/graphene. When r1>10 A, ho/o tends to the corresponding constant

0.9294, respectively.

Since all the radii of CNTs are larger than 1.2 A, the distance /4/o between the CNT and the

graphene sheet increases with increasing 7| and then converges to a constant value of 0.9294.
2.3.4 One CNT parallel to one substrate

Next, we study the interaction between a CNT and an infinite substrate, in which the CNT is
parallel to the substrate, as shown in Fig. 2.9. The distance from the central axis of the CNT to
the substrate surface is A4, and h=h'tr;, where h' is the closest distance between CNT and
substrate surface. The volume density of the substrate is p, (the number of atoms per unit
volume). Fig. 2.9 shows the Cartesian coordinates (x, y, z), where z is along the central axis, and
v is the direction normal to the graphene sheet. Without loss of generality we consider one point

(1, 6, 0) on the upper CNT, and one point (x, y, z) in Fig. 2.9. The distance between the two
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points is r=[(ricos0-x)+(r sinf-y)*+z°]"%. The cohesive energy between the CNT and the

graphene sheet can be obtained from V(A).

Fig. 2.9 The coordinate system and a schematic diagram of one CNT parallel to one infinite substrate.

We define the cohesive energy per unit length (along the central axis of the CNT) from the

vdW interactions as

G = PAL] V()0 dV, = pp,da, | V (r) ez [ dy. (17)

Penr—subsirate = PP J.Oz” ’idej-i V (V ) dz J.j:o dxj-: dy, (18)

where *=(r1cos0-x)"+(r sinf-y)*+z.

Using the LJ potential, we obtain
T 12 V4 6
¢CNTfsubstmte = ppm}/i (a em O-m gl _E em O-ng j s (19)

where € is the depth between the carbon atom and the atom of the substrate, and oy, is the

equilibrium distance between carbon atom and the atom of the substrate; g and g, can be written

as
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1 36 2
=—|98+——— U . 20
& 128( 5 63) (20
4
g =2w . (1)
3
U is given by
1 4U" —h+r
U =——Larctan = —arctan ———— : J (22)
! [12 _ [12
8.(h2 _r

where U'=315(128%° +179217h° +3360rh* +11205°h" + 351" ).

W is expressed as

e —h+r,
W=————7"9/—| arctan—— —arctan—1 , (23)
2 (h = L \i Vr —”IZJ

where h= h'+ryand W'=2h" +17

Eq. (19) can be used to characterize the cohesive energy between a CNT and a substrate. If the

parameters pm, €, and op, are given, Eq. (19) can be solved directly for different substrates.

The equilibrium distance /4y between the CNT and the graphene sheet can be determined by

8 ¢CN T —substrate

PR =0 from Eq. (19). We also provide the fitting function of //o as

o, —a| —2 |, (24)
(n+c¢,) (r+¢)

where a,=2.89208, 5,=600.08159, ¢,=2.89826, d,=0.37398 and e,=0.783.

The fitting results from Eq. (24) are illustrated in Fig. 2.10 match the analytical results

accurately.
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Fig. 2.10 The normalized equilibrium distance /,/o between one CNT and a substrate for different radii /.

Fig. 2.10 shows the normalized equilibrium distance 4o/o between the CNT and the substrate
for different radius ;. The equilibrium distance for CNT/substrate decreases with increasing 7
as r<1.4 A, while it increases with increasing r; (r;>1.4 A). When r=0, hoy/a:0.8584 for
CNT/substrate tends to line/substrate from Eq. (19). When 7>10 A, it tends to the corresponding
two constants 0.8664. In practical applications, all the radii of CNT are larger than 1.2 A. Hence,
the distance 4y /o between the CNT and the graphene sheet increases with increasing i and then

tends to a constant of 0.8664.
2.4. Cohesive energy between two parallel CNTs and two crossing CNTs
2.4.1 Two parallel infinite CNTs

For the effective design of the nanoelectromechanical systems, the surface vdW forces play a
key role on the mechanical behavior of the crossing CNTs, as shown in Fig. 1. To obtain the
cohesive energy between two crossing infinite CNTs, we consider the two parallel infinite CNTs

first. Fig. 11 shows the coordinate system and a schematic diagram of the two parallel CNTs.
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The upper and lower CNT radii are 7| and r,, respectively. The closest distance between the two

parallel CNTs edge is A.

Fig. 2.11 The coordinate system and a schematic diagram of the two parallel infinite CNTs.

The cylindrical coordinates (7, 6, z) are used for the upper CNT, where z is the central axis of
the CNT in Fig. 2.11. Considering the two parallel infinite CNTs, the cohesive energy per unit
length along the z-direction should be the same. We assume the lower CNT circle on the z=0
plane. A point on the lower CNT circle is (ao, 6, 0); 72 1s equal to the distance between the center
point and the point on the lower CNT circle, and 6, denotes the angle between x axis and the

direction along r, (see Fig. 2.11).

From the geometric relationship, we obtain
a,cos@, =(r,+r,+h)+r,cosb,, (25)
a,sing, =r,sind, . (26)

From Eq. (25) and Eq. (26), ap and 6, can be obtained

aoz\f(n +r2+h)2+r22+2(rl +1,+h)r, cosb, , (27)
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(r, +r, +h)2 +a§ —r22 (28)

6, = arccos
2(r+r,+h)a,

Let us define the energy per unit length along the z direction on the lower CNT from the vdW

interactions as

PDeicte I pr,do, I r)pdA, = pj rzdé?j dzj ndo, (29)

where the distance between the two points r = \/(a0 cos ), —1; cos @)’ +(a,sin@, —r; sin @) +z

Submitting Eq. (27) and Eq. (28) into Eq. (29) gives

F 2 £ F 2 249
.| nta - nta
o —=4do —12I ——=d6

s 30
(r+a) ¢0)

6 2 63
¢cicle:7z-ea p 7"17"2 -0 0 11
8 (r+ay)

2Na _ 2ay;

I+a r+a,

Defining k = , we have

O e GERC]! e

] 1 (128K* —616k° +1179k* ~1126k” +563) E (k)
Flk]=—— : (32)
T 315(1-K) | +(—64K" +316K° —624k" + 620k —248) K (k)

3 1 3
where the elliptic integrals are £ (k)= J.Oz(l —k* sin’ t)Edt K (k)= JE;dt .

1

’ (1 —k*sin? 1)5

Eq. (30) can be completely solved by Gaussian quadrature (Golub and Welsch, 1969). Fig.
2.12 shows the two parallel infinite CNTs in our MD simulation. Periodic boundary conditions

are applied along the center axis of the CNTs.
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Fig. 2.12 The two parallel infinite CNTs of (50, 50) in our molecular dynamics simulation. (a) vertical view, (b) side
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Fig. 2.13 The distribution of cohesive energy with different distance between two parallel infinite CNTs using

present analytical model and molecular dynamics simulation.
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Fig. 2.13 compares the cohesive energy for different distances between the two parallel
infinite CNTs (where r=r;) from our analytical model with results from MD simulations. The

cohesive energy increases with decreasing CNT radius.
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Fig. 2.14 The circle cohesive energy on the lower and upper CNTs with different distance between two parallel

infinite CNTs using present analytical model.

Fig. 2.14 shows the cohesive energy for different distances between two parallel infinite CNTs
(where r1#r;) using our analytical model. The cohesive energy @eircle On the circle of CNT radius
r) as ri#r; is almost the same with that on the circle of CNT radius 7' as r;'#r,' (Where r;'=r, and
r2'=ry). In other words, the total cohesive energy on the CNT of radius 7; is the same with that on
the radius r, between the two CNTs. The difference is less than 2% caused probably by
integration errors. To reduce the difference, we perform the Gaussian quadrature on 100 sections
[0, 7/100], [#/100, 27/100], [27/100, 37/100] ...... [997/100, 1007/100] and 10 Gaussian points
in each section. The first fifth terms in the two elliptic integrals E(k) and K(k) are chosen in our
calculations. Fig. 2.15 shows the distribution of the cohesive energy @il between two parallel
infinite CNTs with different radii using present analytical model. The cohesive energy @circle
decreases with increasing CNT radius for a given distance # when ¢.i;1e<0, while, for @¢irc1>0,

Peircle Increases with increasing CNT radius.
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Fig. 2.15 The distribution of the cohesive energy between two parallel infinite CNTs with different radii using

present analytical model.

The equilibrium distance /4 is determined by % =0 from Eq. (30). For two parallel CNTs

with r1=r, the fitting function of the normalized equilibrium distance /4/c can be expressed as

b d
hO/G:%L : 0 : )4J+es

(7 +c3)1 (r+¢ (33)

where a3=20.80767, b3=1968.22873, ¢3=3.30743, d3=0.71993 and e3=0.9271.

Eq. (33) accurately characterizes the distribution of the equilibrium distances between two
parallel infinite CNTs (the relative error is smaller than 1%), as shown in Fig. 2.16. We also find
that the Eq. (16) of CNT/graphene in section 3.3 effectively describes the equilibrium distance
between two parallel infinite CNTs for a given =100 A.
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Fig. 2.16 The normalized equilibrium distance /y/c between two parallel infinite CNTs.

Fig. 2.16 shows the normalized equilibrium distance /(/c between two parallel infinite CNTs.
When r,=r, the normalized equilibrium distance decreases with increasing r; as r1<1.2 A, while
they increase with increasing »; as r;>1.2 A. When r=r,=0, the equilibrium distance from Eq.
(30) tends to that of two parallel lines in Eq. (3). When r=r,>10 A, the equilibrium distance
tends to that of the tube/graphene (1>10 A in CNT/graphene).

For a given =100 A, the normalized equilibrium distance also decreases with increasing r; as
r1<1.2 A, while it increases with increasing r; (r>1.2 A). When r,=0, the equilibrium distance
approaches the distance of two graphene sheets. On the other hand, the equilibrium distance

tends to that of tube/graphene for #>10 A.

Since all the radii of CNT are larger than 1.2 A, the h/c between the CNT and the graphene

sheet increases with increasing »; and then tends to a constant 0.9294.

2.4.2 Two crossing infinite CNTs
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Last, we study the two crossing infinite CNTs, as shown in Fig. 2.17. The upper and lower
CNT radii are r| and r,, respectively. The crossing angle between the two center axes of the two

crossing CNTs is denoted as .

Fig. 2.17 The coordinate system and a schematic diagram of the two crossing infinite CNTs.

The cylindrical coordinates (7, 6, z) and the Cartesian coordinates (x, y, z) are both used for
the upper CNT, where z is the central axis of the CNT. We assume the vertical line between the
two center axes of the two crossing CNTs on the z=0 plane. The closest distance between the two
parallel CNTs edge is 4. For example, the point D on the lower CNT moves to the position of the
point E after rotating the lower CNT. Then, the center point B moves to the position of the point
C, and so on. Based on the geometric relationship, we obtain the coordinates of the points A, B,
C, D, E, F and G in the Cartesian coordinates, i.e., A (r;trt+h, 0, 0), B (ri+rth, 0, z5), C
(r1t+rath, zsinf, zcosf), D (apcosby, apsinby, 0), E (apcosby, apsinbycosp, -apsinbpsing), F
(apcosby, apsinbycosp, zr-apsinbysing), G (apcosby, apsinf0-z;sinf, z,cosf+rcosbsrsinf), where ay

and 6, are defined in Eq. (27) and Eq. (28).
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The total cohesive energy of the two nanotubes due to the vdW force can be written as
2z 0 2z 0 0 2z
B = |, P12, | 1k, jAl V(rpdd, =p* [ " r,d6,[ 1dz,[ v (r)d=[ " rd6, (0<p<m/2) (34)

where

r= \/(ao cos ), —1; cos )’ +[ (a, sin G,cosB-z, sin ) —7; sin 0]2 +[z—2, cos B—r, cos b, sin ] .
The total cohesive energy ¢iora1 can be integrated analytically to yielding

(35)

b

¢total = 4p2r1r2 € 0-6 1 637[ 06-‘-0” Aogoso d02 _3_72- i AlBlT_l d02
d

sin f{ 128 470 T,

N S, =362880a, cos’ 6, +6531840a, cos’ 6,17 +17146080a; cos’ O,r;"
where ,
+9525600a; cos’ O,r° +893025a, cos O, ;"

19

4 =—L(98+%—%} B, :_29_7'z, S, =[(r1 +r+h+r, cost)z—rfJ?.

,
T, = 6a; cos’ 0, +9a, cos O,1; , 4 =—§, B, =—23—7'Z, T, :[(V1 +r2+h+rzcos92)2—r12]2

Eq. (35) is solved by Gaussian quadrature.

(a) (b)

Fig. 2.18 The two crossing (=90°) infinite CNTs of (50, 50) in our molecular dynamics simulation.

31



Analytical
(5,5)(5,9)
——(10,10)(10,10) |
——(50,0)(50,0)
——(50,50)(50,50) -
MD -
(5,5)(5,5)
(10,10)(10,10) |
(50,0)(50,0)
(50,50)(50,50) 1

4 6 8 10

increasing
diameter

N

N

(=]
T

< > O O

h (Angstrom)

Fig. 2.19 The distribution of cohesive energy with different distance between two crossing infinite CNTs using

present analytical model and molecular dynamics simulation.

To further validate the analytical results of Eq. (35), we carry out the MD simulation at f=90°
(see Fig. 2.18). Fig. 2.19 shows the distribution of cohesive energy with different distance
between two crossing infinite CNTs using our present analytical model and molecular dynamics
simulations. The results from Eq. (35) agree well with results from the MD simulation. Fig. 2.20
shows the total energy on the lower and upper CNTs with different distances between two
crossing infinite CNTs. We find that the two kinds of total energy are both the same. The results
show that the present model is accurate to describe the cohesive energy between two crossing

infinite CNTs.
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Fig. 2.20 The total cohesive energy on the lower and upper CNTs with different distance between two crossing

infinite CNTs using present analytical model.
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Fig. 2.21 The distribution of the cohesive energy between two crossing infinite CNTs for different radii using

present analytical model.

The distribution of the cohesive energy @ between two crossing (8=90°) infinite CNTs for

different radii is illustrated in Fig. 2.21. The cohesive energy ¢ decreases with increasing
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CNT radius for a given distance # when <0, while ¢@ire increases with increasing CNT

radius when @oa>0.

We find that the equilibrium distance 4, between two crossing CNTs is independent of the

crossing angle £ which is the same as for two crossing lines in section 2.3.1.

LOSET T r 70 Ao 10631, tho paralleflines
1.041 1
r1=r2=0, ho/ =1, two crossing lines
1.00F g T
L s two crossing CNTs :
\O
~ 0.96 | 0oy 7
L fitting by Eq. (36)
0.92 r=r,, two parallel CNTs ]
0.88 I r =r =infinite, two crossing CNTs
had _~ hJc=0.8584(analytical)
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o84 & . .
0 20 40 60 80 100
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Fig. 2.22 The normalized equilibrium distance /¢/c between two crossing infinite CNTs.

Fig. 2.22 shows the normalized equilibrium distance /(/c between two crossing infinite CNTs.
When r1=r,, the normalized equilibrium distance decreases with increasing r; as r;<1.2 A, while
it increases with increasing r; as r>1.2 A. When r1=r,=0, the equilibrium distance from Eq. (35)
tends to that of two crossing lines in Eq. (4). When r=r,>20 A, the equilibrium distance

approaches 0.8584.

For two crossing CNTs with r=r, the fitting function of the normalized equilibrium distance

ho/o is expressed as

h0/0'=a4[ b 3J+e4a (36)

(7 +C4)9 (r+e)

where a4=3.72383, b4=531.35085, ¢4=2.73816, d4,=0.46527 and e,=0.85742.
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Fig. 2.23 The ratio between the equilibrium distances of the two parallel CNTs and those of the two crossing CNTs

for different radii.

Fig. 2.23 shows the ratio between the equilibrium distances of the two parallel CNTs and
those of the two crossing CNTs with different radii. They always higher than those between two
crossing CNTs for different radii. The ratio increases with increasing r1=r,<4.32 A, while they

decreases with increasing r1=r,>1.2 A. When r1=r,>20 A, the ratio tends to a constant of 1.08127.
2.5 Concluding remarks

The surface van der Waals forces play a key role on the mechanical behavior of
CNT/graphene, CNT/substrate and the two crossing CNTs. A clear understanding of the vdW
interactions between two crossing CNTs or graphene sheets is crucial for their potential

applications in the nanoelectromechanical systems and electronic devices.

In this paper, the cohesive energy and equilibrium distances for CNT/graphene, CNT/substrate
and two crossing CNTs have been obtained by continuum modeling of the van der Waals
interaction between them. Our calculations show that the cohesive energy and the equilibrium
distances in the system strongly depend on their diameters, distance and crossing angles. The
smaller diameters result in higher energy for a given distance and crossing angle between two

crossing CNTs. The equilibrium distances always increase with increasing radius of the CNTs
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and tend to the corresponding constants, while the equilibrium distances between two parallel
infinite CNTs are always higher than those of two crossing CNTs and lower than that of two
graphene sheets for a given radius. Compared with our molecular dynamics simulation, the
analytical expressions are considerably effective to characterize the interaction between
CNT/graphenes, CNT/substrate and two crossing CNTs. The obtained analytical solution can be
further used to establish the cohesive law for the interactions and apply into finite element
simulation (cohesive zone model) so that the interactions between the systems from nanoscale to
micro/macroscale can be predicted well in the practical experiments. The analytical solution
should also have great help for understanding the interaction between the nanostructures and

substrates, and designing nanocomposites and nanoelectromechanical systems.

It should be noted that all the structures in the study (CNTs, graphene and substrates) are taken
as rigid bodies. Actually, the CNTs and graphene might be seriously deformed when they contact

with each other. The issue should be more complicated and can be further done in the next work.

Furthermore, it should be also noted that the chirality-dependent cohesive energy of the present
systems is not considered in this paper, while the issue should be more accurate and useful in the

practical application and will be further studied in the next work.
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Chapter 3

Novel coarse-grained potentials of single-walled carbon nanotubes’

Abstract

The novel coarse-grained (CG) potentials of single-walled carbon nanotubes (SWCNTs) are
developed for studying static and dynamic behavior of CNT bundles and buckypaper. The
explicit expressions of the CG stretching, bending and torsion potentials for the nanotubes are
obtained by the stick-spiral and the beam models. Based on our analytical results of cohesive
energy between two parallel and crossing SWCNTs from the van der Waals interactions, the
non-bonded CG potentials between two different CG beads are completely established.
Combination of the bonded and non-bonded terms makes the CG model accurately for large
deformation of the complex CNT systems. Checking against full atom molecular dynamics
calculations and our analytical results shows that the present CG potentials have high accuracy.
The established CG potentials are used to study the mechanical properties of the CNT bundles
and buckypaper efficiently at a minor fraction of the computational cost, which show great

potential for designing micro- and nanomechanical devices and systems.
3.1 Introduction

Carbon nanotubes (CNTs) have attracted considerable interests due to their excellent
mechanical, electronic, thermal, optical and structural properties, which enable them for many
applications (Baughman et al., 2002). The mechanical properties of CNTs have been extensively
studied by continuum modeling and atomistic simulations in the past decade (Odergard et al.,
2002; Arroyo and Belytschko, 2002; Zhang et al., 2002; Chang and Gao, 2003; Li and Guo, 2008)
since the properties could be important in the CNT-based devices. Atomistic-based methods such
as classical molecular dynamics (MD) (Iijima et al., 1996; Yakobson et al., 1996), tight-binding
MD (Hernandez et al., 1998; Zhao et al., 2009), and density functional theory (Sanchez-Portal et
al., 1999; Zhang et al., 2007) have been used to study the mechanical properties of CNTs.

However, compared with bottom-up approaches, top-down approaches may substantially reduce

The work has been submitted on <<Journal of Mechanics and Physics of Solids>> in 2013.
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the computational costs and are thus frequently used in related investigations. By equating the
molecular potential energy of nano-materials to the mechanical strain energy of a representative
continuum model, Odergard et al. (2002) obtained a relation between effective bending rigidity
and molecular properties of a grapheme sheet. Chang and Gao (2003) established an analytical
stick-spiral model (SSM) based on molecular mechanics method and for the first time derived
closed-form expressions for the elastic properties of different SWCNTs. An improved model by
Jiang and Guo (2011) was used to investigate the elastic properties of single-walled boron nitride
nanotubes. Li and Chou (2003, 2004) presented a beam model for carbon-carbon bonds based on
the molecular mechanics. By extending the two analytical methods to crystalline polymers (Zhao
et al., 2010), we presented the SSM and beam model to investigate the size-dependent elastic
properties of crystalline polyethylene (PE) (Zhao et al., 2011, 2012). From all of these works, we
found the analytical methods are especially useful for linking molecular and continuum
mechanics, since the mechanical properties can be directly connected by the closed-form

expressions.

Recently, CNT networks feature outstanding mechanical performance and hierarchical
structures and network topologies, which have been taken as a potential saving-energy material
(Xie et al., 2011). In the synthesis of nanocomposites, the formation of the CNT bundles is a
challenge to remain in understanding how to measure and predict the properties of such large
systems (Ajayan and Banhart, 2002; Kis et al., 2004). On the other hand, the dispersion of CNTs
within the matrics and their interfaces are of critical importance to establish efficient load-
bearing performance for large-scale applications (Cranford et al., 2010). However, this problem
has not been solved satisfactorily yet. Zhigilei et al. (2005) developed a mesoscopic model of
individual SWCNTs by full atom molecular dynamics (MD) simulations with MFF potentials.
The stretching, bending and torsion CG potentials of different SWCNTs were reported, while the
non-bonded CG potentials were not considered in this work. Buehler and his group developed a
mesoscale model to study the nanomechanical characterization of CNT buckypaper and bundle
formation (Buehler, 2006; Cranford and Buehler, 2010; Cranford et al., 2010). Xu’s group (Xie
et al., 2011; Wang et al., 2012) and Li and Kroger (2012) detailed studied the mechanical
properties of the two-dimensional and three-dimensional CNT networks based on the mesoscale

model. However, the potentials of one kind of single-walled CNT (SWCNT) (5,5) were only
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reported and the torsion potentials were neglected in their work. The non-bonded potentials
between the two identical CG beads of two parallel (5,5) SWCNTSs were only provided based on
the full atom MD results (Buehler, 2006). Actually, the two parameters of their Lennard-Jones
(LJ) potentials are obtained by fitting the adhesion energy at the equilibrium distance between
two (5,5) CNTs, and the results are only effective under small deformation by comparison the
full atom MD with the CG MD simulations. However, the large deformations frequently occur in
the practical applications. In particular, the non-bonded CG potentials between two different
parallel CNTs and two crossing CNTs have not been reported yet, which should be more
important to study the mechanical properties of CNT bundles, buckypaper and networks.

Therefore, it is important to develop the non-bonded coarse-grained (CG) potentials between
two different parallel and two different crossing SWCNTSs. At the nanoscale, the weak van der
Waals (vdW) interactions govern the structural organization and the mechanical properties of
CNT bundles and networks (Cranford et al., 2010; Ru, 2000, 2001; Zhou et al., 2007). The
interactions of individual CNTs in larger-scale structures often play a critical role in the
mechanical characterization of CNT systems. How to provide accurate CG non-bonded
potentials between two same CG beads (especially between two different CG beads) for two
parallel CNTs and two crossing CNTs is a critical issue for obtaining reliable results from the

CG MD simulations.

In this paper, the novel CG potentials of different SWCNTs are developed from a molecular
mechanics model, in which the stretching, bending and torsion CG potentials are obtained based
on the SSM and the beam model. In particular, the two different non-bonded CG potentials
between two parallel and crossing CNTs are completely established based on the cohesive
energy between the two CNTs from vdW interactions. Following the similar idea (Buehler,
2006), we further provide the first kind non-bonded CG model to obtain the two parameters of
the non-bonded CG LJ potentials between two different CNTs, which is accurate enough when
the displacement is close to the equilibrium distance between two parallel and two crossing
CNTs. To obtain a CG model for large deformations, the second kind non-bonded CG model is
further developed. We find the second kind CG model has high accuracy by checking against the
full atom MD, CG MD simulations and the analytical results. The established CG potentials are
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efficiently used to study the mechanical properties of the CNT bundles and buckypaper at a
minor fraction of the computational cost, which should be also of great help for designing the

corresponding nanomechanical devices and systems.

The paper is organized as follows: Section 3.2 shows the CG bond stretching, bending and
torsion potentials of SWCNTs based on the stick-spiral and the beam models. In section 3.3, the
non-bonded CG potentials between two parallel CNTs and their applications in different free
vibrations and bundles are systematically investigated. Section 3.4 describes the non-bonded CG
potentials between two crossing CNTs and their application for studying the mechanical
properties of the buckypaper. In section 3.5, the effects of the equilibrium bond length and the
staggered and non-staggered positions between the two CG beads on the CG potentials, and the
advantages and limitations of the CG potentials are discussed. The paper is concluded in section

3.6.
3.2 Coarse-grained stretching, bending and torsion potentials of SWCNTSs

For CNT bundles, buckypaper and networks, the vdW interactions between two CNTs have a
great effect on their organization and mechanical properties. To reduce the computational cost,
the CG model is developed in this paper so that the large-scale CNT bundles and networks can
be studied based on the model (Buehler, 2006). Fig. 3.1 shows the full atom SWCNT and its CG
beads, in which the mass center per unit length is always along the central axis of the CNT. All
bond angles among the CG beads are always 180" (Buehler, 2006), while the equilibrium bond
length (EBL) 7y in the CG model can be determined later. The mass per CG bead is equal to
2nrropgeme, where r is the radius of the CNT, m is the mass of carbon atom, pg. (approximate
0.3818 A™?) represents the area density of graphene which may be slightly different from the area
density of graphene due to the curvature effect in the CNT (He et al., 2005; Jiang et al., 2006).
Fig. 3.2 shows two different SWCNTSs and their CG model, where 7| and r, are the radii of the
two SWCNTs, respectively.

In the framework of molecular dynamics, the total energy, U, of a CNT at small strains along
the axial direction of CNT can be expressed as a sum of energies associated with the variance of

bond length, Uy, and bond angle, Uy, i.e., (Chang and Gao, 2003)
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where db; 1s the bond elongation of bond i and d0); is the variance of bond angle j, and K} and Ky

are the related force constant.

(a) T

Fig. 3.2 The two parallel SWCNTs and their CG model. (a) full atom structure for two parallel SWCNTs; (b) CG
model and CG potentials in (a).

Based on the SSM (Chang and Gao, 2003; Chang, 2010), the Young’s modulus and shear

modulus of a CNT can be expressed as

_ 4uK,t 5
\/3_)(1+3y) ’ 2)
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where /1=Kb/(K9b2) and 7 is the thickness of the CNT, and »=1.42 A is the initial bond length
between two carbons. The other parameters strongly depend on the chirality of the CNT and can
be found in Appendix. In this paper, K,=742 nN/nm and Ky=1.42 nN nm is chosen for the
continuum model 1 (Chang, 2010), and K,=730 nN/nm and Ky=1.35 nN nm is chosen for the
continuum model 2 (Li and Guo, 2008).

For the CG model in Fig. 2, the total energy, U, of a CNT can be expressed as a sum of
energies associated with the variance of bond length, U, bond angle, U.g, and torsion angle,

Ucg, 1.€., (Chang and Gao, 2005)
1 1 1
Uny = Uy + Uy + Uy, = K, (db,) + 3 K, (d6,) + 3 YK, (do,) . @
i j k

where db.; 1s the bond elongation of bond i, df.; is the variance of bond angle j and drcg is the

variance of torsion angle &, and Kcgp, Kcgp and Kc; are the related force constant.

From the beam model theory (Li and Chou, 2003; 2004), it is easy to obtain the equation

based on the equilibrium energy between the SSM and beam model,

EA
chb = > (5)
rO
EI
chg =, (6)
o
GJ
K _=—, 7
cgr ]/'0 ( )

where 4 is the cross section area of the CNT, / and J are the in-plane and out-of-plane moments
of inertia, respectively. Zhigilei et al. (2005) reported the three force constants of the CG model
by using full atom MD with MFF potential.
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Fig. 3.3 The distribution of K, Kcep and Koo, with different radii CNTs using analytical model, full atom MD
simulations. (a) Kcgp, (b) Kegp, (¢) Kegr-

The three force constants distribution with CNT radius is plotted from our analytical results
and Zhigilei et al.’s simulations in Fig. 3.3. From Fig. 3.3a, the K4, agrees well with each other
for the small CNTs. Our analytical results are higher than Zhigilei et al.’s results for large radius
since the two different potentials are used in our analytical model and Zhigilei et al.’s model. The
other two constants Kg9 and K., are reasonable by comparison with Zhigilei et al.’s results. Note
that 79 is chosen as 5 A so that the non-bonded CG model is effective enough (detailed
discussion is given later). Moreover, the Buehler’s results based on ;=5 A are also plotted. We
find that his K.,=1390 nN/nm for the (5,5) CNT agrees well with the other two results
(analytical 1511 nN/nm and Zhigilei et al.’s 1370 nN/nm), while K.g=199 nN nm is higher than
the other two results (analytical 22 nN nm and Zhigilei et al.’s 73 nN nm). To conveniently use

our analytical model, the fitting functions of the three constants are also presented in Fig. 3.3.

The present CG stretching, bending and torsion potentials for CNTs are obtained by using the
same method with Zhigilei et al’s approach. It has been also validated that the CG model can
reproduce well the dynamic behavior of individual CNTs predicted in atomistic simulations

(Zhigilei et al., 2005). More complicated validation will be given later.

It should be noted that the Eq. (5), Eq. (6) and Eq. (7) are efficient enough under small
deformation for individual SWCNT. Under large deformation, Chang’s group (Geng and Chang,

2006) established a nonlinear stick-spiral model to describe the mechanical behavior of
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SWCNTs based on a Morse type potential. The nonlinear model could be directly used to

develop the nonlinear CG stretching, bending and torsion potentials.
3.3 Coarse-grained non-bonded potentials for two parallel SWCNTSs and their applications

3.3.1 Coarse-grained non-bonded potentials for two parallel SWCNTSs
3.3.1 .1 Cohesive energy between two parallel SWCNTs

The energy of the vdW interactions between the two carbons of CNTs (He et al., 2005) is

=[5 5] |

where d is the distance between the interacting atoms, € is the depth of the potential, o is a

given by

parameter that is determined by the equilibrium distance (€=2.8437 mev and 0=3.4 A are

adopted from the literatures) (Yakobson, 1996; Chang, 2007).

To obtain the cohesive energy between two parallel SWCNTs, Fig. 2.11 shows the coordinate
system and a schematic diagram of the two parallel infinite CNTs. The upper and lower CNT

radii are r; and r,, respectively. The closest distance between the two parallel CNTs edge is A.

The energy per unit length along the z direction on the lower CNT from the vdW interactions

can be written as (Zhao et al., 2013a)

F 2 aOri F 2 aol/i
| rta, - L nta
L2 e, 12— e, | )

63 k4
,m:ﬂeo" rr | —of
¢c 1 IO 172 8 IO (]/i—|—a0) (rl+a0)5

where all the parameters can be seen in Eq. (29) of chapter 2.

Eq. (9) can be completely solved by Gaussian quadrature (Golub and Welsch, 1969). To show
the validity of the present continuum model, the distribution of the analytical cohesive energy
with distance by Eq. (9) for two different parallel CNTs is plotted in Fig. 3.4. The analytical
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results are in excellent agreement with the full atom MD results (detailed process can be seen in
our previous work (Zhao et al., 2013a)), in which the MD simulation is performed using
LAMMPS (Plimpton, 1995) with the AIREBO potential and periodic boundary conditions are
applied along the center axis of the CNTs (the LJ cutoff radius is chosen 60 A which is an
enough distance to get accurate results). It validates the accuracy of the continuum model of Eq.

(9) in the description of the cohesive energy between two parallel CNTs.

1 . : :

0 i '
é Analytical
S 1t (55)(55) -
o — = -(10,10)(10,10) |
= —-— (50,0)(50,0)

w2r full atom MD 7
-@_g ol increasing 7 (59)5.9)
ae : o (10,10)(10,10)
31 7%1.3/ diameter A (500)(50,0)
-4 N 1 L 1 N 1 "
2 4 6 8 10

h (Angstrom)

Fig. 3.4 The distribution of cohesive energy with different distance between two parallel SWCNTSs using present

analytical model and full atom molecular dynamics simulations.
3.3.1.2 Coarse-grained non-bonded potentials between two parallel SWCNTs

To obtain the non-bonded CG potentials, the two parallel CNTs can be taken as two rows of
CG beads in Fig. 3.2. The two rows of CG beads can be further taken as two continuum lines in
Fig. 3.5, in which the mass per unit length of line is equal to 2zrpgem.. A similar method was
effectively used to study the crystalline polymers in our previous work (Zhao et al., 2011; Zhao

etal., 2012).
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Fig. 3.5 The coordinate system and a schematic diagram of the two parallel CG beads chains and the first non-

bonded CG model. (a) CG beads chains, (b) first non-bonded CG model.

If we assume that the vdW interaction between two CG beads is also the function of 6-12 LJ
potential in Eq. (8), the cohesive energy per unit length between two parallel lines can be

obtained

¢line—line = p12 J'_Oo V (d) dx 5 (10)
where d2=x2+h'2, and p is the line density (p=1/ro, ¢ is the EBL of the CG model).

Substituting Eq. (8) into Eq. (10) gives

(11)

63r 1 371
¢cg6—12 =4e ), p1266—126 ( ° j’

2560 T8 A

where € |, is the depth and os.1> is the dispersive parameter of the CG 6-12 LJ potential. From

0Py N : :
the energy minimum conditionM =0, the equilibrium distance /4" between the two lines
6-12
can be given as s'=1.063106.1,. Note that rq is chosen as 5 A so that the continuum modeling of
Eq. (11) is effective enough in Fig. 3.6 (detailed discussion is given later). Fig. 3.6a shows the
adhesion energy (that is, the absolute minimum value of @il in Eq. (9)) and the equilibrium
distance /' (see Fig. 3.2 and Fig. 3.5) between two same CNTs from Eq. (9). The analytical

results are in excellent agreement with those of full atom MD simulations. In view of a.
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12=h'/1.0631, the values of 0.1, are plotted in Fig. 3.6¢c. Substituting o6.12=/¢'/1.0631 and @cge-

;>=minimum value of @il into Eq. (11) gives the values of €6-12in Fig. 3.6b.

T T 80 T T T T T T 80
(3)1 (50,50) MD (b) ,qr ~, 7 (¢)
B | Ll "\O
®__.(5,5) MD e — .
L e . | o w4
3.: 5l " . -(10,10) MD . = é . 5 \- .
(= —_— = - h74
= = (500MD® 53 3 o =, & . %,
3 . {a0 % 2 . < 40 .t J
: -(50,0) MD g 3
:° , Mo RN . S :
2 L2l -
E 4 5.5) MD(. Analytical results s o 20 g n %2 ¢ o 20 s '
E i e between two same CNTs m © L] . ]
#%10.10) D (50,50) MD ., o
-5 1 1 I L L L 0 1.2 L L L L " = . 0 L L L I I I
0 5 10 15 20 25 30 35 0 5 i 15 20 25 30 35 0 5 10 1 20 25 30 35
Tube radius (Angstrom) Tube radius (Angstrom) Tube radius (Angstrom)

Fig. 3.6 The minimum of ¢, and 4" distribution with CNT radius from Eq. (7) and the two dispersive parameters

of CG 6-12 and CG 6-9 LJ potentials by fitting the results. (a) The minimum of ¢, and A,' distribution with CNT
radius from Eq. (7), (b) &, ,, and €, , of CG 6-12 and CG 6-9 LJ potentials, (¢) 0¢-12 and 0.9 of CG 6-12 and CG

6-9 LJ potentials.

In our previous work and available published articles (Zhao et al., 2010; Nielsen et al., 2003),
the 6-9 LJ potentials are mainly used to describe the vdW interactions between two CG beads for

polymers and biomaterials. The 6-9 LJ potentials is expressed as

V(d)=4e (%Jg—(gf , (12)

where all the parameters meanings are the same with those in Eq. (8).

Substituting Eq. (12) into Eq. (10) gives

32 , 1 3« 1} (13)

¢cg6—9 =4eg, p120-66—9 (E Os-9 ﬁ - ?ﬁ

where € , is the depth and o049 is the dispersive parameter of the CG 6-9 LJ potential. From the

a¢cg6—9

— =0, the equilibrium distance /' between the two lines can be
6-9

energy minimum condition
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given as hy'=1.07480¢.9. Similar to the CG 6-12 LJ potential fitting (=5 A), the two parameters

of €, , and 6.9 can be obtained in Figs. 3.5b and c. It should be noted that all above results are

only fitted by the minimum value of the cohesive energy and the corresponding equilibrium
distance A¢'. Similar method can be found in previous work (Buehler, 2006). Note that we

define above CG 6-12 (and 6-9) non-bonded model as CG modell.

In order to conveniently use the non-bonded CG potentials of the CG modell, all the values of

minimum of @eircle, h0', €, and €, ,, and og.12 and 69 between two different SWCNTs are

shown in Tables 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6.

Table 3.1. The minimum of @, from Eq. (9) (unit: 107" J/m).

CNT (5,5  (10,10) (1515  (2020)  (2525)  (30,30)

(5,5)  -1.2888  -1.5127  -1.6348  -1.7127  -1.7668  -1.8066
(10,10)  -1.5127  -1.8642  -2.0557  -2.1838  -2.2760  -2.3455
(15,15)  -1.6348  -2.0557 23128  -2.4821  -2.6070  -2.7031
(20,20)  -1.7127  -2.1838 24821  -2.6914  -2.8448  -2.9645
(2525)  -1.7668  -2.2760  -2.6070  -2.8448  -3.0238  -3.1660
(30,30)  -1.8066  -2.3455 27031  -2.9645  -3.1660  -3.3238

Table 3.2. The Ao’ of CG modell from Eq. (9) (unit: A).

CNT (5,5  (10,10) (1515  (2020)  (2525)  (30,30)

(5,5 99114 133120 167127 20.1034  23.4941  26.8847
(10,10)  13.3020  16.7027  20.1034  23.4941 26.8847  30.2754
(15,15) 167027  20.1034  23.4941  26.8847 302754  33.6661
(20,20)  20.0934 234941 26.8847 302754  33.6661  37.0568
(25,25) 234841 26.8847 302754 33.6661 37.0568  40.4474
(30,30)  26.8747 30.2754  33.6661 37.0568  40.4474  43.8381
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Table 3.3. The €41, values of the CG 6-12 LJ potential of CG modell for 7,=5 A (unit: Kcal/mol).

CNT (5.5) (10,10)  (15,15)  (2020)  (2525)  (30,30)

(5,5) 26280 22966 19770  1.7219  1.5199  1.3581
(10,10) 22984 22558  2.0667 1878 17110  1.5658
(1515) 19782 2.0667  1.9896  1.8659  1.7403  1.6228
(20,20)  1.7227  1.878  1.8659  1.7967  1.7078  1.6168
(2525) 15205  1.7110  1.7403  1.7078  1.6492  1.5820
(30,30) 13586  1.5658  1.6228  1.6168  1.5820  1.5324

Table 3.4. The 5.1, values of the CG 6-12 LJ potential of CG modell for =5 A (unit: A).

CNT (5,5  (10,10) (1515  (2020)  (2525)  (30,30)

(5,5 93231  12.5219 157207 18.9101  22.0996  25.2890
(10,10) 12,5125 157113 189101  22.0996 252890  28.4784
(15,15) 157113 18.9101  22.0996 252890 28.4784  31.6678
(20,20)  18.9007 22.0996 252890 28.4784 31.6678  34.8573
(25,25)  22.0902 252890 28.4784 31.6678 34.8573  38.0467
(30,30) 252796 28.4784 31.6678 34.8573  38.0467 41.2361

Table 3.5. The &4 values of the CG 6-9 LJ potential of CG modell for 7,=5 A (unit: Kcal/mol).

CNT (5.5) (10,10)  (15,15)  (2020)  (2525)  (30,30)

(5.5) 4.0824 35676 3.0710  2.6747 23610  2.1097
(10,10)  3.5703  3.5041 32104 29183  2.6579  2.4323
(15,15)  3.0729 32104  3.0906  2.8986  2.7035  2.5208
(20,20)  2.6761 29183  2.898  2.7910  2.6529 25116
(25,25) 23620  2.6579 27035  2.6529  2.5618  2.4575
(30,30)  2.1105 24323 25208 25116 24575  2.3804
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Table 3.6. The ¢ values of the CG 6-9 LJ potential of CG modell for ,=5 A (unit: A).

CNT (5,5 (10,100 (1515  (2020)  (2525) (30,30

(5,5 92213  12.3852 155492  18.7038  21.8584  25.0130
(10,10)  12.3759 155399  18.7038  21.8584 25.0130 28.1676
(15,15)  15.5399  18.7038 21.8584 25.0130 28.1676  31.3222
(20,20)  18.6945 21.8584 25.0130 28.1676 31.3222  34.4769
(25,25)  21.8491 250130 28.1676 31.3222  34.4769  37.6315
(30,30)  25.0037 28.1676 313222 344769 37.6315  40.7861

To check the accuracy of the CG potentials, Fig. 3.7 shows the distribution of the cohesive
energy with 4' using our analytical model, full atom MD and CG MD simulations. The cohesive
energy of CG 6-12 LJ and 6-9 LJ MD results which is close to the equilibrium distance are in
good agreement with the analytical and full MD results, while the difference sharply increases
with increasing or decreasing /'. In other words, all above CG 6-12 and 6-9 LJ fitting parameters

are effective when the CG MD structures are subjected to very small deformation (the two chains

of CG MD structures are built in the inset of Fig. 3.7).

0.0

two parallel
(10,10) CNTs -

O
[$)]
T

EEa

(@

Analytical
X full atom MD

¢uirc]c (XIOVIO J/Il’l)
o

0O CGMD using 6-12 L]

151 C  CGMD using 6-9 LJ -
_2-0 L 1 L
12 24 36

h' (Angstrom)

Fig. 3.7 The distribution of the cohesive energy between two parallel (10,10) CNTs using analytical model, full
atom MD and CG MD simulations.
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In order to obtain more accurate non-bonded CG potentials which can be used to describe the
large deformation, we can use the second CG 6-12 and 6-9 LJ functions of Eq. (11) and Eq. (12)

(' is replaced by 4) to fit the @i/ (like Fig. 3.4) curves, as shown in Fig. 3.8. Note that we
define this kind CG 6-12 (and 6-9) non-bonded model as CG model2.

two parallel (10,10) CNTs |

Analytical

- - - -CG 6-12 LJ fitting

————— CG 6-9 LJ fitting 7
> full atom MD

¢circle (XIO—IO J/m)

(10,10)

v (10,10)

I 1 L 1 L ]
2 4 6 8 10
h (Angstrom)

Fig. 3.9 The cohesive energy distribution with different distance between two (10,10) CNTs using analytical
model, full atom molecular dynamics simulation and the second CG 6-12 LJ potential of Eq. (18) and 6-9 LJ
potential of Eq. (20) fitting.
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From Fig. 3.9, we find that the fitting results from 6-9 LJ potential are better than those from
6-12 LJ potential by comparison with our analytical and full atom MD results. The two
parameters € and o of the two CG LJ potentials strongly depend on the radii of the two CNTs, in
which the EBL r has also a large effect one.

To determine the two parameters, we assume €, ,, and €, , from 1 to 10 A, and then the ten

kinds of € ,, and €, ,and the corresponding o¢.1» and o9 are obtained by fitting the analytical

results of (5,5) CNTs. The CG MD simulations are performed based on the obtained parameters
of the two 6-12 and 6-9 LJ potentials, as shown in Fig. 3.10. The results are both accurate when
the EBL ¢ is not more than 5 A, and the accuracy sharply decreases with increasing ry (r0>5 A).
As rp=10 A, the minimum cohesive energy is almost two times lower than that of <5 A.
Therefore, the EBL 7y is better chosen as 5 A to reduce the computational costs and keep the

accuracy.

From the above analysis, the continuum line model is effective only as <5 A, while the
discrete model (Buehler, 2006) should be used to fit the analytical results when ro>5 A in which
the fitting process will be more difficult and complicated. It should be noted that the non-

staggered position between two CG beads is only considered here.
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Fig. 3.10 The cohesive energy distribution with different distance between two (5,5) CNTs using analytical model
and CG MD simulation with different LJ potentials for different ro (a) CG 6-12 LJ potential, (b) CG 6-9 LJ potential.
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As shown in Figs. 3.11a and b, we find that the values of €, , and €, , increase with increasing
CNT radius, while o¢.12 and o9 increase with increasing radius and tends to a constant for CG 6-
12 LJ and 6-9 LJ potentials. The equilibrium distance /4y between two parallel SWCNTs is
plotted in Fig. 3.11c. The values of CG 6-9 LJ potentials are closer to the analytical results than
those of CG 6-12 LJ potentials. To conveniently use the CG non-bonded potentials, all the values

of €, ,, and €, , and o¢.1» and 6.9 between two different SWCNTSs are shown in Table 3.7, 3.8,

3.9 and 3.10.

(a)s0 (b) 292 . . T (0)3.2
CGe9LJ _
two same CG beads for two same CNTs . e & & o ® e o o g two parallel CNTs with same radius
= £ 290 . 4 =
] - CG69LJ ® o ® —
_E_ 40 7,=5 Angstrom ° . GE . * two same CG beads for two same CNTs. “él a ~Analytical A
E L] EZGBf' | < e ®© 0 0 ©° o o o
>4 ° . CG612LJ <~ ® r,=5 Angstrom =& o® T ,
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Fig. 3.11 The distribution of &, o and 4, with different radii CNTs for two same parallel CNTs using analytical

model, full atom MD simulations and two LJ potentials fitting. (a) &4.1, and &4.9, (b) 06.12 and o4.9, (¢) Ay.

Table 3.7. The &1, values of the CG 6-12 LJ potential of CG model2 for 7,=5 A (unit: Kcal/mol).

CNT (5,5 (10,100 (1515  (2020)  (2525) (30,30
(5.,5) 9570  11.189  12.094  12.689  13.094  13.379
(10,10) 11.189 13737 15141  16.093 16760  17.284
(15,15) 12.094  15.141  17.022 18260  19.165  19.879
(20,20) 12.689  16.093 18260  19.807  20.926  21.807
(25,25) 13.094 16760  19.165  20.926 22236  23.283
(30,30) 13379 17284  19.879  21.807 23283  24.450
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Table 3.8. The oy.1, values of the CG 6-12 LJ potential of CG model2 for ry=5 A (unit: A).

CNT (5,5 (10,100 (1515  (2020)  (2525) (30,30

(5.,5) 2.829 2.835 2.836 2.837 2.837 2.837
(10,10) 2.835 2.840 2.842 2.843 2.843 2.844
(15,15) 2.836 2.842 2.844 2.845 2.845 2.845
(20,20) 2.837 2.843 2.845 2.845 2.846 2.846
(25,25) 2.837 2.843 2.845 2.846 2.846 2.847
(30,30) 2.837 2.844 2.845 2.846 2.847 2.847

Table 3.9. The &4.9 values of the CG 6-12 LJ potential of CG model2 for ry=5 A (unit: Kcal/mol).

CNT (5.5) (10,10)  (15,15)  (2020)  (2525)  (30,30)

(5,5) 13.784 16165  17.474 18331  18.926  19.355
(10,10)  16.165  19.879  21.926 23283 24283  25.045
(1515)  17.474  21.926  24.664 26473  27.806  28.830
(20,20) 18331 23283 26473 28711 30330  31.615
(2525)  18.926  24.283  27.806  30.330  32.258  33.758
(30,30) 19355  25.045  28.830  31.615  33.758  35.496

Table 3.10. The ¢ values of the CG 6-12 LJ potential of CG model2 for ry=5 A (unit: A).

CNT (5,5  (10,10) (1515  (2020)  (2525) (30,30

(5.5) 2.884 2.891 2.893 2.894 2.895 2.895
(10,10)  2.891 2.898 2.901 2.902 2.902 2.903
(15,15)  2.893 2.901 2.903 2.904 2.904 2.905
(20,20)  2.894 2.902 2.904 2.905 2.905 2.906
(25,25)  2.895 2.902 2.904 2.905 2.906 2.906
(30,30)  2.895 2.903 2.905 2.906 2.906 2.907

Note that one should use the second kind non-bonded CG model (CG model2) carefully. For
three-dimensional CNT bundles, the real box length /' should be equal to /,*(1.06310s.
121711712)/(1.063106.12) and [,*(1.07480¢.9t71172)/(1.074806.9) if the box length is /y and /; after
minimization using our two CG 6-12 and 6-9 LJ potentials, respectively. In the other words, the
practical density is [(1.063106.12+1+)/(1.063106.12)]° and [(1.074806.0+r1+12)/(1.074806.0)]°

times of that from our second two CG non-bonded potentials, respectively, while the total energy
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is same with that from full atom MD simulation and doesn’t need modification. Although the
appropriate postprocessing should be further accomplished, the two CG LJ potentials are highly

accurate to describe the mechanical behavior under large deformation.
3.3.2 Mechanical stability and adhesion of two parallel (5,5) SWCNTs

To validate the present CG potentials, we consider that two parallel (5,5) SWCNTs are moved
toward each other in which the ends on the same one side of the two parallel CNTs are fixed in
Fig. 3.12. The Young’s modulus £=962 GPa and the bending stiffness £/=3.95x10° J m of the
(5,5) CNT are obtained by full atom MD calculations with AIREBO potential (the thickness 7 of
the CNT is chosen 3.4 A here) (see Figs. 3.13a and b), in which the present Young’s modulus
agrees well with the available value 1.03+0.06 TPa (Sanchez-Portal, 1999) and the present
bending stiffness is very close to the available value 3.84 x 102 I m (Zhou et al., 2007). Usension 1S
the total energy per unit volume of the CNT and ¢ is the tensile strain in Fig. 3.13a. Upending 1S the
bending energy per unit length and « is the 1/, in which r is the curvature radius and the (5,5)
CNT length is equal to 11.6 nm since the boundary effect could be neglected in Fig. 3.13b (Zhao
et al., 2009; Zhao et al., 2013a). Detailed MD process is the same with previous work (Cao and
Chen, 2006; Zhao et al., 2013b).

hli ________ X T O " i ;_*I"l
s E— Lk
] — CNTI1
- p >l ; >

Fig. 3.12 The geometry of two same parallel SWCNTs.
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Fig. 3.13 The Young’s modulus and bending stiffness of (5,5) SWCNT using full atom MD simulations.

In order to validate the effectivity of present CG model, some assumptions are proposed to
simplify the problem. (1) The two (5,5) CNTs are taken as two cantilever beams and the shear
deformation is neglected. (2) The closest distance between the adherent components of the two
CNTs is taken as zero or a constant d (which does not influence the results). (3) The radii of
CNTs and the displacement between the two CNTs are both far less than the length Ly, that is to

say, Ly=s+/ in Fig. 3.12. The total energy is composed of elastic energy and adhesion energy
Ur :2UCNT1_7(L0_S), (14)
where Ucnr and y are elastic energy of CNT1 and binding energy per unit length, respectively.

In view of the equilibrium of system, the total energy should be a minimum value. The critical

T
A

value of s can be obtained by

=0, that is given

> /4
Scritical _[36E]k ] , (15)

4
where E and [ are the Young’s modulus and the moment of inertial for the two CNTs, and E7 is

the bending stiffness.
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Fig. 3.14 The distribution of s with the distance / by comparison with our analytical results, full atom MD and
two CG MD calculations.

Fig. 3.14 shows the distribution of s with the distance / by comparison with our analytical
results, full atom MD and CG MD calculations. The parameters of the two CG non-bonded
potentials for two (5,5) CNTs are used in Fig. 3.14, in which the non-bonded potential
parameters of CG modell is chosen from Table 3.3 and Table 3.4, and the non-bonded potential
parameters of CG model2 is chosen from Table 3.7 and Table 3.8. The harmonic potentials K,
=2006 Kcal/(mol A% and Kp=11370 Kcal/mol can be easily obtained from Eq. (5) and Eq. (6)
based on full atom MD results. Since the torsion effect is very small in this example, we neglect

the torsion potential here (Cranford and Buehler, 2010).

The present full atom MD results and the CG MD results with CG model2 are both in good
agreement with those of analytical results, while all the values of seriteal by the CG modell
calculations are always higher than the present analytical results. From Fig. 3.7, we know that
the attractive force (a¢ircic/2h) of the non-bonded potentials in CG modell is always higher than
that of the full atom MD results and analytical results although all y of them are the same, which
leads to the lower s in the full atom MD results, CG model2 and analytical results for the

same 4, while the higher s in the CG modell.
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From above analysis, the present CG model2 is more effective to apply to describe the
adhesion behavior of two CNTs, which should be also used to describe the mechanical behavior

of the CNT bundles and networks.
3.3.3 Free vibrations of two parallel (5,5) SWCNTs after tension, bending and moving

To further validate the present CG potentials, we study the free vibrations of two parallel (5,5)
SWCNTs after tension, bending and moving using full atom MD and CG MD simulations,
respectively. The above harmonic potentials K., =2006 Kcal/(mol A%, K6=11370 Kcal/mol
and 6-12 LJ potential &¢.1,=9.57 Kcal/mol and 0¢.1,=2.829 (see Tables 3.7 and 3.8) are only
adopted in our CG MD simulations since the torsion angle is only weakly coupled to other

independent variables through the torsion-stretching coupling term (Zhigilei et al., 2005).
3.3.3.1 Free tension vibration

Two parallel 170 A long (5,5) CNTs are adopted to study the free tension vibration in Fig.
3.15, in which 2800 carbon atoms are included in the two CNTs. After the energy minimization
of the two parallel CNTs, the vibration is generated by creating a local strain of 2% beginning of
the simulations and allowing the left end (10 A long part) of the systems to evolve freely at later
time, while the right end (10 A long part) is fixed. Two same long CG models are used to do the
same simulation, in which only 68 CG beads are contained in the CG models. From Fig. 3.15a
and Fig. 3.15b, the vibration frequency of the potential energy and kinetic energy by full atom
MD simulations is in good agreements with that by CG MD simulations (the CG average
frequency is 0.71 THz and the full atom average frequency is 0.69 THz), and the difference
increases with increasing time (The maximum relative error is less than 5% as 7<5 ps and less
than 10% as <10 ps). The probable reason is that the other different modal (more atoms or beads
result in more freedoms) could be stimulated with increasing time in the two MD simulations,
which leads to the increasing difference. The insets in Fig. 3.15a and Fig. 3.15b represents the
potential energy per atom and kinetic energy per atom at /=0.82 ps (The time is at the first peak
point of the kinetic energy or the first valley point of the potential energy).

61



a T T T T T T T T T T T
(@) ; () full atom

301 cg
> _
e 3
& >
5 520}
c [0]
o 3
8 Qo
c @
[0 [t
I 2 10
(a9

0 E 1 1
0 2 4 6 8 10
Time (ps) Time (ps)

Fig. 3.15 Time dependence of the potential energy and kinetic energy of two parallel (5,5) CNTs in full atom MD
and CG MD simulations under tension. (a) potential energy distribution with time; (b) kinetic energy distribution

with time.

3.3.3.2 Free bending vibration

The above two parallel 170 A long (5,5) CNTs are also adopted to study the free bending
vibration in Fig. 3.16. After the energy minimization of the two parallel CNTs, the vibration is
generated by creating a local bending strain of ¥=0.002 (1/A) beginning of the simulations and
allowing the two ends (left and right ends) of the systems to evolve freely at later time. Two
same long CG models are used to do the same simulation. From Fig. 3.16a and Fig. 3.16b, the
vibration frequency of the potential energy and kinetic energy by full atom MD simulations is
reasonable with that by CG MD simulations (the CG average frequency is 0.072 THz and the full
atom average frequency is 0.081 THz, and the maximum relative error is less than 12%. The
reason of the difference is the same with section 3.3.3.1). The insets in Fig. 3.16a and Fig. 3.16b
represents the potential energy per atom and kinetic energy per atom at /=33.33 ps (The time is at
the first peak point of the kinetic energy or the first valley point of the potential energy in full

atom MD simulations).

62



(a)2.0 . T53ams (b)2 g - o
- full atom (T —— i atorn t=33.3ps

— Cg "trney, . gaesst? ulfatom 3

@1.5 LA ET) ssasss gessd ,_\1.5* cg ”'”""'l!lunnnll""'"”'“H

> 3

2 =

= S

2 =8 1.0

© @

5 g

£ o

g 0.5 ¥o05

0.0 1 ' '
0 20 40 60 80 100

Time (ps) Time (ps)

Fig. 3.16 Time dependence of the potential energy and kinetic energy of two parallel (5,5) CNTs in full atom MD
and CG MD simulations after bending. (a) potential energy distribution with time; (b) kinetic energy distribution

with time.

3.3.3.3 Free vibration after moving a middle part of one CNT between two parallel (5,5) CNTs

The above two parallel 170 A long (5,5) CNTs are adopted to further study the free vibration
after moving a middle part of one CNT between two parallel CNTs (see Fig. 3.17). First, the two
parallel CNTs are fixed a given distance and the whole lower CNT is completely fixed, and then
the total energy of the two parallel CNTs is minimized by conjugate-gradient algorithm.
Afterwards, the left and right 10 A long ends of the upper CNT are fixed and the middle 5 A part
of the upper CNT is moved 0.01 A along upper direction, in which the middle part move 0.001 A
at each time step (time step is chosen as 0.1 fs here) based on the displacement-control method
(the structure is optimized for each displacement increment (Zhao et al., 2013b)). Finally, the
vibration is generated by allowing the middle part of the upper CNT to evolve freely at later time,
while the two left and right ends of the upper CNT is always fixed and the whole lower CNT is
always fixed. Two same long CG models are used to do the same simulation, in which only 68
CG beads are contained in the CG models and only one CG bead on the upper CG chain is
totally moved 0.01 A. From Fig. 3.17, the vibration frequency by full atom MD simulations
agrees very well with those by CG MD simulations when the distance between the two CNTs is
the equilibrium distance /4o (From Fig. 3.11c, CG MD 4;=3.01 A and full atom MD £y=3.12 A)
or is higher than 10 A, while the difference of the frequency between the two MD simulations is
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high in the range of 4#y<h<10 A (see Fig. 3.17). From the inset in Fig. 3.17, we can find that some
middle part of the upper CNT is adherent with the lower CNT as #=5 A before the vibration is
generated. The phenomenon can be explained from section 3.2 and the system is more stable in
this adherent condition. The frequency is highly affected by the bending structure (see inset of
Fig. 3.17) which has a large deformation, so the difference of the frequency between the two MD
simulations should be higher than that in #=h,. With increasing /4 ( is higher than 10 A), the

cohesive force effect sharply decreases and the difference of the frequency should also decrease.
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Fig. 3.17 The vibration after moving a middle part of one CNT between two parallel (5,5) CNTs between two
parallel (5,5) CNTs by full atom MD and CG MD simulations (The inset represents the kinetic energy distribution
for different distance between the two CNTs).

All the free vibration in section 3.3.3 validates that the present CG potentials are effective to

describe the dynamics behavior of CNT bundles.

3.3.4 The mechanical behavior of CNT bundles

In this section, we study the mechanical behavior of (5,5) CNT bundles under tension and all
the potentials are the same with those in section 3.3.4. First, we calculate the distribution of
potential energy with tensile strain and bending angle for one and two (5,5) CNTs using full
atom MD and CG MD simulations in Fig. 3.18. From Fig. 3.18a, the difference of the potential

energy using the two MD methods is very small when tensile strain is less than 4%, while the
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difference increases with increasing tensile strain. The reason is that the Young’s modulus of the
CNT is obtained by fitting potential-(tensile strain) curve in the range of 2% (see Fig. 3.13a).
With the increase of the tensile strain, the nonlinear behavior of full atom MD results should be
occurred, which leads to the increasing difference with CG MD results. Second, the bending
behavior of one and two (5,5) CNTs using the two MD calculations is plotted in Fig. 3.18b. The
difference is also small and similar with the difference between the fitting results and full atom

MD results in Fig. 3.13b.
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Fig. 3.18 The distribution of the potential energy with tensile strain and bending angle for one and two parallel (5,5)
SWCNT using full atom MD and CG MD simulations. (a) under tension; (b) under bending.

To show the advantage of the present CG model, we study the mechanical behavior of more
CNT bundles under tension in Fig. 3.19. Fig. 3.19a shows the distribution of the potential energy
with tensile strain for »=4 and »=6 using full atom MD and CG MD calculations. The different
between the two MD methods is still small in small deformation, while the CG beads are only
about 1/40 times of full carbon atoms. Fig. 3.19b shows the mechanical behavior of different
CNT bundles using CG MD simulations. The CG beads of n=36 are only 1692 in Fig. 3.19b,
while the same bundles of full atom model are about 68800 carbon atoms. Therefore, the
computational cost using CG model is less than 1/40 times of full atom model. Note that the
comparison is just for (5,5) CNT bundles. For large diameter CNT, the computational cost is

much less than 1/40 (which can be given by the function 1/(27rropge)).
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Fig. 3.19 The distribution of the potential energy with tensile strain for (5,5) CNT bundles using full atom MD and
CG MD simulations. (a) n=4 and n=6 using full atom MD and CG MD simulations; (b) »=9, n=16, n=25 and n=36
using CG MD simulations.

It should be noted that the negative potential energy is occurred somewhere for small strain as
n=9, 16 and 25 in Fig. 3.19b. To further analyze the reason, we plot the potential energy per
atom of different CNT bundles under tension in Fig. 3.20 (75=5 A). The strain=0 represents the
structures after energy minimization before deformation. The structures of »=9, 16 and 25 after
energy minimization always keep parallel although the structures are all at the local energy
minimization, while the CG linear chains are all staggered among each other as »=36. It means
that the initial structures of strain=0 at »=9, 16 and 25 are not stable. Under small tensile strain,
the CG linear chains tend to stagger among each other in advance so that the structures become
most stable (in other words, the minimum energy position), which leads to the negative potential

energy in the range of the strain.
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all the parameters of the

9

5 A, the minimum cohesive energy and the

2 A in this paper. Detailed modifications of the
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don’t change with the two positions. Therefore, 7,=2 A have to be adopted so that the vdW
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Fig. 3.20 The distribution of the potential energy per atom with tensile strain for (5,5) CNT bundles using CG MD
To show the difference between the two positions, Fig. 3.21 shows the cohesive energy
distribution with distance between two parallel (5,5) CNTs using analytical model and CG MD

equilibrium distance /4y at the staggered position are about two times and 2/3 time lower than

simulations for different 7y and two positions. For rq
interactions doesn’t change with the positions. In the other hand
parameters can be seen in the discussion of section 3.5.

those at the non-staggered position
harmonic potentials have to be modified if ry

decreases with decreasing ry.
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Fig. 3.21 The cohesive energy distribution with different distance between two (5,5) CNTs using analytical model

and CG MD simulation with different LJ potentials for different r,and two positions (all units of 7, are A). (a) CG
6-12 LJ potential, (b) CG 6-9 LJ potential.
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Fig. 3.22 The cohesive energy distribution with different distance between two (5,5) CNTs using analytical model
and CG MD simulation with different LJ potentials for different r,and two positions. (a) CG 6-12 LJ potential, (b)
CG 6-9 LJ potential.

To compare the difference of mechanical behavior between ry=2 A and =5 A, we further
calculate the mechanical behavior under tension for different CNT bundles using the CG MD
model in Fig 3.22. The harmonic potentials of (5,5) CNT for the CG model with 7,=2 A should
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be given as K.gp, =5015 Kcal/(mol Az), K6=28425 Kcal/mol and 6-12 LJ potential g6.1,=1.5313
Kcal/mol and o0¢.,=2.829 A. The predicted results in Fig. 3.22 are obtained by Ulension=

(Usension/oneCNT)xn, where U, . |/ oneCNT = ;EAgz =3495¢% (10" J/m), and E and 4 are the

Young’s modulus and the cross section area of the CNT (see section 3.3). We find that the CG
model with 7;=2 A agrees well with the predicted results and no negative potential energy is
occurred in the tensile process. Furthermore, the equilibrium distance /¢, at staggered position is
always less than that at non-staggered position Ag, as 70>2 A in Fig. 3.21 and Fig. 3.22b, which
results in the large difference of the cross section area of the CNT bundles. That is to say, the
incorrect Young’s moduli of the CNT bundles are obtained for large . Since the two staggered
and non-staggered positions as 7;=2 A doesn’t change the cohesive energy and the equilibrium
distance (see Fig. 3.21), the CG beads don’t need adjust their positions under tension. Therefore,
no negative energy as 7o=2 A is occurred in Fig. 3.22. To further show the detailed process, Fig.
3.23 shows the potential energy per atom of different CNT bundles under tension using CG MD
simulation (r,=2 A). The structures always keep consistency under tension and the distribution of
the energy is very uniform along the length of the CNTs, while the non-uniform distribution of
the energy can be clearly seen in Fig. 3.20. The potential energy and cross section area only
slightly change for ;=2 A at the two staggered and non-staggered positions (see #=25 in Fig.
3.23).

Therefore, it should be noted that most accurate mechanical properties of CNT bundles

(especially for large 7) can be obtained if 70=2 A is used in the CG model.
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Fig. 3.23 The distribution of the potential energy per atom with tensile strain for (5,5) CNT bundles using CG MD

simulations (=2 A).
3.4 The non-bonded potentials for two crossing SWCNTSs and their applications
3.4.1 The non-bonded potentials for two crossing SWCNTs

From above sections, the non-bonded CG potentials are developed by fitting the cohesive
energy between two parallel SWCNTs, in which all harmonic potentials are obtained and used to

study the different mechanical behavior of the CNT bundles.

In order to clearly understand the mechanical behavior of the CNT buckypaper and networks,
it is necessary and important to give the non-bonded CG potentials between two crossing CNTs.
This section will study whether the obtained non-bonded CG potentials between two parallel

CNTs are also effective between two crossing CNTs or not.
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3.4.1.1 Cohesive energy between two crossing SWCNTSs

The cylindrical coordinates (7, 6, z) and the Cartesian coordinates (x, y, z) are both used on

the upper CNT, where z is the central axis of the CNT in Fig. 2.17.

The total cohesive energy on the two nanotubes due to the vdWs force can be written as (Zhao
etal., 2013a)

¢total = 4p2}’i7"2 € 66 . 1 637[ 06.[7[ AOBOSO dQZ _3_72-.[” AIBITI d02 ’
sinf( 128 0§, 4 <o

(16)

where all parameters can be seen in Eq. (35) of chapter 2.

To validate the analytical results from Eq. (16), the distribution of the analytical cohesive

energy with distance by Eq. (16) for different two crossing CNTs is plotted in Fig. 3.24. The
analytical results are in excellent agreement with the full atom MD results (detailed process can
be seen in our previous work (Zhao et al., 2013a) (the LJ cutoff radius is chosen 60 A which is

an enough distance to get accurate results). It validates the accuracy of the continuum model of

Eq. (16) in the description of the cohesive energy between two parallel CNTs.
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Fig. 3.24 The distribution of cohesive energy with different distance between two crossing SWCNTs (6=90")

using present analytical model and full atom molecular dynamics simulations.
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It should be noted that the unit (J) of the total energy in Eq. (16) is for two crossing CNTs,
while the unit (J/m) of the energy per length in Eq. (14) is for two parallel CNTs.

3.4.1.2 Coarse-grained non-bonded potentials between two crossing SWCNTs

Similar with section 3.2, the non-bonded CG potentials for two crossing CNTs can be fitted
the cohesive energy function of two crossing lines. For two crossing lines in Fig. 3.25, the total

cohesive energy between the two crossing lines can be obtained by
Brossines =7 |_ax|_ V(r)dl, (0<p=ns2) (17)

where 7 = (Zcosﬁ—x)2 +h* +(Isin ﬁ)z , and f3 is the crossing angle in Fig. 3.25.

Fig. 3.25 The coordinate system and a schematic diagram of the two infinite crossing lines: (a) two parallel lines; (b)

two crossing lines.

If vdW interaction between two CG beads is the function of 6-12 LJ potential, then the total
cohesive energy can be given by substituting Eq. (8) into Eq. (17)

1 637 1 36 2 1 71
Brosss12 =4 €512 P10 12 m(g@(%ﬁ?—g)@?—u F_Eﬁj' (18)

If vdW interaction between two CG beads is the function of 6-9 LJ potential, then the total
cohesive energy can be given by substituting Eq. (12) into Eq. (17)
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From the energy minimum condition% —0 and % — (), the equilibrium distance A

oh oh
between the two crossing lines can be given as hy=c¢.12 and hy=0¢.9, respectively. If we use the
same equilibrium CG modell in Fig. 3.5 (see section 3.3.1) to fit the minimum cohesive energy
of Eq. (16), then the value 4 of Eq. (18) and Eq. (19) should be replaced by /4' (see Fig. 3.2 and
Fig. 3.4). Similar with Fig. 3.7, the distribution of the cohesive energy between two crossing
(10,10) CNTs using analytical model, full atom MD and CG MD simulations is plotted in Fig.
3.26. It should be noted that r=5 A at non-staggered position of the two CG beads are
considered in the CG MD simulations of Fig. 3.26. We can find that both above CG 6-12 and 6-9

LJ models are only effective at the distance which is close to the equilibrium distance.
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Fig. 3.26 The distribution of the cohesive energy between two crossing (10,10) CNTs ($=90") using analytical
model, full atom MD and CG MD simulations.

To conveniently use the non-bonded CG potentials, all the values of minimum of @oal, 49’
€1, and €, ,, 0612 and 6.9 between two different crossing SWCNTs are shown in Tables 3.11,

3.12, 3.13 and 3.14. The values of corresponding o¢.1, and o¢.9 are the same with /4¢' in Table 12.
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Table 3.11. The minimum of @y from Eq. (16) (unit: 1072° J).

CNT 55 (10,10)  (1515)  (2020)  (2525)  (30,30)

(5,5) -14.6945 -19.8647 -23.9351 -27.4189 -30.5140 -33.3266
(10,10)  -19.8647 -26.8694 -32.3796 -37.0931 -41.2797 -45.0838
(15,15) -23.9351 -32.3796 -39.0245 -44.7078 -49.7554  -54.3415
(20,20)  -27.4189 -37.0931 -44.7078 -51.2209 -57.0052 -62.2603
(25,25) -30.5140 -41.2797 -49.7554 -57.0052 -63.4436 -69.2931
(30,30)  -33.3266 -45.0838 -54.3415 -62.2603 -69.2931 -75.6824

Table 3.12. The &' from Eq. (16) (unit: A).

CNT (5.5  (10,10) (1515  (2020)  (2525)  (30,30)

(5.,5) 9.6684 16.4607 19.8534  23.2441 26.6357 26.8847
(10,10) 13.0680 16.4667 19.8604 23.2521 26.6437 30.0344
(15,15) 16.4607 19.8604 23.2541 26.6457 30.0374 33.4281
(20,20) 19.8534 23.2521 26.6457 30.0374 334291 36.8198
(25,25) 23.2441 26.6437 30.0374  33.4291 36.8198  40.2114
(30,30) 26.6357 30.0344 33.4281 36.8198 40.2114 43.6021

Table 3.13. The &1, values of the CG 6-12 LJ potential of CG modell for ry=5 A (unit: Kcal/mol).

CNT (5.5) (10,10)  (15,15)  (2020)  (2525)  (30,30)

(5.5) 15115 0.7049  0.5839 04880 04136  0.4433
(10,10)  1.1185  0.9528  0.7893  0.6597  0.5591  0.4806
(1515)  0.8494  0.7893  0.6939  0.6055  0.5302  0.4676
(2020)  0.6689  0.6597  0.6055  0.5459 04905  0.4416
(2525) 05430  0.5591  0.5302  0.4905 04500  0.4121
(30,30) 04517 04806  0.4676 04416 04121  0.3828

Table 3.14. The &4 values of the CG 6-9 LJ potential of CG modell for =5 A (unit: Kcal/mol).

CNT (5.,5) (10,10)  (15,15)  (20,20)  (25,25)  (30,30)

(5.,5) 21006 09797 08115  0.6781  0.5747  0.6161
(10,10) 15544 13242 1.0970 09168  0.7770  0.6678
(15,15) 11804  1.0970 09644  0.8414  0.7369  0.6498
(20,20) 09296 09168  0.8414  0.7586  0.6817  0.6137
(2525) 07547 07770 07369  0.6817  0.6253  0.5726
(30,30)  0.6277  0.6678  0.6498  0.6137  0.5726  0.5320
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Based on the same equilibrium CG model2 of Fig. 3.7, Fig. 3.27 shows the CG model2 fitting
results from Eq. (26) and Eq. (27). We can also find that the fitting results from 6-9 LJ potential
are also better than those from 6-12 LJ potential by comparison with our analytical and full atom

MD results.

0
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5 two crossing

% (10,10) CNTs

= 1 Analytical

<201 % full atom MD .
- - --CG 6-12 Ll fitting
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-30 + \ . . ) | , | . ]
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Fig. 3.27 The distribution of the cohesive energy between two crossing (10,10) CNTs (5=90") using analytical
model, full atom MD and the second CG 6-12 LJ potential of Eq. (18) and 6-9 LJ potential of Eq. (27) fitting.

To conveniently use the CG non-bonded potentials, all the values of minimum of Ay,

€1, and €,_, between two different crossing SWCNTs are shown in Tables 3.15, 3.16 and 3.17.

The values of corresponding g¢_1, and o¢.9 are the same with 4, in Table 3.15.

Table 3.15. The 4, of CG model2 from Eq. (18) (unit: A).

CNT (5.,5) (10,10)  (15,15)  (20,20)  (2525)  (30,30)
(5.,5) 2.812 2.830 2.832 2.833 2.837 2.838
(10,10)  2.830 2.840 2.846 2.847 2.848 2.848
(15,15)  2.832 2.846 2.848 2.853 2.854 2.854
(20,20)  2.833 2.847 2.853 2.854 2.855 2.855
(25,25)  2.837 2.848 2.854 2.855 2.855 2.856
(30,30)  2.838 2.848 2.854 2.855 2.856 2.856
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Table 3.16. The g1, values of the CG 6-12 LJ potential of CG model2 for 7,=5 A (unit: Kcal/mol).

CNT (5.5) (10,10)  (15,15)  (20,20)  (2525)  (30,30)
(5.5) 20330  27.111  32.565  37.245 41309  45.093
(10,10) 27111 36339 43552 49.814 55384  60.451
(15,15) 32565 43552 52334 59712 66392 72.468
(20,20) 37245 49814 59712 68307 75951  82.903
(25,25) 41309 55384 66392 75951  84.452  92.183
(30,30) 45093 60451 72468  82.903  92.183  100.623

Table 3.17. The 4. values of the CG 6-9 L] potential of CG model2 for 7,=5 A (unit: Kcal/mol).

CNT (5.5) (10,10)  (15,15)  (20,20)  (2525)  (30,30)
(5.5) 24563 32905  39.503  45.168  50.177  54.721
(10,10) 32.905  44.080 52933  60.526 67283  73.431
(15,15) 39.503 52933 63.571  72.695  80.813  88.198
(20,20) 45.168  60.526  72.695  83.132  92.418  100.865
(25,25) 50.177  67.283  80.813 92418  102.744  112.136
(30,30) 54721 73431  88.198  100.865 112.136  122.387

To show the difference between the two positions (staggered and non-staggered) of the two
CG beads, Fig. 3.28 shows the cohesive energy distribution with distance between two parallel
(10,10) CNTs using analytical model and CG MD simulations for different »y and their two
positions. For 7y=5A, the minimum cohesive energy at the staggered position is two times lower
than that at the non-staggered position, while the equilibrium distance 4, at the staggered
position decreases to 0. Therefore, these results have a large effect on the density of the
buckypaper and newworks (see section 4.2). As ;=2 A, the cohesive energy and the equilibrium
distance /o almost doesn’t change with the positions. Therefore, 75=2 A have to be adopted so
that the vdW interactions doesn’t change with the positions. In the other hand, all the parameter
of the harmonic potentials have to be modified if #o=2 A in this paper. Detailed modifications of
the parameters can be seen in the discussion of section 3.5. It should be noted that all the
parameters of the non-bonded CG potentials between two crossing CNTs are independent

of the crossing angle f from Eq. (16), Eq. (18) and Eq. (19).
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Fig. 3.28 The cohesive energy distribution with different distance between two crossing (10,10) CNTs using
analytical model and CG MD simulation with different LJ potentials for different »yand two positions (all units of 7,

are A). (a) CG 6-12 LJ potential, (b) CG 6-9 LJ potential.

3.4.2 Mechanical properties of buckypaper

In this section, we study the mechanical properties of buckypaper based on our non-bonded

CG model. All potentials functions and their parameters of (5,5) CNT buckypaper are adopted in
Table 3.18.

Table 3.18. The potential functions and their parameters.

Type 9f Form Parameters
potential
1
Stretching E= Ekb (r,-1n)  k=5015keal/imol A% r=2 A
1
Bending E =k, (0-0, ) k28425 keal/mol; 6,=180°

r

Non-bonded E=4¢ H
P

JJIZ (aﬂ £=0.2418 keal/mol; 0=9.668 A:

r.=10 A (truncation radius)

3.4.2.1 Computational methods
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To generate the initial amorphous buckypaper structure, we use the semi-crystalline lattice
method (Faulon, 2001), which utilize the face-centered cubic (fcc) diamond structure as a
template to carbon backbones of entangled buckypaper. Linear chains are generated by the
random walk process on the diamond lattice without explicit bias or guidance, except for one-
step-forward collision-check to avoid obvious self-crossing. Instead, simple backtracking along
the last several growth steps are used in case of both intra- and intermolecular crossing, and retry
random walk until the chain reaches the required chain length. The generated chains of carbons
are then replaced with CG beads, so that each CG bead represents the mass center of the section
of EBL ry=2 A CNTs. The detailed process is similar with generated linear polymers and was
described in our previous work (Zhao et al., 2010). The total number of CG beads in the initial
structure is kept constant 10000. Twenty CG chains and 500 CG beads per chain are contained in
the buckypaper. The generated initial structure (see Fig. 3.29a, in which the blue beads represent
the end beads and the red beads represent the middle beads on the chains) is annealed for 2 ns
until the pressure and energy of the system is stable, keeping both the temperature 7=500 K and
the pressure P=1 atm (the time step Ar=1 fs) in the NPT ensemble controlled by the Nose-
Hoover's thermostat (Nose, 1984; Hoover, 1985). Then, the system is cooled down to 7= 300 K
with the cooling rate of 0.2 K/ps in the NPT ensemble. The system is then kept at constant
7=300 K and P=1 atm in the NPT ensemble for 2 ns (The box size is about 31.9x31.9x31.9 nm’,
see Figs. 3.29b and d). The uniaxial tension and compression tests (along x direction) are
performed to obtain the stress—strain response with strain rate 1x10"° s (Capaldi, 2004) in the
NPT ensemble (see Figs. 3.29c and e). To obtain the shear properties of the buckypaper, the
above equilibrium structure in the NPT ensemble (before tension and compression) is kept at
7=300 K in the NVT ensemble for 1 ns. Then the shear tests (along xy direction) are performed
to obtain the stress—strain response with strain rate 1x107'° s (Capaldi, 2004) in the NVT
ensemble (see Figs. 3.29c¢ and f). Note that the distribution of atomic strain &, and &y, per atom is
shown in Figs. 3.29¢ and f. Periodic boundary conditions are applied in all three directions. All
the MD simulations are performed using LAMMPS software (Plimpton, 1995) and some figures
in Fig. 3.29 are plotted by OVITO software (Stukowski, 2010).
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3.4.2.2 Computational results and discussion

First, the bulk density of the buckypaper at 300 K and 1 atm after above annealing process is
obtained about 0.09 g/cm?’, which is lower than 0.28 g/cm’ from Xie et al. (2011) since the two
dimensional structure and r=10 A are only considered in their work. Actually, the two
dimensional structure has a large limitation and will lose much information (For example, the
equilibrium distance 4y between two crossing CG chains is zero in their work), while the real
equilibrium distance 4, between two crossing (5,5) CNTs are about 9.67 A (see Table 3.12). The

reason leads to the Xie et al.’s higher density.

The stress-strain curves under uniaxial tension and compression as well as pure shear are
plotted in Fig. 3.29c. The Young’s modulus (£=5.06+£0.15 GPa) and shear modulus
(G=3.34+0.06 GPa) are calculated by fitting the linear section of the curves in the range of strain
0.6%, which is almost 5 times higher than those of amorphous linear bulk polyethylene (Capaldi,
2004). The ultimate strength is around 60 MPa and 37 MPa under tension and shear, respectively.
The corresponding ultimate strains are both about 2% under tension and shear, which are much
lower than those of bulk polyethylene (Capaldi, 2004). Note that the ultimate strength/strain is
defined as the peak stress and the corresponding peak strain in the stress-strain curves. Although
the elastic properties of amorphous buckypaper are much higher than amorphous linear bulk

polyethylene, the buckypaper is more brittle than the polyethylene.
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Fig. 3.29 The mechanical properties of the (5,5) CNT buckypaper using CG MD simulations. (a) the initial structure
after energy minimization, (b) the equilibrium structure at 300 K and 1 atm after annealing process, (c) the strain-

stress curves under uniaxial tension and compression as well as shear, (d) side view in xoz plane of (b), (e) the
distribution of the atomic strain &xx per atom under tension, (f) the distribution of the atomic strain €xy per atom
under shear.
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The probable reason is that the bond angle among the carbons in bulk polyethylene is about
110° (Capaldi, 2004; Zhao et al., 2010) and the stretching potentials between two carbons are
lower than those of our CG beads (Capaldi, 2004), so the entanglements in the bulk polyethylene
is higher than those in the buckypaper.

It is well known that the vdW interactions play a significant role in the mechanical properties
of the buckypaper, so how to determine an accurate cohesive energy between two CG beads is a

critical issue for obtaining reliable properties of the buckypaper from the CG MD simulations.
3.5 Discussion

3.5.1 Minimum cohesive energy and equilibrium distance between two parallel and crossing

SWCNTs

From Eq. (9) and Eq. (16), we find that the functions of the cohesive energy between two
parallel CNTs and two crossing CNTs are quite different since the two issues are different and

the units of the cohesive energy are also different.

From our previous work (Zhao et al., 2013a), the normalized equilibrium distance h¢/c
between two parallel CNTs and two crossing CNTs from Eq. (9) and Eq. (16) is plotted in Fig.
3.30. The equilibrium distances between two parallel CNTs are always different with those

between two crossing CNTs.

As ri=r,—oo for two parallel CNTs and two crossing CNTs, the normalized equilibrium
distances hy/o are 0.9294 and 0.8584, respectively, which are both different with #y/o=1 of two
graphene sheets (Zhao et al., 2013a). In other words, when two CNTs radii tend to infinite, the
equilibrium distances between two parallel CNTs or two crossing CNTs are never up to that
between two graphene sheets. Actually, r1=r,—o in Eq. (9) and Eq. (16) is a mathematical non-
continuous point. Similar phenomena are also occurred in other cases: For example, if the
crossing angle S tends to 0 between two crossing lines in Eq. (11), the equilibrium distance
between the two crossing lines can be never up to the equilibrium distance between the two
parallel lines in Eq. (18). In other words, the point at =0 should be moved from Eq. (18). With
the crossing angle decreasing to zero, the equilibrium distance between two crossing lines

(crossing angle is not zero) is jumped from 1o to 1.06310. Similarly, the crossing angle =0 is
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also a non-continuous point in the cohesive energy of Eq. (16). Therefore, the cohesive energy
and the equilibrium distance between two parallel CNTs and two crossing CNTs are non-

continuous, which leads to our non-bonded CG potentials are different in the two conditions.

1.08 F° a0 T ! T " T
oo 137170, A o1.0631, two parallel lines
|
1.02 | r=r,=0, h/o=1, two crossing lines .
T
b ) o
<2096 t“ r =r,=infinite, two parallel _CNTS ]
i //10/0':0_9294 (from Eq. (14))
Lt‘i _ \;l;r;gzvo parallel CNTs
L 2
0.90 - 3 r =r,=infinite, two crossing CNTs
il o h/c=0.8584(from Eq. (24))
4 e —TOo——=1 At
084l 5 : \*-Tr1=rz, two crossing CNTs
0

20 40 60 80 100
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Fig. 3.30 The normalized equilibrium distance /y/c between two parallel CNTs and two crossing CNTs.

It should be noted that the two conditions don’t like the double-walled CNTs. For double-
walled CNTs, if the radii tend to infinity in double-walled CNTs, the equilibrium distance
between the two CNTs should be same with that between two graphene sheets, because the
cohesive energy per unit area distribution is uniform around CNTs. However, for two parallel
CNTs and two crossing CNTs, the cohesive energy distribution is still non-uniform since the
curvature still has effect on the energy distribution. Although the difference of the equilibrium
distance is not large (normally smaller than 10% for two parallel CNTs, smaller than 15% for
two crossing CNTs), it should be very important in other fields (eg. nuclear industry, aeronautics

and astronautics, precision machining, etc.).

Therefore, it should be noted that the non-bonded CG potential parameters between two
parallel CNTs and two crossing CNTs should be different. In other words, the non-bonded CG
potentials for CNT bundles should be different with those for CNT buckypaper or networks.
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3.5.2 The equilibrium bond length 7y between two CG beads

From Fig. 3.9 and Fig. 3.22, the CG model?2 is accurate enough as EBL 7,<5 A by comparison
with the analytical and full atom MD results when the two CG beads between the two CNTs are
non-staggered with each other. From Fig. 3.21 and Fig. 3.27, the CG model2 is only accurate
enough as <2 A when the two CG beads between the two CNTs are staggered with each other.
The difference of the cohesive energy between the CG MD and the analytical results increases
with increasing ry. From Fig. 3.22, the EBL r( has a large effect on the mechanical behavior of
CNT bundles. Therefore, it is necessary and important to provide all the CG potential parameters
of 7=2 A. All non-bonded CG potentials between two parallel CNTs are given in Tables 3.19
and 3.20, in which the values of ¢s.1» and ¢ are the same with those in Table 3.8 and 3.10,
respectively. All non-bonded CG potentials between two crossing CNTs are given in Tables 21
and 22, in which the values of 4.1, and o¢.9 are the same with 4 in Table 3.15. It is easy to find
that the values of &¢.1» and e4.9 for 7=2 A are both as 4/25 times as those for 7;=5 A, while 04.12

and o4 for 7o=2 A are the same with those for ;=5 A.

Table 3.19. The &1, values of the CG 6-12 LJ potential of CG model2 for two parallel CNTs as 7,=2 A (unit:

Kcal/mol).

CNT 5 10 15 20 25 30
5 1.531 1.790 1.935 2.030 2.095 2.141
10 1.790 2.198 2.423 2.575 2.682 2.765
15 1.935 2.423 2.724 2.922 3.066 3.181
20 2.030 2.575 2.922 3.169 3.348 3.489
25 2.095 2.682 3.066 3.348 3.558 3.725
30 2.141 2.765 3.181 3.489 3.725 3.912
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Table 3.20. The g6 values of the CG 6-9 LJ potential of CG model2 for two parallel CNTs as #,=2 A (unit:

Kcal/mol).
CNT 5 10 15 20 25 30
5 2.205 2.586 2.796 2.933 3.028 3.097
10 2.586 3.181 3.508 3.725 3.885 4.007
15 2.796 3.508 3.946 4.236 4.449 4.613
20 2.933 3.725 4.236 4.594 4.853 5.058
25 3.028 3.885 4.449 4.853 5.161 5.401
30 3.097 4.007 4.613 5.058 5.401 5.679

Table 3.21. The &1, values of the CG 6-12 LJ potential of CG model2 for two crossing CNTs as 7,=2 A (unit:

Kcal/mol).
CNT (5,9) (10,10) (15,15) (20,20) (25,25) (30,30)
(5,5) 3.253 4.338 5.210 5.959 6.609 7.215
(10,10) 4.338 5.814 6.968 7.970 8.861 9.672
(15,15) 5.210 6.968 8.373 9.554 10.623 11.595
(20,20) 5.959 7.970 9.554 10.929 12.152 13.264
(25,25) 6.609 8.861 10.623 12.152 13.512 14.749
(30,30) 7.215 9.672 11.595 13.264 14.749 16.100

Table 3.22. The &4 values of the CG 6-9 LJ potential of CG model2 for two crossing CNTs as =2 A (unit:

Kcal/mol).
CNT (5,5) (10,10) (15,15) (20,20) (25,25) (30,30)
(5,5) 3.930 5.265 6.321 7.227 8.028 8.755
(10,10) 5.265 7.053 8.469 9.684 10.765 11.749
(15,15) 6.321 8.469 10.171 11.631 12.930 14.112

(20,20) 7.227 9.684 11.631 13.301 14.787 16.138
(25,25) 8.028 10.765 12.930 14.787 16.439 17.942
(30,30) 8.755 11.749 14.112 16.138 17.942 19.582

Moreover, the parameters Kcgp, Kcop and Ko of stretching, bending and torsion potentials in Fig.
3.11 for =2 A should be replaced as 2.5 times as those of =5 A. That is to say, K.g=1130r
(unit: nN/nm), Keg=2.5%(0.704"°"-42.8)(r>4 A) (unit: nN nm) and K.e=2.5%(0.598"7'-
38.1)(r>4 A) (unit: nN nm) from Fig. 3.11, respectively, in which 7 is the CNT radius (unit: A).
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3.5.3 The advantages and limitations of the present CG models

It is well known that the computational cost using our CG models is much less than that of full
atom MD simulations. From section 3.5, the 36 numbers (5,5) CNTs are about 68800 carbon
atoms (23 nm long per CNT), while only 1692 CG beads and 4230 CG beads are used in the CG
MD simulations (=5 A and ry=2 A). From section 3.4.2, the 10000 CG beads are used in the
buckypaper, while around 160000 carbons in the full atom MD simulations (=2 A). For large
diameter CNT, the number of CG beads per CNT are only as 1/(2zrropge) times as those of full
atoms. The CG models can be used to study the mechanical properties of even microscale CNT
bundles. Since the CG bead mass is 2zrropgemc, the time scale in the CG MD simulations can
also be used as 10 times as that of full atom MD simulations (Nielsen et al., 2003). Therefore, the
CG model can used to study the microscale and large time scale results, which are the large

limitations of full atom MD simulations.

The limitation of the CG model is that the stretching, bending and torsion potentials from Eq.
(5), Eq. (6) and Eq. (7) are obtained by fitting the mechanical behavior under small deformation,
so the nonlinear behavior of the CNT bundles and networks by present CG model should be only
the qualitative results. Under large deformation, Chang’s group (Geng and Chang, 2006)
established a nonlinear stick-spiral model to describe the mechanical behavior of SWCNTSs based
on a Morse type potential (Arroyo and Belytschko, 2002). The nonlinear model could be directly

used to obtain our CG nonlinear stretching, bending and torsion potentials.

Note that one should use the second CG non-bonded model carefully. For three-dimensional
CNT bundles, the real box length /y' should be equal to /p*(1.063106.12171+72)/(1.063106.12) using
CG 6-12 LJ potential and /,*(1.0748a6.9171+12)/(1.074806-9) if the box length is /y and /; after
minimization using our two CG 6-12 and 6-9 LJ potentials between two parallel CNTs,
respectively. In the other words, the practical density is [(1.063106_12+r1+r2)/(1.063106_12)]3 and
[(1.074806.0+71+72)/(1.074806.)]" times of that from our second two CG non-bond potentials,
respectively, while the total energy is same with that from full atom MD simulation and doesn’t

need modification.
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For three-dimensional CNT buckypaper, the real box length /;' should be equal to /y*(os.
12+71+12)/(06.12) using CG 6-12 LJ potential and /,*(g6.9t71172)/(069) 1f the box length is /y and /;
after minimization using our two CG 6-12 and 6-9 LJ potentials for two crossing CNTs,
respectively. In the other words, the practical density is [(0'6_12+r1+r2)/(0‘6_12)]3 and [(o.
o+r1+m)/(06.9)]° times of that from our second two CG non-bond potentials, respectively, while
the total energy is same with that from full atom MD simulation and doesn’t need modification.
Although the appropriate postprocessing should be further accomplished, the two CG LJ

potentials are highly accurate to describe the mechanical behavior under large deformation.

If one uses the CG modell in CNT bundles and CNT buckypaper as shown in Fig. 3.8 and Fig.
3.25 which don’t need any postprocessing although the non-bonded potentials are only accurate
enough at the position close to the equilibrium distance, then the parameters of the potentials as
ro=5 A can be used from Tables 3.3, 3.4, 3.5 and 3.6 for CNT bundles and from Tables 3.12,
3.13 and 3.14 for CNT buckypaper and networks. For ry=2 A, the parameters of the potentials
are shown in Tables 3.23, 3.24, 3.25 and 3.26, while the corresponding equilibrium distances

don’t change.

Table 3.23. The .1, values of the CG 6-12 LJ potential of CG modell for two parallel CNTs as ry=2 A from Table 3

(unit: Kcal/mol).

CNT (5,5 (10,100 (1515  (2020)  (2525) (30,30

(5,5 04205 03675 03163 02755 02432 02173
(10,10) 03677 03609 03307 03006 02738  0.2505
(15,15) 03165 03307 03183 0298 02785  0.259
(20,20) 02756 03006 0298 02875 02733  0.2587
(25,25) 02433 02738 02785 02733 02639 02531
(30,30) 02174 02505 02596 02587  0.2531  0.2452
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Table 3.24. The g5 values of the CG 6-9 LJ potential of CG modell for two parallel CNTs as ;=2 A from Table

5 (unit: Kcal/mol).

CNT (5,5 (10,100 (1515  (2020)  (2525) (30,30

(55  0.6532 05708 04914 04280 03778  0.3376
(10,10)  0.5712 05607 05137  0.4669 04253  0.3892
(15,15) 04917 05137  0.4945 04638 04326  0.4033
(20,20) 04282 04669 04638 04466 04245  0.4019
(2525) 03779 04253 04326 04245 04099  0.3932
(30,30)  0.3377  0.3892  0.4033 04019 03932  0.3809

Table 3.25. The g1, values of the CG 6-12 LJ potential of CG modell for two crossing CNTs as 7,=2 A from Table

16 (unit: Kcal/mol).

CNT (5.,5) (10,10)  (15,15)  (20,20)  (2525)  (30,30)

(5.5) 02418  0.1128  0.0934  0.0781  0.0662  0.0709
(10,100 0.1790  0.1524  0.1263  0.1055  0.0895  0.0769
(15,15)  0.1359  0.1263  0.1110  0.0969  0.0848  0.0748
(20,20)  0.1070  0.1055  0.0969  0.0873  0.0785  0.0707
(2525)  0.0869  0.0895  0.0848  0.0785  0.0720  0.0659
(30,30)  0.0723  0.0769  0.0748  0.0707  0.0659  0.0612

Table 3.26. The &9 values of the CG 6-9 LJ potential of CG modell for two crossing CNTs as =2 A from Table 17

(unit: Kcal/mol).

CNT (5.5) (10,10)  (15,15)  (20,20)  (2525)  (30,30)

(5.5) 03361  0.1567  0.1298  0.1085  0.0920  0.0986
(10,10) 02487 02119  0.1755  0.1467  0.1243  0.1069
(1515)  0.1889  0.1755  0.1543  0.1346  0.1179  0.1040
(2020)  0.1487  0.1467  0.1346  0.1214  0.1091  0.0982
(2525)  0.1208  0.1243  0.1179  0.1091  0.1001  0.0916
(3030)  0.1004  0.1069  0.1040  0.0982  0.0916  0.0851

Since the parameters of the non-bonded CG potentials between two parallel and crossing
CNTs are different, so we should use the non-bonded CG potentials between two parallel CNTs
in CNT bundles and use the potentials between two crossing CNTs in CNT buckypaper and

networks.
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3.6 Concluding remarks

In summary, the CG potentials for SWCNT systems are developed from molecular mechanics
models. The explicit expressions of the CG stretching, bending and torsion potentials of
SWCNTs are obtained based on the stick-spiral and the beam models. Based on our analytical
results of cohesive energy between two parallel and crossing SWCNTs, the non-bonded CG
potentials between different CG beads are systematically analyzed. The effect of the equilibrium
bond length (EBL) ry of the two CG beads and the influence of the position between the CG
beads on the CG potentials are both detailedly discussed. We find that the cohesive energy and
equilibrium distance of EBL =5 A is only accurate enough for the non-staggered position
between two CG beads, while the energy and distance of 7;=2 A are always accurate enough for
non-staggered and staggered position between two CG beads. Checking against full atom
molecular dynamics calculations and our analytical results shows that the present CG potentials

have high accuracy.

The two non-bonded CG models of 7,=2 A are developed in this paper. The non-bonded
parameters of the first model are obtained by fitting the minimum cohesive energy and the
corresponding equilibrium distance, which are effective at the distance which is close to the
equilibrium distance between two CG beads. The advantage of the model is that no
postprocessing should be performed. The non-bonded parameters of the second model are
obtained by fitting the total cohesive energy-distance curves, which are effective at any distance

between two CG beads, while some postprocessing have to be performed.

It should be noted that the parameters of the obtained non-bonded CG potentials between two
parallel and crossing CNTs are different, so we have to use the non-bonded CG potentials
between two parallel CNTs in CNT bundles and use the potentials between two crossing CNTs
in CNT buckypaper and networks.

The established CG potentials are efficiently used to study the mechanical properties of CNT
bundles and CNT buckypaper at a minor fraction of the computational cost, which should be of

great help for further designing the corresponding nanomechanical devices and systems.
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Appendix

The parameters of 4, { and # of the Eq. (17) and Eq. (18) in the text are given as (Chang, 2010)

_ 5-3cos(7/n) _ 1 . [1+2cos(7z/2n)]2 for the (1.0) CNTS. (AD)
14-2cos(z/n)’”  6cos®(z/2n)’ 9cos’ (7/2n)
7-cos(z/n) _  4—cos’(z/2n) B [2+cos(7r/2n)]2

) 34+2cos(n/n) 2[1+2008(ﬁ/2n)]2 o [l +2cos(7z/2n)]2 »for the (n,n) CNTs. (A2)

The detailed information for different chirality can be seen in the literatures (Chang and Gao, 2003; Chang et al.,

2005; Chang, 2010).
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Chapter 4

Binding energy and mechanical stability of two parallel and two crossing

carbon nanotubes”

Abstract

The binding energy between two parallel (and two crossing) single-walled (and multi-walled)
carbon nanotubes (CNTs) is obtained by continuum modeling of the van der Waals interaction
between them. The dependence of the binding energy on their diameters, number of walls and
crossing angles is systematically analyzed. The critical length for the mechanical stability and
adhesion of the CNTs has been determined by the function of Ei/;, # and y, where Eil;, h and y are
the CNTs bending stiffness, distance and binding energy between them. Checking against full
atom molecular dynamics calculations show that the continuum solution has high accuracy. The
established analytical solutions should be of great help for designing nanoelectromechanical

devices.
4.1 Introduction

The unique mechanical, electrical, thermal and optical properties of carbon nanotubes (CNTs)
enable them highly potential and ideal candidates for multifarious applications (Iijima, 1991;
Baughman et al., 2002; Modi et al., 2003). CNT exists in several structures forms such as single-
walled CNTs (SWCNTs), multi-walled CNTs (MWCNTs), bundles and networks (Ajayan and
Banhart, 2002; Bronikowski, 2006). The mechanical properties of SWCNTs and MWCNTs have
been extensively studied in previous work (Yakobson et al., 1996; Chang and Gao, 2003; Li and
Chou, 2003; Li and Guo, 2008). Recently, the CNT networks have been taken as a potential
saving-energy material (Xie et al., 2011), while the CNT bundles have potential applications in
nanocomposites materials. In the synthesis of CNT bundles and networks, their formation is a
challenge to remain in understanding how to measure and predict the properties of such large
systems (Ajayan and Banhart, 2002; Kis et al., 2004). At the nanoscale, the weak van der Waals

(vdW) interactions govern the structural organization and the mechanical properties of CNT

The work will be submitted.
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bundles and networks (Ru, 2000, 2001; Zhou et al., 2007; Cranford et al., 2010). Therefore, a
clear understanding of the vdW interactions in these systems is crucial for their potential
applications in the nanoelectromechanical systems and electronic devices. The self-folding of
SWCNTs, MWCNTs, multilayer graphene sheets have been investigated and the bundle pattern
formation has also been studied in previous work (Zhou et al., 2007; Cranford et al., 2009;
Geblinger et al., 2008). However, all their binding energies were used from full atom molecular
dynamics simulation or experimental results. Girifalco et al. (Girifalco et al., 2000) obtained the

cohesive energy between two parallel and same radii SWCNTs using atomistic models.

In this letter, the binding energy between two parallel (and two crossing) SWCNTs (and
MWCNTs) is obtained from a continuum model based on the Lennard-Jones (LJ) potential. The
analytical expressions are validated by comparing with our full atom molecular dynamics (MD)
simulations. The critical length for the mechanical stability and adhesion of the two CNTs has

been also determined.
4.2 Results and discussion

Fig. 4.1 shows the two parallel CNTs (Fig. 4.1b) and two crossing CNTs (Fig. 4.1¢) under
adherent conditions, in which the two CNT radii could be different. To determine the critical and
stable length where the two CNTs do not contact together, an analytical model is presented in
this paper and the corresponding geometry of the problem is plotted in Fig. 4.1. Some
assumptions are proposed to simplify the problem: 1) The two CNTs are taken as two cantilever
beams and the shear deformation is neglected. 2) The closest distance between the adherent
components of the two CNTs is taken as zero (or a constant d which does not influence the
results). 3) The radii of CNTs and the displacement between the two CNTs are both far less than

the length L, that is to say, L approximately equals to s+/ under adherent condition.
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Fig. 4.1 Schematic diagrams showing the fabrication process of CNTs electronic devices and the geometry of two

parallel and two crossing CNTs under adherent conditions. (a) The fabrication process of CNTs electronic devices

(Zhao et al., 2013), (b) two parallel CNTs, (c) two crossing CNTs.

As shown in Fig. 4.1Db, the total energy is composed of elastic energy and adhesion energy.
UT:UCNT1+UCNT2_7/(L_S)a (1)

where Ucnri, Ucnt2 and y are elastic energy of CNT1 and CNT2 as well as binding energy per

unit length, respectively.

Based on the present boundary condition, the total energy of Eq. (1) can be expressed

6(E LW +E, LK
UT= ( 1 1hlS3 272 2)—7/(L—S), (2)

where E; and E; are the Young’s moduli of CNT1 and CNT2, and /; and /, are the moment of
mnertia of CNT1 and CNT2.

For a SWCNT, the bending stiffness of the beam is (Timoshenko and Maccullough, 1935)

EI:”TE[r4—(r—z)“], 3)

where 7 and 7 (0.34 nm is chosen here) are the radius and the thickness of the SWCNT.

For a MWCNT, the bending stiffness of the beam is (Pantano et al., 2003, 2004)

3(m-1) o (m-1)(2m-1) &> m(m-1) &
+ +
2 r 4 r

inner inner

., @

(EI)MW = (EI)M m| 1+ p

inner
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where (El)inner and 7inner are the bending stiffness and radius of the innermost wall, respectively,

m is the number of walls, and 6=0.34 nm is the interwall spacing.

In view of the equilibrium of system, the total energy should be a minimum value. The critical

UT

value of s can be obtained by 7
A

=0, that is given

1/4
QWM_FqELw+@5@q |

= (5)
/4
If E\=E>,=E and I,==I (that is, CNT1=CNT2), then #1=h,=h and Eq. (5) can be written as
L \I/4
Lgriticul — [36E1h J ) (6)
v
For two crossing CNTs, the stability length of the CNTs can be obtained from

UT = UCNTI + UCNT2 - ycrossing = 0 H (7)

where crossing 18 the absolute minimum of the cohesive energy between two crossing CNTs at the
equilibrium distance. If we assume the s; and s, of the two crossing CNTs are both same, we can

obtain the stability length from Eq. (2) and Eq. (7),

1/3
N 6(E LK +E, LI

Lf)tabl/lty — ( 1 ]hl 27272 ) (8)

7crossing ’
If E\=E,=FE and I,=,=I (that is, CNT1=CNT?2), then 4 ,=h,=h and Eq. (8) can be written as
12151/;21/3
Lf)lability — ) (9)

ycmssing

From Eq. (5) and Eq. (9), how to determine y and pcrossing between two parallel CNTs and two

crossing CNTs is a crucial issue in this work.
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For two parallel SWCNTs, the cohesive energy per unit length has been obtained (Zhao et al.,
2013) as

Fg{ ao’iJ Fz[z ao’iJ

- 7 +a . 7 +a

¢cicle =rTe O-szl/iFZ QO_6J. 1 ;)1 dHZ _12J‘ 1—(;6]02 H (10)
8 0 (r1 +a0) 0 (r1 +a0)

where € and o are the depth and the equilibrium distance of the LJ potential between two carbon
atoms (e=2.8437mev and 0=3.4 A are adopted from the literatures) (Yakobson, 1996; Chang,
2007), and p is the area density CNTs, and »; and r, are the radii of the two CNTs, and

a, :\/(’”1 1y +h) +12 +2(r; +1+h)r,cos, , and Fs and F could be found in our previous

work (Zhao et al., 2013). The binding energy y per unit length is the absolute minimum of @gircle
at equilibrium distance between the two SWCNTs.

For two crossing SWCNTs, the total cohesive energy has been obtained (Zhao et al., 2013) as

637 ¢x A,B,S 37 (= ABT
=4p°rr, €0’ —— | 04, —=— | =46, |, (0<f<n/2 11
Do = 4P 711 sinﬂ(l28 .[0 S, 27 _[0 T, , |, (0<B ) (11)
. S, =362880a, cos’ 6, +6531840a, cos’ §,r;> +17146080a; cos’ O,r"
where ,
+9525600a; cos’ 6,r° +893025a, cos O, ;"

19

1 (e 36 2Y . 27 .

A, ——ﬁ(98+?—6—3j, B=—0. 5, _[(r1 +1,+h+rcosh,) —r } .

4 27 z
T, =6a, cos’ 6, +9a, cos Q17 , 4, ==3 B, =3 T, =[(r1 +1, +h+r,cos6,) —rf}z ,
+r+h) +al -1

0, = arccos (i+r+h) +a —n , and f is the crossing angle between the two center axes of the

2(r+r,+h)a,
two crossing CNTs (Zhao et al., 2013). The binding energy ycrossing 1S the absolute minimum of

Protal at equilibrium distance between the two SWCNTs.
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Fig. 4.2 The binding energy distribution with CNT radius between two parallel SWCNTSs and two crossing
SWCNTs. (a) two same radii SWCNTs, (b) two different radii SWCNTs.

Fig. 4.2a shows the binding energy distribution with CNT radius between two same parallel
SWCNTs and two same crossing SWCNTs using Eq. (10), Eq. (11) and full atom MD
simulations, in which the MD simulation is performed using LAMMPS (Plimpton, 1995) with
the AIREBO potential and periodic boundary conditions are applied along the center axis of the
CNTs (the LJ cutoff radius is chosen 60 A which is an enough distance to get accurate results).
The analytical results are in good agreements with those from our full atom MD simulations. Fig.

4.2b shows the analytical binding energy between two different parallel SWCNTs and two
different crossing SWCNTs.

Fig. 4.3 shows a SWCNT parallel to a MWCNT. We assume that the distance between any
two neighbor CNTs in the MWCNT is 3.4 A. Based on Eq. (10) and Eq. (11), the cohesive
energy between the ith CNT in the MWCNT and a SWCNT should be easily obtained as

K 2 aoro 7 2\ayry
. . J. Clara ] 2l r+a,
o =T EC P a 0, 12."— 0.

d s 12
(n+a) (12

where aO:\/[ro+rl.+(3.4(i—1)+h1)]2+rl.2+2(r0+r,.+(3.4(i—1)+h,))rl.cosé?2 , hy is the

distance between the SWCNT and the outmost CNT in the MWCNT (see Fig. 4.3).
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Fig. 4.3 A schematic diagram of a single-walled carbon nanotube parallel a multi-walled carbon nanotubes.

The total cohesive energy from Eq. (12) should be given as

R 2 aoro F 2\ ayr,
2l +a,

Draw - SW_”EU/O”OZF J. ——— db, _12.[ ——-db, |, (13)
1<i<n ) (l/b—’_ao)

where q is the same that in Eq. (11).

Similarly, the total energy between two parallel MWCNTs can be obtained

F 2 Jayr;
63 l" +a,
o

¢MW—MWparallel =Te Gépz Z Z 7’}}" ’ (14)

1<i<m 1<i<n r +a, )

2
’ r+a0
do, 12] S S /)

5 2
(r,+a,)

where a, :\/[rj +7 +(3.4(z’+j—2)+2h1 )]2 +77 +2(rj +r +(3.4(i+j—2)+2h1))r cos@, , m is
the number of the walls in the other MWCNT.

Similarly, the total energy between two crossing MWCNTs can be obtained
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1
sin

a2 6
¢MW—MWcross - 4p €0

637
2 2 ( 128

1<i<m 1<i<n

Gej” 4,B,S, do _3_7[ * ABT| do
0 g 2 o T 2 |»
d d

4

(r+7, +(3.4(i+j—2)+2h1))2+a§ -7’

where 6, = arccos

2(r 47, +(34(i+-2)+2h))a,

S, =362880a, cos’ 6, +6531840a, cos’ §,r> +17146080a; cos’ O,r
+9525600a; cos’ O,r° +893025a, cos O,r:*

S, :[(l’; +r+(34(i+j—2)+2h)+r, cos@z)

it ]

2

19

212
7 5

7
2

the other parameters are the same with those in Eq. (11).

(@) O=—5— . : 1800
= q
. u
€ 10 Hinnermost (5,5)m 1
S parallel MWCNT =
© 20t g 41200
g °
P 30 [ ]
& .
2 40+ [ -4600
kel crossing MWCNT °
£ 0 ®
2 50 (590 *
innermost (5,5)¢
o * 1
60 a.©® 1 L I L 1 | 0
0 3 6 9 12 5

1
number of walls in MWCNT (CNT1=CNT2)

(r 04) ABisus Buipuiq

3 3 2
T, =6ay cos” 6, +9a, cos O,r,

b) O T \ T 900
() 8 g parallel q
O U gsingle CNT1 (5,5)
€ © s
= 10 o o
= innermost (5,5) [m]
9,9 MWCNT1 (four walls), o 4600
N o ul
> 20F N |
@ o 8
c
) °
2 30 FMWCNT1 (four walls)g ) 1300
- innermost (5,5) e L]
‘_% ° n
Y u . 0
40 - ° a ¥ crossing (5=90")
8 =" single CNT1(55) 0
0 3 6 9 12 15

number of walls in MWCNT2

Fig. 4.4 The binding energy distribution with CNT radius between two parallel MWCNTSs and two crossing

MWCNTSs. (a) two same radii MWCNTs, (b) two different radiit MWCNTs.

(15)

, ao 1s the same with that in Eq. (14), and

(r z.01) ABidua Buipuiq

Fig. 4.4 shows the binding energy between two parallel MWCNTs and two crossing MWCNTs,

in which the innermost CNT is the (5,5) CNT. The binding energy nonlinearly increases with

increasing number of walls.
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Fig. 4.6 The critical length and stable length with number of walls for two parallel MWCNTs and two crossing

MWCNTs based on our analytical results.

Fig. 4.5 shows the critical length and stable length for two parallel SWCNTs and two crossing

SWCNTs based on our analytical results and full atom MD simulations. The bending stiffness
EI=3.95%x107° J m of the (5,5) CNT is obtained by our MD results with AIREBO potential (see

Fig. 4.5a), which is close to the available value 3.84 x102° J m from previous work (Zhou et al.,

2007). Ubpending 15 the bending energy per unit length and « is the 1/r, in which r is the curvature
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radius and the (5,5) CNT length is equal to 11.6 nm in Fig. 4.5a (Zhao et al., 2013). We find that
the present analytical results are in good agreement with those from MD simulations for two
parallel (5,5) CNTs in Fig. 4.5b. Fig. 4.6 shows the critical length and stable length for two
parallel MWCNTs and two crossing MWCNTs based on our analytical results. For a given
distance (the distance between the two outmost CNTs in the two MWCNTs (Fig. 4.1)), the

critical length and stable length both nonlinearly increase with increasing number of walls.
4.3 Conclusion

In summary, the binding energy between two parallel (and two crossing) single-walled (and
multi-walled) carbon nanotubes (CNTs) is obtained by continuum modeling of the vdW
interactions between them. The dependence of the binding energy on their diameters, number of
walls and crossing angles is systematically analyzed. The critical length for the mechanical
stability and adhesion of the CNTs has been determined by the function of Ei/;, # and y, where
Eil,, h and y are the CNTs bending stiffness, distance and binding energy between them.
Checking against full atom molecular dynamics calculations show that the continuum solution
has high accuracy. The established analytical solutions should be of great help for designing

nanoelectromechanical devices.
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Chapter 5

Size-dependent elastic properties of crystalline polymers via a molecular

mechanics model”

Abstract

An analytical molecular mechanics model is developed to obtain the size-dependent elastic
properties of crystalline polyethylene. An effective “stick-spiral” model is adopted in the
polymer chain. Explicit equations are derived from the Lennard-Jones potential function for the
van der Waals force between any two polymer chains. By using the derived formulas, the nine
size-dependent elastic constants are investigated systematically. The present analytical results are
in reasonable agreement with those from present united-atom molecular dynamics simulations.
The established analytical model provides an efficient route for mechanical characterization of

crystalline polymers and related materials toward nanoelectromechanical applications.
5.1 Introduction

Crystalline polyethylene (PE) is increasingly used in modern industry as structural materials
due to its important mechanical and physical properties. Despite its importance and the studies of
available molecular dynamics (MD) simulations and constitutive models (Karasawa et al., 1991;
Zhao et al., 2010; Nikolov et al., 2002), the link between molecular and continuum descriptions
of its mechanical properties is still not well established. In order to overcome limitations of
atomistic simulations and continuum models, a “stick-spiral” model (Chang and Gao, 2003)
based on interatomic potentials has been effectively developed for different nanotubes (Chang et
al., 2005; Jiang and Guo, 2011). However, the van der Waals (vdW) interactions have a crucial
effect on the elastic properties in crystalline PE (Fig. 5.1), while the vdW interactions can be
neglected in the “stick-spiral” model (Chang and Gao, 2003; Jiang and Guo, 2011) in view of the
small deformation in a single-walled nanotube. To extend the analytical model to more
complicated polymers, we present an improved model to investigate the size-dependent elastic

properties of crystalline PE.

The work has been published on <<Applied Physics Letters>> 99, 241902 (2011).
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Fig. 5.1 Geometry of a single crystalline PE and corresponding coordinates. (a) each polymer chain’s position view

in xoy plane, (b) three-dimensional structure.

In this letter, we use the “stick-spiral” model to simulate united-atom (UA) CH,-CH; bonds
stretching, angle bending potentials along the polymer chain (or z direction), while the vdW force
between any two polymer chains can be directly calculated (Ru, 2001; He et al., 2005; Lu et al.,
2009) based on the Lennard-Jones (LJ) pair potential functions.

2. Results and discussion

In the framework of molecular dynamics, the total energy, U, of a crystalline PE at small
strains along z direction can be expressed as a sum of energies associated with the variance of

bond length, Uy, and bond angle, Uy, i.e., (Chang and Gao, 2003)
U=Ub+U6,:%ZKb(dbi)er%ZKg(dﬁjf, (1)
i j
where db; is the bond elongation of bond i and db; is the variance of bond angle j, and Ky and Ky

are the related force constant.

To obtain the equilibrium equations of the structure along z direction under tension, we adopt
the “stick-spiral” model developed by Chang and Gao (2003). As shown in Fig. 5.2, force

equilibrium of bond extension and moment equilibrium lead to

fsin[%} = K,db
, ; 2)
fcos(%]i =K,da
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where fis the external force in z direction on one polymer chain.

[=2bsin(a/2)

Fig. 5.2 Schematic illustration of polymer chain under z tension.

We define the z direction strain as

d(2bsin02[J . bcos2gKb
g, = —db| 2

z

; 3)

2bsin & b 4K, sin> <

Assuming the structural parameters of every cell remain constant with different-sized structures
in Fig. 5.1, we can obtain the size-dependent elastic properties of crystalline PE. From Eq. (2)

and Eq. (3), the elastic property of Cs3 can be written as'

1 1 . a
o myeny [t s

£ mnaybs. a,b, (4[{9 sin’ %+ Kb’ cos’ Ozlj

z

where ap and by denote the cell length, m and » are the number of cells along the x- and y-

direction, respectively.

We find that the result of Cs; in one cell wire (m=1, n=1 and periodic boundary in z direction)

is about 2.5 times higher than that of in bulk PE (m—o0, n—o0), while C3; is independent of the
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thickness in z direction. The constants a=109.5°, K,=700 Kcal/mol.A? and Ko=120 Kcal/mol
(Waheed, 2005; Shepherd, 2006) are adopted here and in the latter UA MD simulations.

To model vdW interaction between any two chains of crystalline PE, the LJ pair potential Uy,

r

12 6
is adopted as (He et al., 2005) U, =4 € K—] —[_j } , where r is the distance between the

interacting atoms, € the depth of the potential, and ¢ a parameter that is determined by the
equilibrium distance. Here, we use the avaliable L] potential’s parameters of 0=4.01 A and €

=0.112 Kcal/mol (Waheed, 2005; Shepherd, 2006).

The vdW force F.qw can be obtained from taking the derivative of the LJ pair potential

du € o) (o)
E, (r)=—"~ =24—{2(—] —(—J } . It should be noted that the negative value of the

dr o 7 r

vdW force represents the attractive force of an approaching pair of atoms from a certain distance

whereas the positive value represents the repulsive force between a pair of atoms.

The vdW force exerted on any bead (CH;) of a polymer chain can be estimated by summing
all forces between the bead and all beads on the other chains. To simplify the calculations, we
consider the chain as a straight continuum stick (He et al., 2005) and note that each bead
corresponds to the length of //2=bsin(a/2)=c/2 (c¢ is the cell length along z-direction) in Fig.
5.1b. Thus, the integration of Fyqw over the entire chain leads to an analytical representation for

the initial force contribution f;; caused by the vdW interaction

ten)-atn, - 2l [ 28 {2 (0 | 2 e

12 6 ) ’
__2L {(4860_ J. i) cos”@d@]—[ﬂeo_ J- anltn) coséﬁdﬁﬂ

(CO /2)2 7"012 arctan(~L/ry ) ]/66 arctan(—L/7, )

where cosO=r/r, z=rsind, L is the length along z direction, ry is the initial displacement between
two polymer chains, p;; is the force per unit length of a chain. Because the distributions of the
vdW force Fygw and its gradient dFqw/dr between two polymer beads are both close to zero

when r5>8.5 A, we only consider the vdW interaction with the initial displacement 7,<8.5 A.
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In view of the crystalline PE in the PNAM space group, the nine independent elastic constants

Ci1, C12=Cr1, C13=C51, Cop, Cr3=C3p, Cs3, Cas, Cs5 and Cge should be in the elastic matrix

(Karasawa et al., 1991). The four kinds of positions change between two polymer chains are

plotted in Fig. 5.3 under the six direction strains, respectively.

(a)

T

2L

__L_V_‘_ N hTY

Fe1 OT Fyq

Stick

(b)
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Le y o

1 z Fy OF I,

————-

0
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Fig. 5.3 Schematic illustration of the position change between two “sticks” in one PE cell after deformation. (a)

under x or y tension or yx shear, (b) under z tension, (¢) any two corner sticks under zx or zy shear, (d) between

corner and center sticks under zx or zy shear.

When the strain in the x-direction is & (see Fig. 5.3a), the C;; and C), can be expressed as

C11 =

o, _ 4] £, (L,r.)cos 0, = f; (L.r,)cos 6" |+ 2[ f; (L.7,) = £, (L.r,,

)]

CZI -

2Lbe,
o, A/, (Lr)sin6 ~ f,(L.r,)sinG,]

gx

2L(1 +é&, ) ay€,
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2 2 2
Jag +b; \/(1+8X) a0+b a,
where r, = = =a,,r, =(1+¢, )a,,cos b, —ﬁ ,
a, +b;

c 2 cl 2
(1+¢&,)a,

, 01 1s the angle in Fig. 1a.
(1 +é&’ ) a; +b;

cosf'=

When the strain in the y-direction is ¢, or in the xy-direction is &y, the Css, Ci» and Cgs can be
easily obtained in the elastic matrix in view of the similar position change between two chains in
Fig. 3a. The average values of C;; and C);, are shown in Table I (see C},). For the strain in the z-

direction ¢, in Fig. 5.3b, the Ci3=0,/¢, and Cy3=0y/¢, are easily obtained from Eq. (1).

When the strain in the zx-direction is &, (see Fig. 5.3¢ and d), the C44 can be expressed as

C. = o, 4[fy cos49 f 77]+2[f11 fy.(l1 R )cos AH ]+2 mck’ )
& aobogzx

1+ &2 sin 62
P=ifite - £, _l+&ising’

Vs

H 2 T P c 5
«/14—8 1+¢&,

n _—Jl-’_gzz’cSin@lzcose _gzx COSHI Exx Sing‘ sin@ ['=1 1+€ ! 7
4’1+6‘sz l \/1+gi \/l+822x sin &7 1 ’ 1 \/1+5§x ’ ,
1

1 4K ,K,bsin &
r, = r cos(A@)— 2

@ g e ‘mal’sﬁck—(xllﬁi—l)(

where I=cy,

o 4K, sin’ 2+szcos ]\/IJ“?
The method under zy shear is similar to that of under zx shear, in which the force increment

along y direction can be obtained by replacing 6; with 90™-6,.

To validate the present analytical model, the Karasawa et al.’s MC PE (Karasawa et al., 1991)
of supercell (2x2x2) structure is built from Materials Studio (MS) (version 5.0) (Avitabile et al.,
1975) as the initial UA structure. Afterwards, the nine independent elastic constants are
calculated through the MD simulations (Plimpton, 1998) in 0 K under periodic boundary
condition based on the Ray and Moody’s method.
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TABLE 5.1 Nine elastic constants (GPa) of present analytical model, united-atom molecular dynamics results and

Karasawa et al.’s all-atom molecular dynamics calculations for bulk PE.

Elactic constants Cl1 Cl12 C22 C33 C23 C13 C44 C55 C66
Anal. pure LJ 14.52 6.89 2.92 / 0.72 1.28 0.02 0.03 7.53
Anal. all potential 14.50 6.97 2.83 195.08 0.70 1.27 0.03 0.04 7.57
MD pure LJ 153403  7.1£04 4.9+1.4 0.9+04 0.3£0.2 0.540.3 0.6+0.2 1.1£0.2 6.54+0.3
MD all potential 15.6£0.5 7.0£0.4 5.1+£1.2 200+£0.6 1.61£1.0 3.03£2.0 5.58+0.3 5.97+0.3 6.48+0.5
Karasawa MC (1991)  13.9 7.9 13.5 237.9 4.8 2.3 54 3.0 5.9
16 L L C“ 1 T 1 |
12 L colored —o— pure LJ analytical 4

colored —*— all potential analytical
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Fig. 5.4 Eight size-dependent elastic constants with different thickness along z direction using the present analytical

model.

We find that the most elastic constants using the present UA MD simulations of all potentials
(include all bond, angle and LJ potentials) are very different with those of Karasawa et al.’s all-
atom MD calculations (Karasawa et al., 1991) in Table 1. The possible reason is that the present
analytical model is based on the UA potentials, in which the torsion potential, out-of-plane
bending potentials and coulomb interactions are neglected. Therefore, we should compare
present analytical model with UA MD simulations. Compared with the two UA MD results using
all potentials and the pure LJ potential in Table 5.1, we find that the difference of the values of
Cy3, Cs3, C13, Caq and Css are large. It indicates that the bond and angle potentials have a large
effect on these elastic constants. The present analytical result C33=195 GPa is in excellent
agreement with the value of (C533=200+0.6 GPa using all potentials’ UA MD simulations. The
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analytical values of C,, Ci2, (a3, C13 and Cgg are also in good agreement with those of this UA
MD method, while the difference of Cs44 and Css are very large. It indicates that the present
analytical model is effective to predict the most elastic constants, while it has limitations to
predict Cs4 and Css. One possible reason is that the shear and torsion properties of the “stick” in
the present analytical model are neglected; another reason is that the present simplified straight

stick has a little effect on the predictions of the elastic constants.

To understand the size-dependent elastic properties of PE, the effect of the polymer thickness
along the z-direction on the elastic constants is further studied in Fig. 5.4, in which the periodic
boundary is only adopted along the x- and y-directions. The elastic constants of Cy;, Cjz, Cy; and
Ces increase with decreasing thickness, while C;3 and C»3 decrease with decreasing it. The values
of Cy4 and Css are both independent of it. The results mean that the change tendency of the size-
dependent elastic constants is not in accordance with one another, which strongly depends on the
lattice direction. When L/cy>10, all of the elastic constants are close to the corresponding

constants in Fig. 5.4, respectively.
5.3 Concluding remarks

In summary, on the basis of the molecular mechanics approach, we present an analytical
model to obtain the size-dependent elastic properties of crystalline PE. We obtain a set of closed-
form expressions for nine size-dependent elastic constants of crystalline PE. Compared with the
present united-atom molecular dynamics calculations, we find that the present analytical model
can be used to effectively simulate the van der Waals interactions between any two polymer
chains. This work is an new effort to establish analytical models of molecular mechanics for
crystalline polymers, and is helpful for further analytical studies of elastic properties of other
crystalline polymers.
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Chapter 6

A comparative study of two molecular mechanics models based on the

harmonic potentials*

Abstract

We show that the two molecular mechanics models, the stick-spiral and the beam models,
predict considerably different mechanical properties of materials based on energy equivalence.
The difference between the two models is independent of the materials since all parameters of
the beam model are obtained from the harmonic potentials. We demonstrate this difference for
finite width graphene nanoribbons and a single polyethylene chain comparing results of the
molecular dynamics (MD) simulations with harmonic potentials and the finite element method
with the beam model. We also find that the difference strongly depends on the loading modes,
chirality and width of the graphene nanoribbons, and it increases with decreasing width of the
nanoribbons under pure bending condition. The maximum difference of the predicted mechanical
properties using the two models can exceed 300% in different loading modes. Comparing the
two models with the MD results of AIREBO potential, we find that the stick-spiral model
overestimates and the beam model underestimates the mechanical properties in narrow armchair

graphene nanoribbons under pure bending condition.

6.1 Introduction

Harmonic potentials have been extentively used to investigate the mechanical and physical
properties of various materials in molecular mechanics models, such as carbon nanotubes
(CNTs), boron nitride nanotubes (BNTs), graphene sheets and polymers (Chopra et al., 1995;
Chang and Gao, 2003; Li and Chou, 2003; Zhao et al., 2010; Zhao et al., 2011; Jiang and Guo,
2011). Atomistic-based methods such as classical MD (Iijima et al., 1996; Yakobson et al., 1996),
tight-binding MD (Hernandez et al., 1998; Zhao et al., 2009a), and density functional theory
(Sanchez-Portal et al., 1999; Zhang et al., 2007; Zhang and Guo, 2008) have been used to study

The work has been published on <<Journal of Applied Physics>> 113, 063509 (2013).
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the mechanical properties of CNTs, BNTs and nanoribbons. However, compared with bottom-up
approaches, top-down approaches may substantially reduce the computational costs and are thus
frequently used in related investigations. Recently, the molecular dynamics (MD) simulation
with harmonic potentials coupling finite element (FE) method have been more and more applied
to multiscale modeling in order to characterize the mechanical behavior of the different materials
from nanoscale to microscale/macroscale (Badia et al., 2007; Di Matteo et al., 2007; Bian and

Wang, 2011), so the predictive ability based on the harmonic potentials has special importance.

Some typical continuum models based on the harmonic potentials have been developed and
broadly used to clarify the elastic properties of the graphene sheets, CNTs and BNTs (Hernandez
et al., 1998; Vaccarini et al., 2000; Ru, 2001; Chang and Gao, 2003; Li and Chou, 2003). Three
kinds of models are usually employed: 1). Shell models have been used to capture the buckling
characterizes of CNTs (Yakobson et al., 1996; Ru, 2000; Ru, 2001; He et al., 2005; Wang et al.,
2007; Wu et al., 2008). The applicability and limitations of shell models have been extensively
discussed (Wang, 2004; Peng et al., 2008; Zhang et al., 2009). Chang (2010) developed an
anisotropic shell model to investigate mechanical behavior of single-walled CNTs, in which the
model can be used to effectively describe the chirality effect on mechanical properties. 2). The
beam model was developed by Li and Chou (2003, 2004). They assume that the beam elements
have circular cross sections and are always subjected to pure tension, pure bending, and pure
torsion. The theory was further improved (Tserpes and Papanikos, 2005; Xia et al., 2005; To,
2006; Kasti, 2007; Jiang et al., 2009) and extended to calculate the five independent size- and
chirality-dependent elastic moduli of single-walled CNTs using equivalent beam elements with
rectangular section (Li and Guo 2008). 3). The “stick-spiral” model (SSM) was developed by
Chang and Gao (2003). An improved model by Jiang and Guo (2011) was used to investigate the
elastic properties of single-walled boron nitride nanotubes. By extending the two analytical
methods to crystalline polymers (Zhao et al., 2010), we presented the SSM to investigate the
size-dependent elastic properties of crystalline polyethylene (PE) (Zhao et al., 2011). Based on
the united-atom MD simulations, we further verified the effectivity of the SSM in the crystalline
polymers directly (Capaldi et al., 2004; Zhao et al., 2011). In this work, we utilized a united atom
approximation in which the methyl groups (CH2) are represented by a single “atom” or unit, and

the effect of the hydrogen atoms on the polymer’s configuration is accounted for in the potentials
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(Waheed, 2005; Shepherd, 2006). Subsequently, we extended the beam-spring model to obtain
the elastic properties of crystalline PE (Zhao et al., 2012).

Kasti (2007) found that the beam bending stiffness (BBS) (EI/b, where E is the Young’s
modulus, b is the beam length and 7 is the moment of inertia of the beam (see section 6.2)) is
equal to the bond bending stiffness (Kp, which is the bond angle bending force constant (see
section 6.2)) in zigzag CNTs, while the BBS beam bending stiffness is only half of the bond
bending stiffness Ky in graphene nanoribbons. This discovery was verified in the zigzag CNT

and graphene sheet based on energy equivalence.

Although the SSM and the beam models have been effectively used to describe the elastic
properties of CNTs, BNTs and graphene sheets (Li and Chou, 2003, 2004; Kasti, 2007; Li and
Guo 2008; Jiang and Guo, 2011), the difference of their prediction ability has never been
systematically studied.

In this paper, we study the mechanical properties of the finite width graphene nanoribbons
under different loading conditions using the two models. First, we consider the SSM under
difference loading conditions. Then, the BBS of the graphene nanoribbons is derived from the
energy equivalence between the two models. We show that the BBS strongly depends on the
loading modes and the chirality in the finite width graphene nanoribbons. The closed-form
expressions of the bending stiffness are derived under uniform tension, pure shear, pure bending,
loading force, coupling force and bending conditions. Moreover, the BBS of the beam model
under different loading conditions is systematically studied in the graphene nanoribbons using
the MD simulation with present harmonic potentials (Chang and Gao, 2003) and the FE
simulation. Finally, the results of the MD simulation with harmonic potentials and the FE

method are compared with those of the MD results with AIREBO potential.

The paper is organized as follows: Section 6.2 describes the SSM and the beam model in
armchair and zigzag graphene nanoribbons for different loading conditions. In Section 6.3, both
models are validated by comparison to MD simulations and FE results. Moreover, a single PE

chain under different loading conditions is investigated. The comparison of the two models with
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MD simulations using the AIREBO potential is discussed in section 6.4. The paper is concluded

in section 6.5.
6.2 The stick-spiral and beam models in graphene nanoribbons

In the framework of molecular mechanics, the total energy, U, of graphene at small strains can
be expressed as a sum of energies associated with the varying bond length, Uy, and bond angle,

Uy, i.e., (Chang and Gao, 2003)

U=U,+U, :—ZK (db,)’ ZK (de) , (1)

where db; is the elongation of bond i and d6; is the variance of the bond angle j. K}, and K are the

corresponding force constants.
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Fig. 6.1 The beam structures of the armchair and the zigzag graphene nanoribbons in the FE method based on the

beam elements (L/W=1, L=14.7 nm).

To elucidate the difference between the SSM and the beam model, we analyze the relation of
the two models in armchair and zigzag graphene nanoribbons (see Fig. 6.1) under different
loading conditions.
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6.2.1 The comparison between stick-spiral and beam models under the coupling force and

moment

Most researchers calculated the elastic properties of CNTs and graphene nanoribbons under
different loading conditions with beam models using a constant BBS (E7/b=Ky or EI/b=0.5Kj)
(Li and Chou, 2003, 2004; Kasti, 2007; Li and Guo 2008); E, I and b are the Young’s modulus,
the moment of inertia and the initial bond length of the beam. Based on the energy equivalence
between the SSM and the beam models, we find that the BBS in armchair and zigzag graphene
nanoribbons under uniaxial tension and pure shear is £1/b=0.5Ky. For the finite width armchair
graphene sheet under coupling loading force F' and moment M (a=f and b;=b,=a=b here), the
BBS EI/b should be employed, see Fig. 6.2. It should be noted that only the in-plane bending is

considered in this paper.

Fig. 6.2. (a) One cell of a finite width armchair graphene sheet under coupling loading force " and moment M, (b)
angle increment of (a) for the stick-spiral model, (c) one cell of a finite width zigzag graphene sheet under coupling

loading force F and moment M, (d) angle increment of (c) for the stick-spiral model.
For the SSM, the force and the moment equilibrium lead to
F = K,db,
o
F,cos| — |=K,db,
2
M=K, (a’ﬁ1 +dﬂ2)

%w’; sin(%)b =K, df +K,(dp—dp,) )

%—FZ Sin(%jb:Kgdﬂz —K,(dp,-dp,)
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where b=b,=b, F\=2F,, df3 and d3, are the angle increments.
The total energy of the stick Ur can be written as
U,=U,+U,
1 2 1 2 1 2 1 2 1 2
= EKb (db,) +2><5Kb (db,) +2x EKH (dpB,) +§K9 (dp,) +5K9 (dp,—dp,) )

1
= K, (db ) +K,(db,) +2K,(dB) +2K,(dp,) -2K,dBdp,

The total energy of the beam model Urpeam can be written as

UT beam UFbeam + UMbeam
2 2 2
rols) oGl (5]
b b b
=| —=dkx, +2j —=dx, + j dx,
0 2EA 0 2EA 0 2EI
2
ﬂJersin & X, ) )
b 2 2 b M
+ dx, + I —dx,
0 2EI 0 2EI
2 2 2
F| cos () b | F,cos (aj b ) F, sm(j b’
2 3M°b
2EA EA 4E1 3EI

where x;, is the local coordinate systems along the beam, A4 is the cross section area of the beam,

and Uppeam and Unipeam are the strain energy from the force and moment, respectively.

Let Urpeam=Ur, then the BBS can be obtained from Eq. (2)-Eq. (4)

2
£ 9+4(A]\;j
7=K M7 (5)

% 2
6+8 (Nj
M
where N=1/2Fsin(a/2)b.

Similarly, we obtain the value of EI/b when the beam model of the finite width zigzag

nanoribbons in Fig. 6.1b is under the coupling force and moment (see Figs. 6.2 ¢ and d):
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where N=Fcos(a/2)b.

Comparing Eq. (5) with Eq. (6), the distributions of the BBS in the zigzag graphene
nanoribbons are different to those in the armchair nanoribbons. Therefore, it is not suitable to use
the same EI/b to calculate the corresponding mechanical properties under coupling loading force

and moment in the finite width armchair and zigzag graphene nanoribbons.
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Fig. 6.3. The distribution of beam bending stiffness with N/M under coupling loading force F and moment M in

the finite width graphene nanoribbons, (a) armchair, (b) zigzag.

The distribution of the BBS versus N/M in Eq. (5) is plotted in Fig. 6.3a. We find that the BBS
strongly depends on the loading condition and is in the range of 0.5Ky <EI/b<1.5Kj for the
different loading conditions in the finite width armchair graphene nanoribbons. When N/M =0,
Eq. (5) is degenerated into E//b=1.5Ky under pure moment M condition. When N/M—o (or -o0),
Eq. (5) is degenerated into £1/b=0.5Ky under loading force F' condition.

The distribution of the BBS versus N/M for the zigzag graphene nanoribbons is plotted in Fig.

6.3b. It also strongly depends on the loading condition. When N/M =0, EI/b=1.5Ky; when
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N/M—x (or -o), EI/b=0.5Ky. when N/M—1, El/b—w; when N/M—3, EI/b—0.375Ky (the

minimum).

In summary, the BBS of the SSM and the beam model differs and depends on the chirality and

loading condition.
6.2.2. The value of surface Young’s modulus from stick-spiral and beam models

In this section, we will compare the value of surface Young’s modulus Y (E=Y/t=04/(et)
obtained from the SSM and the beam model; £ and ¢ denote the Young’s modulus and thickness
of the graphene sheet, and o is the surface stress which is equal to the stress multiplied by the
thickness 7 of the graphene sheet (Chang and Gao, 2003). Moreover, we derive the expressions of

Y; under uniaxial tension in armchair and zigzag nanoribbons.

For the zigzag graphene sheet in Fig. 6.1b under a uniform tensile stress f along x direction

(Chang and Gao, 2003), we define the strain as

dizbsm;‘J | beos” 2K,
e=— Z2ogpl-——2 | (7

2bsin b 6Kgsin2g

2 2

The surface Young’s modulus Y, can be derived by the SSM (Chang and Gao, 2003)

. a
, F_ 6K9Kbb511’15 _ 83K, K, "
s 20
b+2)e 2b6k,sin? E+ ko & | 18K KD
2 )% 2 2 2

where F=3/2fb (Li and Guo, 2008).

For the beam model, the elastic strain energy of the structure should be equal to the external

work.
3 2
3 fbj /
1 F’L (
U =~FAL= _\2 , )
2 2E'A'"  2E'A
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3fbcos(ajsin(ajj b 9(fcos2 (QD b
- ( 2) \2)) 2 . (10)

Theam = EA 192E]

where L=2bsin(a/2), E'=E=Y/t and A'=1.5b in one cell of graphene sheets (Chang and Gao, 2003;
Li and Guo, 2008). Defining EA/b=Ky, and using Eq. (5), Eq. (6) and Uyok=UTbeam, We obtain Y

.«
6K9Kbbsmz B 8«/§K9Kb

- . 11
18K, + Kb’ (1)

YS =
éb 6K, sin’ gJerb2 cos’ &
2 2 2

Note that Eq. (8) for the SSM and Eq. (11) of the beam model are identical.
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Fig. 6.4. The value of Y, from two models and different beam bending stiffness £7/b in the finite width graphene

nanoribbons.

We now compare the results of the two models with results from MD simulation. The value of
Y from the two models with different E7/b is plotted in Fig. 6.4. When Ky=742 nN/nm, Ky=1.42
nN nm and o=120° (Chang and Gao, 2003), the value of ¥; is equal to 360 GPa nm in Eq. (8) and
Eq. (11) which is in very good agreement with the MD result ¥,=350+20 GPa nm from Sanchez-

Portal et al. (1999) and Van Lier et al. (2000). The results for Y depending on the BBS are also
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plotted in Fig. 6.4. The values of Y range from 321 GPa nm to 571 GPa nm under coupling force
and moment. Those results are quite different to the MD result, when we use the BBS of the
zigzag graphene sheet in Eq. (6). For example, the value of Y (478 GPa nm) is about 1.33 times
of the MD result using EI/b=1.5Ky under pure bending condition (N/M—0). The value of Y5 (360
GPa nm) is identical with MD result for E£1/b=0.5Ky under loading force (N/M—oo or -o) or
uniaxial tension conditions. When N/M—1 in Eq. (6), EI/b—x leads to the maximum Y=571 GP
nm which is about 1.59 times of the MD result. When N/M—3 in Eq. (6) (see Fig. 6.3b),
E1/b=0.375Ky leads to the minimum Y=321 GP nm which is about 0.89 time of the MD result.
Therefore, it is crucial to give an exact force analysis in the structures so that the correct £1/b can

be obtained.

3. The validation using molecular dynamics simulation with harmonic potentials and finite

element method
3.1 Molecular dynamics simulation with harmonic potentials

In this section, we present the results of FE and MD simulations with harmonic potentials. For
the MD simulation, we keep the length L=14.7nm and the ratio L/W=1~60 in the armchair and
L/W=1~52 in zigzag nanoribbons (see Fig. 6.5 and Fig. 6.6). Displacements are added at the left
(green) and right (red) end layers. All MD simulations are performed using LAMMPS (Plimpton,
1995).

For uniaxial tension or pure shear, simulations are done at 0 K and all atoms in the two end
layers move 0.3 A along the x- or y-direction at each time step, respectively, and every 0.5
bending degree at each time step for pure bending except for armchair L/W=60 (every 0.15
bending degree at each time in view of the large fluctuation). Afterwards, the structure is
optimized for each displacement increment and the optimized structure is taken as the initial
geometry for the next calculations. The energy minimization is performed using the conjugate-
gradient method. A tolerance of relative energies between minimization iterations is set at 0.0

with a force tolerance of 10 to ensure a sufficiently minimized system.
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Fig. 6.5 Finite width armchair and zigzag graphite nanoribbons under pure bending at bending angle=15 degree, (a)
armchair L/W=60, (b) armchair L/W=20, (c) armchair L/W=7.5, (d) zigzag L/W=52, (e) zigzag L/W=20.8, (f) zigzag
L/W=14.

Fig. 6.6 The zoomed-in view of the graphene nanoribbons in Fig. 6.5, (a) a zoomed-in view of Fig. 6.5a, (b) a
zoomed-in view of Fig. 6.5b, (c) a zoomed-in view of Fig. 6.5¢c, (d) a zoomed-in view of Fig. 6.5d, (¢) a zoomed-in

view of Fig. 6.5¢, (f) a zoomed-in view of Fig. 6.5f.
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To model the bending deformation, rigid body translation is applied to the atoms in both end
layers of the graphene sheets (see the green and red parts in Fig. 6.5), such that both end sections
remain straight and are kept perpendicular to the deformed axis in each displacement increment
(Iijima et al., 1996; Cao and Chen, 2006). The length of the middle line along the deformed axis
in the graphene sheet remains unchanged and its curvature is uniform throughout the

deformation.

First, we consider the armchair and zigzag graphene nanoribbons under uniaxial tension. The
harmonic bond and angle potentials parameters K,=742nN/nm and K¢=1.42 nN nm are adopted
from Chang and Gao (Chang and Gao, 2003). The Lennard-Jones (LJ) pair potential Uy ; between

12 6
carbon and carbon is adopted as U,, =4 € {(gj —[gj } (Chang, 2007; Li and Guo, 2008),

r r

where 7 is the distance between the interacting atoms, € the depth of the potential, and ¢ a
parameter that is determined by the equilibrium distance. We use 0=3.407 A and €
=4.7483x11.8% ] (Kolmogorov et al., 2004; Vodenitcharova and Zhang, 2004; He et al., 2005;
Chang, 2007).

In our MD simulations, the stress method and energy method are both used to calculate the
Young’s modulus and shear modulus. For the stress method, the stress on the surface of

graphene sheet can be given by the component of the virial stress (Zhao et al., 2010)

1 Nowtbon Neason — OUJ i
Gif = — ; Z mViVi + Z l/;'j ﬁr s (1 2)
i i=l,j<i i

where V' is the current volume of the graphene sheet, m; is the mass of atom i, v; is the velocity, #;;
is the displacement vector between the atoms i and j, and Uj is the potential energy between

atoms i and ;.

The idea for the energy method is that the increment of the total energy should be equal to the

external work (Zhao et al., 2009b). The equation can be written as
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where U and ¢ are the total energy increment and tensile strain, o. and M are the tensile stress

and bending moment on the left or right regions in Fig. 6.5, and Vj and ¢ are the initial volume

and bending angle.
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Fig. 6.7 (a) The total energy-strain and (b) the surface stress-strain curves of the armchair and the zigzag graphene

sheet under uniaxial tension and pure shear in Fig. 1a and b.

The total energy for different tensile and shear strains is plotted in Fig. 6.7a. The surface
tensile or shear stresses obtained from Eq. (13) are plotted in Fig. 6.7b. Note that the surface
stress is the stress multiplied by the thickness 7 of the graphene sheet. Defining the surface tensile
stress and the surface shear stress as o5 and 7, the surface Young’s modulus Ys and shear
modulus G is expressed as Yi=oy/c and G=t,/y, where ¢ and y are the tensile strain and shear strain.
Fig. 6.7b shows that the difference of the surface stress-strain curves between the armchair and
zigzag nanoribbons is very small. Those observations agree well with the results in the literature
(Chang and Gao, 2003; Kasti, 2007; Li and Guo, 2008). Fig. 6.7b also shows that the surface
stress-strain curves of the stress method are in very good agreement with those of the energy

method. Our MD results agree with those of the available analytical models (see Fig. 6.7b)
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(Chang and Gao, 2003; Li and Guo, 2008). The energy method is adopted to obtain all MD

results in the following text.

6.3.2 Finite element method based on the beam model

The FE beam structures of graphene sheets can be easily built from the coordinates of the

graphene MD models (Fig. 6.5).

We adopt the stiffhess £4/b=Ky and EI/b=0.5Ky with Young’s modulus £=9.18~14.77TPa and

Poisson’s ratio v=0~0.4 from Li and Guo (2008). All the present FE calculations are performed

using the commercial ANSYS 12.0 package with 2-node BEAM 188 element.

Surface stress (GPa nm)

40 T T T T
| FE results (EI/b=K /2) ._-.
E=14.77 TPa, L/W=1 tension -
30 | ; -
tension w
®— armchair "rv"—
® zigzag
20  shear ,;"’ -
—0O— armchair 'J"
| —0— zigzag 'l'
&
10 - '." shear _cner
'l JDF‘_H-»;‘_D
,.J o R
. L a@dT
o anoadfs
oL oo . ] ] ] ,
0.00 0.02 0.04 0.06 0.08 0.10
Strain

Fig. 6.8 The surface tensile and shear stress-strain curves of FE method in Fig. 1.

The surface stress-strain curves along different directions for E=14.77TPa, v=0.1 and

EI/b=0.5Ky are plotted in Fig. 6.8. The difference of the stress-strain curves between the

armchair and zigzag graphene nanoribbons are very small, which agrees well with the

observations from Li and Guo (2008) and Sakhaee-Pour (2009).
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Fig. 6.9 The surface stress-strain curves of the FE method in Fig. 1a.

all the following FE calculations.
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In view of so small difference, we only study the effect of the Poisson’s ratio v on the stress-
strain curves for the armchair sheet in Fig. 6.9. The surface stress-strain curves don’t change
with v at all in Fig. 6.9, which means that the Young’s modulus and shear modulus of graphene
sheet are both independent of Poisson’s ratio v of the beam. Therefore, there is no limitation to
use Poisson’s ratio v (as v=0~0.4) of the beam element so that we can obtain the same Young’s

modulus and shear modulus. The Poisson’s ratio v=0.1 are adopted in the following FE results.

As shown in Fig. 6.10, the effect of the beam Young’s modulus on the surface stress-strain
curves is also very small. Li and Guo’s results are between the present two curves although

Kv=723nN/nm and Ky=1.36 nN nm is chosen in their literature (Li and Guo, 2008).

Since the Poisson’s ratio v and the Young’s modulus E of the beam model have almost no

effect on the elastic properties of the graphene nanoribbons, we choose £=14.77TPa and v=0.1 in
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Fig. 6.10 The surface tensile and shear stress-strain curves of the FE method with different beam Young’s modulus

in Fig. 6.1b along x-direction tension and xy-direction shear.

6.3.3 Results and discussion

Fig. 6.11a plots the surface tensile stress ratios between the MD simulations with harmonic
potentials and FE results based on the beam model under uniaxial tension. All the ratios are close
to 1 for different L/W in the armchair and the zigzag graphene nanoribbons. It means that the
BBS, EI/b=0.5K, is correct to describe the elastic properties of graphene nanoribbons under
tension and shear, which validates our analytical results in section 6.2.1. Figs. 6.11b and ¢ show
that the bending moment ratios between the MD and FE results for the BBS of E7/6=0.5Ky. The
ratios Myip/ Mg increase with decreasing width W in both armchair and zigzag nanoribbons. The
maximum ratios reach values up to 2.5 in the armchair nanoribbons and 1.25 in the zigzag
nanoribbons. It indicates that the loading-mode dependent BBS in the armchair nanoribbons is

more pronounced than the BBS in the zigzag nanoribbons.
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Fig. 6.11 The surface tensile stress ratios and bending moment ratios between MD and FE results in finite width

armchair and zigzag graphene nanoribbons, (a) the surface tensile ratios in the armchair and the zigzag nanoribbons,

(b) bending moment ratios in the armchair nanoribbons, (c) bending moment ratios in the zigzag nanoribbons.
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Fig. 6.12 Bond length distributions of the armchair and zigzag graphene nanoribbons with different bending angles
in Fig. 6.5, (a) armchair L/W=60, (b) armchair L/W=20, (c) armchair L/W=7.5, (d) zigzag L/W=52, (e) zigzag

L/W=20.8, (f) zigzag L/W=17.4.

We futher study the change of the corresponding bonds and angles in the armchair and zigzag

graphene nanoribbons with different bending angles. The distributions of the bond length and the

bond angles in the upper and lower regions are symmetric with regard to the middle line along

the deformed axis. For the narrow sheets in Figs. 6.12a, d and Figs. 6.13a, d, the bond length and

the angles change weakly with increasing bending angle. With increasing width, the bond length
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and the bond angles from the middle line to the free surface along the undeformed axis increase

sharply with increasing bending angle, as shown in Figs. 6.12c, fand Figs. 6.13c, f.
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Fig. 6.13 Angle distributions of armchair and zigzag graphene nanoribbons with different bending angles in Fig. 5,
(a) armchair L/W=60, (b) armchair L/W=20, (c) armchair L/W=7.5, (d) zigzag L/W=52, (e) zigzag L/W=20.8, (f)
zigzag L/W=T7.4.

For all sheets, the bond length and the bond angles in the middle regions change weakly, while
the bond length in the upper and the lower regions is sharply elongated and shortened,
respectively. Fig. 6.13d indicates that all the bond length change considerably in the narrow
zigzag sheet, while the bond length does not change in the narrow armchair sheet. From the
armchair sheets in Fig. 6.5, we find that the bonds bx (k=1, 2, 3, 01, 02, ---,08) are parellel to the
deformed axial. When the armchair sheets are under pure bending, the bonds by in the middle
parts of the sheets are always under pure bending. Therefore, the ratio m=N,/N,. increases with
decreasing width, where N, is the number of the bonds subjected to bending and N, is the
number of the bonds subjected to tension/compression in the sheets. However, all of the bonds ¢;
(=0, 1, 2, 3, 01, 02, ---, 09, 010) in the zigzag sheets are not parallel to the deformed aixal. The

ratio in the zigzag sheets is always less than that in the armchair sheets for the same value of L/W.
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Fig. 6.14 The spatial distributions of the bond length in armchair and zigzag graphene nanoribbons at the bending
angle 15 degree, (a) armchair L/W=60, (b) armchair L/W=20, (c) armchair L/W=17.5, (d) zigzag L/W=52, (e) zigzag
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Fig. 6.15 The spatial distributions of the average angle increment in armchair and zigzag graphene nanoribbons at
the bending angle 15 degree, (a) armchair L/W=60, (b) armchair L/W=20, (¢) armchair L/W=7.5, (d) zigzag L/W=52,
(e) zigzag L/W=20.8, (f) zigzag L/W=7.4.
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It is the main reason that the bending moment ratios in the armchair sheets (see Figs. 6.11b and ¢)
are larger than those in the zigzag sheets. The loading-mode dependent BBS of the armchair

nanoribbons is more pronounced than that of the zigzag nanoribbons.

Fig. 6.14 and Fig. 6.15 show the spatial distributions of the bond length and the average angle
variation in different armchair and zigzag graphene nanoribbons for a bending angle of 15 degree.

The average angle variation of atom i is calculated by

3
AG, =%Z|0: -6,

i=1

(14)

>

where 6; (i=1,2,3) are the three angles around the atom i at a given bending angle, and 6y is the

initial angle of 120 degrees.

The bond length and the average angle variation change weakly in the middle regions and
sharply in the upper and lower regions. It indicates that the middle regions of all graphene
nanoribbons are always subjected to bending, while the upper and lower regions are mainly
under tension or compression, respectively. With increasing width, tension and compression
dominate the bending properties of the graphene nanoribbons (see Figs. 6.14c and f or Figs.
6.15¢ and f). Conversely, with decreasing width, bending or coupling tension/compression-
bending dominate the bending properties of the nanoribbons (see Figs. 6.14a and d or Figs. 6.15a
and d). From our analysis in section 6.2.1, the BBS EI/b=0.5Ky should be used in uniaxial
tension/compression/shear, while BBS EJ/b=1.5Ky in pure bending should be used for
considerably narrow graphene nanoribbons. Therefore, it is reasonable to adopt the BBS
0.5Ke<EI/b<1.5Kp and 0.375K¢<FEI/b in the finite width armchair sheets and zigzag sheets under
pure bending in Figs. 6.3a and b, respectively.
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Fig. 6.16 Bending moment ratios between MD and FE results for graphene nanoribbons with different E7/b.

Fig. 6.16 illustrates the bending moment ratios for graphene nanoribbons for different BBS
EI/b. The ratio is close to 1 when EI/b=1.5Kj is used in our FE calculation with L/W=60 in Fig.
6.5a, which perfectly validates our analytical result in section 6.2.1. Furthermore, EI/b=Kjy can be
used to describe the elastic properties in L/W=30 (armchair) and L/W=52 (zigzag) graphene

nanoribbons considering the domination of the coupling tensile/compressive-bending mode.

The BBS EI/b=0.5Ky of the beam models describe the elastic properties well under uniaxial
tension or pure shear. However, the BBS strongly depends on the width and the chirality of the
graphene nanoribbons under pure bending or tensile-bending modes. When the width of the
armchair graphene sheets becomes small enough (L/W=60), EI/b=1.5Ky describes the bending
behavior excellently under pure bending. With increasing width, 0.5K¢<El/b<1.5Ky and
0.375K¢<EI/b should be used to effectively describe the mechanical behavior in armchair and

zigzag sheets, respectively.

In view of the extremely narrow structure of a single polyethylene PE chain, we further
analyzed the elastic properties of the PE chain under different loading conditions too.
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6.3.4 The two models in a single polyethylene chain

In this section, we study one PE chain under coupling loading force f and moment m, see Fig.
6.17a. In analogy to our analysis in section 6.2.1, the value of the BBS E//b of the PE can be
written as

) 0 Y o nY n
3m*+| fcos—b | —3mf cos—b 3+ — | =3| —
LL By 2 2 :Kp9 m m (15)

b 3 : 3 :
(m—fcosebj (l—nj
2 m

where n=fcos(a/2)b, b and 6 are the initial bond length and angle of the PE chain, respectively,
and K is the bond bending stiffness of PE (Zhao et al., 2011).

2.0 . . , ]
(b)

Crystalline
polyethylene l

Fig. 6.17. (a) One cell of a crystalline polyethylene chain under coupling loading force fand moment m, (b) the

distribution of beam bending stiffness with n/m.

Eq. (15) and Eq. (6) differ only in the coefficients. The distribution of the bending stiffness in
Eq. (15) over n/m is shown in Fig. 6.17b. The bending stiffness E£7/b is larger than 0.25Kj for the
different loading conditions. When n/m=0, Eq. (15) is degenerated into EI/b=Ky under pure
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moment m condition. When n/m—o (or -o), Eq. (15) is degenerated into EI/b=Ky/3 under
loading force F' condition. As n/m—1, Eq. (15) leads to El/b—o. The minimum EI/b=0.25Kj is

obtained for n/m—3.
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Fig. 6.18. (a) One cell of a crystalline polyethylene chain under coupling loading force fand moment m, (b) the

distribution of beam bending stiffness with n/m.

To further validate the analytical results, we carried out the united-atom MD simulation and
FE simulation in Fig. 6.18. The PE chain consists of 19 united-atom beads with a length L=2.28
nm. In the united atom approximation, the methyl groups (CH;) are represented by a single
“atom” and the effect of the hydrogen atoms on the polymer’s configuration is accounted for in
the potentials (Waheed, 2005; Shepherd, 2006; Zhao et al., 2011). The parameters of the
harmonic potentials are K,=700 Kcal/mol Az, Ko=120 Kcal/mol, b=1.53 A, 6=109.5". The LJ pair
potential (see section 6.3.1) with €=0.112 Kcal/mol and ¢=4.01 A is adopted (Waheed, 2005;
Shepherd, 2006; Zhao et al., 2011).

Fig. 6.18a compares the tensile stress-strain curves of the united-atom model with the FE
model. The Young’s moduli Yy for both models are in excellent agreement. A cross sectional
area of 17.3 A%is adopted in the FE model which is equal to the average area of one PE chain in
crystalline PE (Henry and Chen, 2008; Zhao et al., 2011; Jiang et al., 2012). The Young’s moduli
Yua=190.4 GPa and Yrs=192.6 GPa are obtained by fitting the data in the range of 10% tensile

stress-strain curves in Fig. 6.18a. Those results are in good agreement with the analytical value
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195.1 GPa of crystalline PE in our previous work (Zhao et al., 2011). The distribution of the
bending moment ratios between the united-atom and FE models for EI/b=1/3Ky and El/b=Kjy
versus bending angles are plotted in Fig. 6.18b. The bending moment ratios between those
models at EI/b=1/3Ky are always higher than 2.28, while the ratios are close to 1 when EI/b=K.

The result effectively validates Eq. (15) under tension and pure bending conditions.

The above analysis shows that the difference between the stick-spiral and the beam models is
independent of the materials because all the parameters of the beam model are obtained from the

harmonic potential.

Moreover, one has to be taken when the beam model is employed for the crystalline (or
amorphous) polymers or other biopolymers (Zhao et al., 2010; Zhao et al., 2011; Zhao et al.,
2012; Zheng and Sept, 2008), as their structures are composed of many single molecular chains
and there are only weak van der Waals and coulomb interactions (Zhao et al., 2011) between two
chains. It is possible to observe more pronounced difference between the MD and FE results in
large deformation under uniaxial tension and pure bending (see Fig. 6.18b) if one uses a same

constant £1/b=1/3Kp.

Despite of the difference between the SSM and the beam model, it is not clear yet which

model is better suitable to predict the elastic properties of carbon nanotubes and graphene sheets.

Therefore, we carried out additional MD simulation with the AIREBO potential (Plimpton,
1995), which is commonly used to obtain the mechanical properties of graphene nanoribbons

(Zhao et al., 2009a).

6.4 The comparison of the two models with molecular dynamics simulation of AIREBO

potential

We adopt the setup from section 6.3.1 but use the AIREBO potential in this section (Zhao et
al., 2009a). The total energy increments with the harmonic potentials and the AIREBO potential
under uniaxial tension and pure bending are plotted in Fig. 6.19 and Fig. 6.20, respectively.

Higher values are obtained for the harmonic potentials.
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Fig. 6.20 Total energy increment with present harmonic potentials and AIREBO potential in armchair and zigzag

graphene nanoribbons under pure bending.

Fig. 6.21 shows the elastic properties of the different models, CA, CH and CFE are the
stretching stiffness (the bending stiffness of a total nanoribbon) of the AIREBO, the harmonic
and the FE results, respectively, and DA, DH and DFE are the bending stiffness (in-plane
bending stiffness of each nanoribbon) of the AIREBO, the harmonic and the FE results,
respectively. For all the FE results, we used EI/b=0.5K0. Modeling each nanoribbon as a beam
under small deformation condition, the stretching stiffness C and bending stiffness D per unit

volume from Eq. (13) can be written as
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C=Y,=20,

tens

D =2U,

bending

/ (Vog2 ) , under uniaxial tension,

ion

/(¥,67), under pure bending,

(16)

7)

where Usension and Uhpenging are the total tension energy increment and the bending energy

increment, Vj is the initial volume, Y, is the Young’s modulus, ¢ is the tensile strain and 6 is the

bending angle of each graphene nanoribbon.
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From Eq. (16) and Eq. (17), the stiffnesses C and D for different L/W can be obtained by

fitting the data in Fig. 6.19 and Fig. 6.20, in which the data in the range of 0~6% tensile strain

and 0~10 degrees of bending angle are used in the fitting procedure. Fig. 6.21 shows that the

values of CH/CA are about 1.26~1.3 and 0.99~1.1 in different width zigzag and armchair

graphene nanoribbons. The values of CFE/CA (about 1.29~1.35 and 0.84~1.14 in zigzag and

armchair nanoribbons) are similar to those of CH/CA.

Under pure bending condition, DH/DA (from 1.18~1.24) and DFE/DA (from 1.16~1.22) are

almost identical in the finite width zigzag nanoribbons except for L/W=52 (DH/DA=1.36,

DFE/DA=1.08). All values of DH/DA and DFE/DA are very close to the values of CH/CA and

CFE/CA besides the value of DFE/DA at L/W=52 which is a little lower. In other words, the
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BBS in the zigzag nanoribbons is insensitive to different loading modes except for the ultra-

narrow nanoribbon with L/W=52. A similar phenomenon can be observed from Fig. 6.11.

For the armchair nanoribbons, the results of DH/DA (1.11~1.85) and DFE/DA (0.7~1.25) are
much higher and lower than those of CH/CA (0.99~1.1) and CFE/CA (0.84~1.14) with
increasing L/W, respectively. Hence, the SSM overestimates the values, while the beam model
underestimates the values. Therefore, we suggest to choose the average value between the SSM
and beam models in the narrow graphene nanoribbons under pure bending. Above analysis
indicates that the loading-mode dependent BBS in the armchair nanoribbons is more pronounced

than that in the zigzag nanoribbons.

6.5 Concluding remarks

We extensive studied the difference between the stick-spiral and beam models in the finite
width armchair and zigzag graphene nanoribbons and the single PE chain. Based on the total
energy equilibrium in the two models, the closed-form expressions of the BBS are derived under

uniform tension, pure shear, pure bending, loading force, coupling force and bending conditions.

By comparisons of the two models, we found that the BBS of the beam model strongly
depends on the loading modes in narrow graphene nanoribbons. Based on the MD simulations
with harmonic potentials and FE results, the BBS EI/6=0.5K6 of the beam model can be used to
describe the elastic properties well under uniaxial tension or pure shear. Under pure bending or
coupling tensile-bending modes, the BBS depends on the width and chirality of the graphene
nanoribbons. When the width of the armchair graphene sheets becomes small enough,
EI/b=1.5K0 can be used to describe the bending behavior effectively under pure bending. With
increasing width, 0.5K0<E7/b<1.5K6 and 0.375K0<EI/b should be used to model the mechanical
behavior in the armchair and the zigzag sheets, respectively. For a single PE chain, similar

phenomena can be found, in which 1/3K0<E1/b<K6 under different loading conditions.

We also found that the difference of the stick-spiral and the beam models exists and they are
independent of the materials because all parameters of the beam model are obtained from the

harmonic potentials. For the narrow graphene nanoribbons or a single PE chain, the maximum
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difference can exceed 300% in different loading modes, while the difference is completely

concealed in higher width nanoribbons.

Therefore, the beam model should be used carefully to model crystalline polymers and
biomaterials in view of van der Waals and coulomb interactions between any two chains. It is
possible to obtain more pronounced difference between the MD results with harmonic potentials
and FE results in large deformation under uniaxial tension and pure bending if one uses the same
constant EI/b=1/3K® in a single PE chain or EI/b=0.5K0 in narrow armchair graphene

nanoribbons, respectively.

When the results of the MD models with harmonic potentials and the FE calculation based on
the beam model are compared with those of the MD results with the AIREBO potential, the SSM
overestimates and the beam model underestimates the values of the armchair nanoribbons under

pure bending condition, respectively.
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Chapter 7

The tensile and shear failure behavior dependence on chain length and

temperature in amorphous polymers*
Abstract

The tensile and shear failure behavior dependence on chain length and temperature in amorphous
polymers are scrutinized using molecular dynamics simulations. A wide range chain length of
alkane is tested under tension and shear with various temperatures. We find that the broken rate
(the broken bond number to all polymer chain number ratios) under tension and shear increases
with increasing chain length and temperature. For a given chain length and temperature, the
broken rates under shear are always higher than those under tension at a same large strain. For a
given chain length, the tensile and shear stresses decrease with increasing temperature. We
propose three typical fracture mechanisms to effectively elucidate the ductile fracture response

based on the predominance of chain scission process.

7.1 Introduction

Amorphous polymers are one of the most fundamental polymer molecular shapes that have
widely been investigated by many researchers due to the important physical and chemical
properties (Boyd et al., 1994; Pant et al., 1993). Glass forming polymers (7<Tg, 7, is the glass-
transition temperature) are of great industrial importance and scientific interest. Their unique
mechanical properties arise from the connectivity and random-walk-like structure of the
constituent chains (Shepherd, 2006). At very small strains, the response is elastic. At slightly
larger strains, yielding occurs when intermolecular barriers to segmental rearrangements are
overcome. Following yield, the material may exhibit strain softening, a reduction in stress to a
level corresponding to plastic flow. At higher strains, the stress increases as the chain molecules
orient, in a process known as strain hardening. Strain hardening suppresses strain localization
(crazing, necking, shear banding) and is critical in determining material properties such as

toughness and wear resistance (Hoy et al., 2007; Hoy et al., 2008). In the other hand, the yield

The work has been published on <<13™ international conference of fracture>> in 2013.
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point of the polymers disappears after 7>T,. Recently, we have found that the chain length (CL)
and temperature have a large effect on the thermomechanical properties of linear polymers (Zhao
et al., 2010a; Zhao et al., 2010b; Zhao et al., 2011) based on united-atom (UA) and coarse-
grained (CG) molecular dynamics (MD) simulations. Since the UA and CG potentials limitations,
the effect of the CL and temperature on the failure behavior is not understood well yet.
Especially, the failure behavior under shear has been scarcely reported in previous work.
Therefore, understanding the molecular origins of macroscopic fracture behavior such as fracture

energy is a fundamental scientific challenge (Hoy et al., 2007).

In this paper, the tensile and shear failure behavior dependence on CL and temperature in
linear polymers are scrutinized using MD simulations. A wide range chain length of alkane is
tested under tension and shear with various temperatures. The fracture mechanism is proposed

based on the detailed analysis of the fracture response.
7.2 Simulations details

The bulk structure of linear polymers can be modeled using the semicrystalline lattice method
(Faulon, 2001), which utilizes the face-centered cubic (fcc) diamond structure as a template to
carbon backbones of entangled polymers. The detailed process was detailedly described in our
previous work (Kremer and Grest, 1990). The total number of beads in the initial structure is
kept constant 180000 from CL=9 to CL=1200, in which the number of chains changes
accordingly from 20000 (CL=9) to 150 (CL=1200). Since our aim does not simulate a specific
polymer, we use a bead-spring polymer model derived from the one suggested by Kremer and

Grest (1990). A finitely extendable nonlinear elastic (FENE) backbond potential is applied along

U(r):—gROZ 1{1-[%} ] (1)

where k=30 and Ry=1.5 to guarantee a certain stiffness of the bonds while avoiding high

the polymer chain

frequency modes (which would require a rather small time step for the integration) and chain
crossing (Bennemann et al., 1998). The beads interact through a truncated Lennard-Jones (LJ)

potential of the form
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where ¢ and ¢ are the characteristic energy and distance parameters that define the shape of the
energy distance curve, while r. is the cutoff distance for the potential. The LJ potential provides
a smooth transition to zero values at the cutoff distance. In this work, we adopt the reduced units
formalism and all physical quantities are expressed as multiples of m (bead mass), &, ¢ and Ay
(Boltzmann constant) while these parameters are set equal to one in our computation (Panico et
al., 2010). The bond is broken as r>1.15¢ and the corresponding interaction is shut off, while a

non-bonded LJ interaction is introduced between the two beads.

Each generated initial three-dimensional structure is annealed for 1x10° steps until the
pressure and energy of the system is stable, keeping both the temperature 7=1.3¢/k, and the
pressure P=1 (the time step dr=0.002) in the NPT ensemble controlled by the Nose-Hoover’s
thermostat (Nose, 1984). Then, the system is cooled down to be the given temperature by the
same NPT ensemble and the density of the system is monitored while cooling step-wise at an
effective rate of 1/(1x10° steps). The system is then kept at the constant temperature (the given
temperature) for 1x10° steps in the same NPT ensemble. The obtained structures are subjected to
the uniaxial tension and compression and performed to obtain stress—strain response with
different CL and temperature in the non-equilibrium MD simulations (Capaldi et al., 2004).
Periodic boundary conditions are applied in all directions. All the MD simulations have been

performed using LAMMPS software (Plimpton, 1995).
7.3 Results and discussion
7.3.1 Failure behavior under uniaxial tension

Fig. 7.1 shows the stress-strain curves with different CL for two different temperature 7=0.1
and 7=0.3. The typical process (elastic, yielding, softening and hardening) is displayed in Fig.
7.1, while the hardening process is not evident when CL<18 and the difference among the

nonlinear parts of the stress-strain curves is also not large when CL<144. The main reason is that
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the density and entanglement of short CL is lower than those of longer chain, which results in
that the bond number per unit volume in short CL is lower than those in longer CL. So the
required external work for the shorter CL is lower than that for the longer CL. That is to say, the
stiffness of the shorter CL is lower than that of longer CL. Since the density almost tends to a
constant when CL>140 (Zhao et al., 2010a), the effect is not evident in the range of CL>140. Fig.
7.2 shows bond broken rate (the number of broken bond / the number of total chains) with
different tensile strain for different CL and two temperatures 7=0.1 and 7=0.3, in which the

broke rate increases with increasing CL.
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Fig. 7.1 The tensile stress-strain curves with different chain length for two different temperatures. (a) 7=0.1; (b)

7=0.3.
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Fig. 7.2 The broken rate-strain curves with different chain length for two different temperatures. (a) 7=0.1; (b)
7=0.3.

We also find that the first broken bond is occurred at strain>3 and the stress is still hardening
with increasing strain by comparison with Fig. 7.1 and Fig. 7.2. After strain>9, the stress
decreases and the number of the total broken bonds tends to a constant. Fig. 7.3 shows the stress-
strain curves and broken rate for CL=288 with different temperature. The stress decreases and
the broken rate increases with increasing temperature for same strain. For high temperature
(7=0.5 and 0.7), the number of broken bond always increases with increasing strain even if the
strain is higher than 12. The possible reason is that the temperature is higher than the glass-
transition temperature 75=0.35 (here) when 7=0.5 and 0.7, in which the creep and high-elastic
property is more evident in the high temperature and the yield point disappears. To interpret
these MD simulations and obtain insight into the difference in fracture behavior of different CL
and temperature, we plot the atomic strain distribution in the deformed configuration of the
polymer models in Fig. 7.4 and Fig. 7.5. The ultimate fracture strain increases with increasing
temperature in Fig. 7.4, which gives a good explanation of the above analysis. In Fig. 7.5, no
void or atomic strain concentration for CL=18 can be found even at strain=12, which validates
no broken bond in Fig. 7.2a. The ultimate fracture strain almost increases with increasing CL

when CL>72, which is also validated from Fig. 7.2a.
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Fig. 7.3 The tensile stress-strain and broken rate-strain curves with different temperature for CL=288. (a) Stress-
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Three typical mechanisms of the fracture behavior under uniaxial tension are plotted in Fig. 7.6.
Fig. 7.6a represents the covalent bond broken phenomenon, which requires very high external
loading (about 15000 MPa for linear polymers). Fig. 7.6b represents the polymer chain slipping
with each other (about 5000 MPa). Fig. 7.6¢ represents the separation between any two polymer
chains, which is mainly dominated by van der Waals interactions (about 100 MPa). For short CL,
the fracture behavior is mainly determined by the chain slipping and separation. For longer CL,
the fracture behavior is dominated by the competition between the chain slipping and bond
broken mechanisms, in which the bond broken mechanism increases with increasing CL since
the entanglement density increases with increasing CL. For very long CL, the bond broken
mechanism mainly dominates the fracture behavior. The three mechanisms provide a good
explanation of the MD results from Fig. 7.1 to Fig. 7.5.
(a)
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Fig. 7.6 Three typical mechanisms of microstructural evolution under uniaxial tension in linear polymers.

7.3.2 Failure behavior under shear

Fig. 7.7 shows the shear stress-strain curves with different CL for two different temperatures
7=0.1 and 7=0.3. The typical process (elastic, yielding, softening and hardening) is also
displayed in Fig. 7.7. Unlike tension, the hardening process is also evident even for very short
CL. The stress strength (the peak point of the stress) and strain strength (the strain at the stress
strength point) both increase with increasing CL when CL<144. The possible reason is that the
polymer chains mainly keep the slipping process even in the hardening stage under shear, while

the polymer chains are mainly stretching process after elastic stage under tension.
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Fig. 7.7 The shear stress-strain curves with different chain length for two different temperatures. (a) 7=0.1; (b)
7=0.3.

Fig. 7.8 shows the corresponding broken rate with different CL for two different temperatures
of Fig. 7.7. Similar to tension, the shear broken rate also increases with increasing CL. Unlike
tension, the broke rate always increases with increasing shear strain even strain>12. Fig. 7.9
shows the ratio of tensile broken rate to shear broken rate with different strain. The ratio is
always smaller than 1. In other words, for a given chain length and temperature, the broken rates
under shear are always higher than those under tension for a same large strain. The possible
reason is that the slipping and separation process mainly dominate the forward stage of the
fracture behavior under shear, while the coupling slipping and broken mechanisms determine the
fracture behavior under uniaxial tension. The r.=1.5 of LJ potential is higher than the broken
distance of ryroken=1.15 (see section 7.2), which leads to the higher ultimate fracture strain (that is,

the structure is broken as two parts) under shear.
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Fig. 7.8 The shear broken rate-strain curves with different chain length for two different temperature. (a) 7=0.1; (b)
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Fig. 7.9 The tensile broken rate/shear broken rate with different chain length for different temperature. (a) 7=0.1;
(b) 7=0.3.
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Shear CL=144

Fig. 7.11 The atomic strain (along the shear direction) distribution for CL=144 at different temperature under shear

strain=58%.

Fig. 7.10 shows the shear stress-strain curves and broken rate for CL=144 with different
temperature. The shear stress decreases with increasing temperature for same strain. For high
temperature (7=0.5 and 0.7), no evident yield point can be also seen in Fig. 7.10a, which is same
with tension. The difference of shear broken rate for different temperature is not large as 7<0.7.
To further understand the response, we plot the atomic strain (along the shear direction)

distribution under shear strain (58%) for different temperatures and CL in the deformed
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configuration of the polymer models in Fig. 7.11 and Fig. 7.12. For CL=144 under same shear
strain, the difference of the atomic strain distribution with different temperature is not evident in
Fig. 7.11. For 7=0.1, the atomic strain concentration increases with increasing CL in Fig. 7.12.
The possible reason is that more entanglements are in large CL, which leads to the atomic stress

concentration at these positions.

Shear 7=0.1

Fig. 7.12 The atomic strain (along the shear direction) distribution for different CL under shear strain=58% at 7=0.1.

From above analysis, the ultimate fracture strain increases with increasing temperature under
uniaxial tension. Under uniaxial tension, the fracture behavior is mainly determined by the chain
slipping and separation for short CL. For longer CL, the fracture behavior is dominated by the
competition between the chain slipping and bond broken mechanisms, in which the bond broken
mechanism increases with increasing CL since the entanglement density increases with
increasing CL. For very long CL, the bond broken mechanism mainly dominates the fracture
behavior. Under shear, the atomic strain concentration increases with increasing CL for a given
temperature. The shear broken rate is always higher than that under tension for same CL in the
same large strain. The possible reason is that the slipping and separation process mainly
dominate the forward stage of the fracture behavior under shear, while the coupling slipping and

broken mechanisms determine the fracture behavior under uniaxial tension. The r.=1.5 of LJ
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potential is higher than the broken distance of rpoken=1.15 (see section 7.2), which leads to the

higher ultimate fracture strain (that is, the structure is broken as two parts) under shear.
7.4 Concluding remarks

In summary, the tensile and shear failure behavior dependence on chain length and
temperature in linear polymers are investigated using molecular dynamics simulations. A wide
range chain length of alkane is tested under tension and shear with various temperatures. We find
that the broken rate (the broken bond number to all polymer chain number ratios) under tension
and shear increases with increasing chain length and temperature. For a given chain length and
temperature, the broken rates under shear are always higher than those under tension at a same
large strain. For a given chain length, the tensile and shear stresses decrease with increasing
temperature. Under uniaxial tension, the fracture behavior is mainly determined by the chain
slipping and separation for short CL. For longer CL, the fracture behavior is dominated by the
competition between the chain slipping and bond broken mechanisms, in which the bond broken
mechanism increases with increasing CL. For very long CL, the bond broken mechanism mainly
dominates the fracture behavior. The slipping and separation process mainly dominate the
forward stage of the fracture behavior under shear. The r.=1.5 of LJ potential is higher than
re=1.15 bond broken, which leads to the higher ultimate fracture strain under shear than that

under uniaxial tension.
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Chapter 8

Effects of the dispersion of polymer wrapped two neighbouring single walled

carbon nanotubes (SWNTs) on nanoengineering load transfer”

Abstract

The influence of polymer wrapped two neighbouring single-walled nanotubes' (SWNTs)
dispersion on their load transfer is investigated by molecular dynamics (MD) simulations. The
influence of the SWNTs' position, the polymer chain length and the temperature on the
interaction force between the two neighbouring SWNTs is systematically studied. There are four
main findings from our simulations: (1) The dispersion angle dominates the amplitude and the
interaction force evolution with or without polymer during the pulling process of two SWNTs. (2)
The chain length doesn't affect the two SWNTSs' interaction force within a short separation
distance, the so called "Force enhancing point". The enhanced load effect of the polymer takes
place after the load displacement goes across this point. (3) The temperature has a minor
influence on the maximum pull force, while the increased temperature greatly decreases the
pullout energy. (4) Based on the detailed analysis of the separation process, the self-repairing
function of the system is found. The present results provide a guidance for understanding the

load transfer of SWNT dispersion in phononic devices.
8.1 Introduction

After the discovery of carbon nanotubes (CNTs) by lijima in 1991 (Iijima, 1991) almost two
decades ago, the CNT based polymer nanocomposites have been received great interest due to
the enhancement in mechanical (Sen et al., 2004), thermal (Clancy and Gates, 2006), optical
(Kymakis and Amaratunga, 2002), electrical and magnetic properties (Sandler et al., 2003) with
respect to neat polymer (Komarneni, 1992). They are used in the aerospace and automotive
industries (Breuer and Sundararaj, 2004), as sensors (Kasumov et al., 1999), actuators

(Baughman, 1999) and electrochemical capacitors in the electronics industry (Niu et al., 1997).

The work was done by the cooperation with Dr. Yancheng Zhang and published on <<Composite part B:
Engineering>> 45, 1714-1721 (2013), in which the most part of the work was done by Dr. Yancheng Zhang
based on my much important guidance.
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Recently, increased interest has also been received for the phononic devices, in which heat flow
is manipulated and controlled in nanostructures (Chang et al., 2007; Chang et al., 2006), wherein
the carbon nanostructures are excellent candidates for multi-functional thermal management
network. However, the weak van der Waals interaction cannot reliably hold the nanotubes
together under thermal fluctuations or due to elastic deformation of the material, leading to
inferior mechanical stability. One experimentally feasible approach is to wrap the carbon
nanotube junctions using polymer chains has been reported in literature (Dalton et al., 2004;
Zhang et al., 2008). Nevertheless, some significant challenges remain in the design and
understanding of the nanostructure, such as the dispersion of the CNTs within the considered
polymer matrix (Zheng et al., 2008). Unfortunately, the insufficient dispersability of single-
walled carbon nanotubes (SWNTSs) occurs in most common solvents due to the van der Waals
attraction among tubes. Locally, carbon nanotubes tends to bind and form energetically stable
bundles (Dresselhaus et al., 2000), which makes it difficult to understand and explore their
physical and chemical properties. Therefore, the phenomenon implies many limitations for their
practical applications (Shin et al., 2009). Up to now, dispersion of CNTs in polymer (Shin et al.,
2009; Zhao et al., 2009; Qian et al., 2000) and metal alloy media (Esawi et al, 2007) have been
reported. These studies mainly focus on experiments and the global effect on the mechanical
behavior of the nanocomposites. More detailed information about the interaction and separation
between CNTs is needed. Analytical interface models have been developed for both opening and

sliding modes, while both CNT and the polymer were assumed to be rigid (Jiang et al., 2006).

Molecular dynamics (MD) simulations have been performed to study the interfacial
mechanical behavior between CNT/polymer (Awasthi et al., 2009): traction-displacement
behavior of graphene-polyethylene interfaces for both opening and sliding separation mode, and
the influence of constraint conditions were discussed. The influence of the curvature of the CNT
wall was ignored. Kulmi and Basu (Kulmi and Basu, 2006) as well as Adnan and Sun (Adnan
and Sun, 2008) investigated the competition between adhesive failure along the interface and
cohesive failure within the polymer. Both molecular mechanics (MM) and MD simulations were
conducted to explore the interfacial binding characteristics between SWNTs and polymer (Zheng
et al., 2008; Gou et al., 2004). However, current models developed for CNT-polymer interfaces

in the bulk can not be directly applied to a nano scale interface, specially to interfaces between
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similar materials bonded through weak interactions (i.e., van derWaals forces) and can therefore
not be used to study the performance of nano-structured junctions between SWNTs. Xu and
Buehler (Xu and Buehler, 2009) have studied the two SWNTs interaction with and without
polymer, which shows the wrapped polymer chain can enhance the binding range compared to
the bare junction (pure SWNTSs) for two parallel SWNTs. The main aim of this research is to
study the dispersion effects on the load transfer of two pristine SWNTs without and with low
density polymer wrapping in the absence of heat transfer. The paper is structure as follows: first
we will introduce the details of the MD simulation, which includes the force field and
arrangements of the polymer and SWNTs. Then we will explain the equilibrium and separation
process of the polymer wrapped two single SWNTs. After that we give parametric study for
different relative dispersion angels, polymer chain lengths and temperature. The paper ends with

the discussion of results as well as implications of the future work.
8.2 Details of the simulation

&.2.1 Molecular model

In this research, MD simulations were conducted to extract the interface behavior between two
SWNT with and without polymer wrapping. All MD simulations were performed with
LAMMPS (Plimpton, 1995). The polymer matrix consists of PE is used in a variety of
engineering applications (Jiang et al., 2012). To reduce the computational cost, the united atom
(UA) approximation is utilized (Zhao et al., 2011), in which the methyl groups are represented
by a single atom or unit (i.e., the CH2 monomer). The effect of the hydrogen atoms on the
polymer configuration is accounted for in the present potentials, while the mass is included in the
mass of the united atom. In this research, a total number of 600 UA monomers is kept constant
for three different chain lengths with 20, 40 and 60 monomers respectively. Two SWNTs
(armchair (5,5) ) with a diameter of 6.78 A and lengths of 59.03 A are selected for simulations of
SWNT-PE composites. The unsaturated boundary effect was avoided by adding hydrogen atoms
at the end of the SWNTs.

&.2.2 Force field

8.2.2.1 Polymer
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The functional form and the parameters of the force field are provided in Table 8.1 (Capaldi et
al, 2004). Note that the non-bonded interactions are truncated at a distance of 10 A (Capaldi et al,
2004).

Table 8.1 Function form of force field and potential parameters used for PE MD calculation (Capaldi et al, 2004).

Type 9f Form Parameters
potential

Bond E:—;Ig(rl;—ia)z ky=2000 kJ/mol A% r=1.53 A

k=510 kJ/mol; #,=110°
Angle E:%k{)(cos(e)—cos(é?o))2 ’ ’
1 A=17.477, A,=-37.594, 43=6.493, A,=58.499 kcal/mol
Dihedral E==3 4,cos"(¢) 1 ’ 3 '
n=0,3
12 6 .
Non-bonded E=4¢ o) (o £=0.468 kcal/mol; a=4.0.1 A; r=10 A (truncation
r r radius)
8.2.2.2 SWNT

The interatomic (Carbon and hydrogen) interactions in carbon nanotubes are described with the
adaptive intermolecular reactive empirical bond-order (AIREBO) (Plimpton, 1995; Brenner et al.,
2002) potential function. This potential allows for covalent bond breaking and creation with

associated changes in atomic hybridization within a classical potential.
8.2.2.3 Interfacial binding energy between polymer and SWNTs

The Lennard-Jones Potential V(r)= 4e((o/r)'*—(ole)°) is adopted for characterizing the
interatomic interaction between the polymer monomers and the SWNT which include both
carbon and hydrogen. The mixing rule form parameters is performed for polymer monomers and

hydrogen (CH2(UA)-H) as described in Table 8.2.
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Table 8.2 Function form of the force field and the potential parameters used for the interaction between PE and

SWNTS.
Type of potential e(kJ/mol) o(A)
0.461 ]
CH2(UA)-C J=2000 kJ/mol A% r=1.53 A [32]
0.468 k=510 kJ/mol; 6,=110° [30]
CH2(UA)-CH2(UA)
0.126 A=17.477, 4,=-37.594,
H-H 45=6.493, 4,=58.499 kcal/mol [33]
_ 1/2
CH2(UA)-H 0.243(=(ecma™en) ™) 3.215(=(0am+0w)/2) [34]

8.3 Equilibrium process

After the polyethylene chains are introduced close to the interface, the equilibrium MD
simulations are initially performed at 500 K with the NV'T ensemble of 8% 10° steps (4t = 0.5fs).
The next relaxation cools the structure down to the desired temperature at a cooling rate of 0.8
K/ps steps (Capaldi et al, 2004) followed by further relaxation of 8x10° at the desired
temperature. The following pulling separation is also performed under the NVT ensemble. Two
typical configurations at equilibrium with the dispersion angle of 0 and 90 degrees are shown in
Fig.1 for the chain length of 20 monomers. The polymer chains prefer to wrap around the SWNT

surface, while they don't enter the interaction zone for both dispersion angles.

P SR .“Wi

g s o

"":'-.‘ﬂl“{-";éf

FAV

Fig. 8.1 Equilibrated double SWNTs with polymer at 300 K.
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Note that various initial configurations of the polymer chains such as vertical, perpendicular,
and random orientations are used in the simulation. The results show that the final configuration

of the polymer chains at the carbon nanotube junction does not depend on the initial pattern.
8.4 Separation process

The separation process is performed between SWNTs, with or without polymer wrapping,
through steered molecular dynamics (SMD) (Wei et al., 2002; Jorgensen et al., 1997;
Bandyopadhyaya et al., 2011) for mechanically separating the interface, which permits one to
efficiently extract equilibrium properties (mean force and the potentials of the mean force built in
LAMMPS) from nonequilibrium processes (such as SMD simulations). One SWNT is pulled
along the direction perpendicular to the interface by the virtual spring with the constant velocities
of 0.001nm/ps and 0.0001nm/ps (Xu and Buehler, 2009; Park and Schulten, 2004), while the
center of mass of the other SWNT is constrained by a spring to its original position, as presented

in Fig. 8.1.

===0001 nmips
0001 nmips

30720 monomers PE/SWIT systemn

Froce (nh)

iy 1 I 1

Separation (nm)
Fig. 8.2 Pulling velocity optimization for pulling double SWNTs at 300 K.

The results show that the pulling velocity of 0.00lnm/ps is able to capture all the
characteristics of the force evolution for the pulling process (Fig. 8.2), so this velocity

(0.001nm/ps) is adopted in the following MD simulations. The elastic constant for the spring
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between the constant tether point and the mass center of the SWNT is k = 1.6kN/m (Xu and
Buehler, 2009). The force applied to the mass center of the SWNT by the virtual spring is:

F(t) = kspring (xfpring (t) =X put (t)) ’ .

where yspring and ypun represent the spring and pulled group positions, respectively. During the
pulling process, the integral operation over the pulling force in direction of the spring is recorded

and then used to compute the PMF by averaging over multiple independent trajectories along the

same pulling path [35].
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Fig. 8.3 Separation evolution for double SWNTs at 300 K.

The separation force evolutions of the bare junction (pure binding of two SWNTs) and 30 PE
molecules of chain length with 20 monomers are illustrated in Fig. 8.3 for zero dispersion angle.
In addition, the current configuration during the junction separation process of the wrapped
polymer is also given in Fig. 8.3. Multi-peaks and valleys appear in the force-separation curve
for the wrapped polymer chains. For two pure SWNTs, the force-separation curve exhibits only

one maximum peak. However, the wrapped junction presents a much longer binding range than
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the bare junction, while the "force enhancing point" locates at 0.38 nm (the interaction point after
the first valley). Below this value, enhanced binding effect is not observed, which means that the
substantial van der Waals attraction among tubes dominate the separation within a certain
distance. Actually, the initial configuration shows a stronger van der Waals attraction force
between SWNTs compared to the value among polymer and SWNTs, as polymer can not enter
the interaction zone without using mechano-chemical driving forces at the primary stage pulling.
The stronger attraction force between SWNTs continues until the polymer enters the interaction
zone (position of "valley 1") with the increased separation distance. With the further increased
separation, one close circle forms for the position of "peak 2", and double close circles appear at
"valley 2". For the continuing separation, the two formed close circles start to detach, which will
lead to the final detachment of the polymer wrapped SWNTs. We also observe self-repairing
from three snapshots in the position of the initial, valley 1 and valley 2 configurations: one close
circle splits into two close circles to obtain the stable state. Moreover, the configuration of the
formed two circles is the last chance for self-repairing. Even the interaction strength is relatively
low. The polymer chain will start to completely separate once the distance passes the position of

peak 3.
8.5 Parametric study

8.5.1 CNT dispersion effect

Table 8.3 Dispersion angle influence on the interaction of neighbouring SWNTs.

Chain length
Cases Temperature (K) (monomers) Dispersion angle (degree)
1 300 bare junction 0-90, separated by 15
2 300 20 0-90, separated by 15

During the fabricating process without using mechano-chemical driving forces, the CNTs in
the polymer matrix tends to locate at the position where the energy is minimized. Usually, the

CNTs locate at the balance position with the relative distance wrapped with polymer chain.

To understand the dispersion angle effect on the SWNT interaction in nanocomposite,

simulations were performed for a chain length of 20 monomers at room temperature 300K
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through 7 groups orientation angle, varying from 0 to 90 degrees as presented in Table 8.3. For
the bare junction of two SWNTs, the pulling forces and energies are are shown in Figs. 8.4a and
8.4b respectively. The relative dispersion angle greatly affects the load transfer of the bare
junction of 2 SWNTs, as shown in Figs. 8.4a, 8.4b. Angles below 15 degrees provide larger
forces and energies. There is almost no difference in these values for dispersion angles bigger
than 45 degree. This observation holds for the bare junction as well as for the PE wrapped
SWNTs. With the polymer chain, the interaction binding is enhanced for all the dispersion angles
as presented for the pull energy evolution in Fig. 8.4d. The maximum value decrease for angles 0,
15 and 30 degrees (Fig. 8.4c) compared to the bare interaction in Fig. 8.4a, as the polymer can
enter the increased distance between two SWNTs during the pulling operation, which contributes
more repulsive force rather than attraction force. Due to the negative force at "valley 1" and
"valley 2" (Fig. 8.4c), the corresponding valleys are found in the pull energy evolution in Fig.
8.4d. On the contrary, for the increased dispersion angles from 45 to 90 degrees, more polymer
can wrap around the interaction surface at the initial configuration, which contribute more
attractive force. Consequently, the maximum forces are increased compared to the bare SWNT

pair.
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Fig. 8.4 Traction process for different dispersion angles at 300 K

The later enhanced force vibrations are above zero, which leads to a smoother pull energy

evolution when the dispersion angles are larger than 30 degrees.
8.5.2 Chain length dependence

As described in the literature (Zhao et al., 2010; Hossain et al., 2010), the chain length of
amorphous polyethylene greatly affects the mechanical behavior during the pull process. For the
SWNT based nanocomposite, different PE chains with 20, 40 and 60 UA monomers are studied
(see Table 8.4). At a relatively low polymer chain density, the polyethylene UA monomers tend
to align at the groove between SWNTs.
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Table 8.4 Chain length influence on the interaction of polymer wrapped SWNTs.

Chain length
Cases Temperature (K) (monomers) Dispersion angle (degree)
1 300 20/40/60 0
2 300 20/40/60 90
4 :
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. = = -40 monomers . Monamers
aft i 40 monomers
B0 monamers Y AR G0 monamers
1 Bare junction 0B o Bare junction ||
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Fig. 8.5 Traction process with different chain lengths at temperature 300 K.

Two typical dispersion angles of 0 and 90 degrees for different chain length are presented, as
shown in Fig. 8.5. For the cases of zero dispersion angles, it is found that there is no difference
for the three chain lengths within the short separation distance, which means that the no-bond
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van der Waals force dominates the attraction of the two SWNTs within the same number of
polymer monomers in the six SWNT/polymer systems. For the further separation, the superiority
of the long chain appears and the binding force increases with increasing chain length. The same
phenomenon is observed the 90 degree angle. Hence, the chain length affects the pull out
mechanical behavior slightly within a certain short distance corresponding to the relative position
of two SWNTs, while the long chain polymers enhance the interaction binding once the distance
of two SWNTs exceeds the critical value. The pullout energy for the zero dispersion angle is
larger compared to the pullout energy of 90 degrees because of the larger interaction area, while
more oscillation is observed in the cases of zero angle. The pulling energy distribution for all the
dispersion angles for a chain length of 40 monomers is given in Fig. 8.5d. The pull energy for the
other dispersion angle is between the cases of 0 and 90 degrees. The chain length doesn't change
the trends of the pull energy evolution, compared to the chain length of 40 monomers as shown

in Fig. 8.4d. Similar energy distributions are found for a chain length of 60 monomers.
8.5.3. Temperature influence

The temperature is one of the main factors which determine both mechanical and chemical
properties of the CNT polymer composite, especially for the adhesion and reinforcement (Wei,
2006). In this section, the influence of the temperature on the interface strength is studied for

different temperature with various chain lengths and dispersion angles, see Table 8.5.

Table 8.5 Temperature influence on the interaction of polymer wrapped SWNTs.

Chain length
Cases Temperature (K) (monomers) Dispersion angle (degree)
1 100/200/300 20 0
2 100/200/300 40 0
3 100/200/300 60 0
4 100/200/300 20 90
5 100/200/300 40 90
6 100/200/300 60 90
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Fig. 8.6 Traction process with different temperature at the dispersion angle of 0 degree.

As shown in Fig. 8.6, for a dispersion angle of 0 degree, the temperature has a minor effect on
the maximum pull force. This observation holds independent of the chain length. The highest
value of the minimum pull force (the first valley point) is obtained for a temperature of 100 K
due to the inactive movement of the polymer monomers as less monomers can enter the
interaction zone during the pulling process. The pull strength is less sensitive with respect to
temperature and chain length, which are mainly determined by the interaction between two bare
SWNTs. The polymer chains enhance the binding junction for the further separation when the
distance is larger than the position of the minimum pulling force. The pull energy distribution
clearly shows that the final separation is hard to be activated at low temperature, and the process
is more difficult for the increased chain length as shown in Figs. 8.6e, 8.6f. Note that the energy
curves almost overlap (the first half of curve) at chain length of 40 monomers for the low
temperature (100 K and 200 K), this is maybe due to the similar initial configurations for the two

casces.
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Fig. 8.7 Traction process with different temperature at the dispersion angle of 90 degrees.

Fig. 8.7 shows the final pullout energy for different temperature at the orientation angle of 90
degrees. As the interaction area is small and the interaction zone is immersed in the polymer
matrix, the separation process requires less energy for the increased temperature with respect to
three chains. Besides the slope of the decreased pullout energy is larger for the later part (range
from 200 K to 300 K) compared to the former part (range from 100 K to 200 K), especially for
the long chain polymer. By adjusting the dispersion of the SWNTSs, we can obtain the controlled

mechanical behavior with various chain length and temperature.

8.6 Conclusion

In this paper, the dispersion of polymer wrapped two single-walled nanotubes (SWNTs) on
their load transfer was systematically investigated by molecular dynamics (MD) simulations. The
separation process was analyzed by the pulling evolution with corresponding configuration. It is
found that the polymer wrapped junction always presents a much longer binding range than the
bare junction of SWNTs. Besides the multi-peaks and valleys are found in the force-separation
curve for the polymer wrapped SWNTs. The valley means that the repulsive force dominates the
interaction of the two SWNT, while the peak implies that the attractive force is dominant for the
two SWNTs interacting, which presents the abilities of the wrapped structure to prevent the
separation of two SWNTs, and the last peak is the final chance for the reinforcing effect

compared to the bare junction of the SWNTs. It is also observed that the self-repairing function
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can be obtained by splitting one close circle to two close circles in order to arrive at the other
stable configuration, which actually leads to the phenomena of the multi-peaks and valleys. The
self-repairing function is useful for designing phononic devices and synthesizing functional

material with simple polymer and pristine SWNT.

The relative dispersion angle greatly affects the load transfer. The dispersion angles of 0 and
15 degrees give the lager pulling forces and energies, while there are almost no difference for
these values when the dispersion angle exceeds 45 degrees. They are mainly determined by the
interactionfarea, without or with polymer chains. Furthermore, a smooth pulling energy
evolution is found when the dispersion angles are larger than 30 degrees. The chain length
affects the pullout mechanical behavior slightly within a certain short separation distance
corresponding to the relative position of two SWNTs, while the long chain polymers enhances
the interaction binding once the distance of two SWNTs exceeds the critical value. In addition,
the chain length doesn't change the trends of the pull energy evolution varying with dispersion

angles of two SWNTs.

The temperature has a minor influence on the maximum pull force, while the increased
temperature greatly decreases the pullout energy as the polymer deformation is easily activated
at high temperature, especially for the long chain polymer. The future work will focus on the
heat transfer performance of the polymer wrapped SWNTs with various SWNT dispersion

angles and chain lengths of polymer under different temperature.
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Chapter 9

Conclusions and Further work

9.1 Concluding remarks

In this thesis, the explicit solutions for the cohesive energy between carbon nanotubes (CNTs),
graphene and substrates are obtained through continuum modeling of the van der Waals
interaction between them. The dependence of the cohesive energy on their size, spacing and
crossing angles is analyzed. The equilibrium distances between the nanotubes, graphene and
substrates with minimum cohesive energy are also provided explicitly. Checking against full
atom molecular dynamics (MD) calculations and available experimental results shows that the

continuum solution has high accuracy.

Based on our analytical results of cohesive energy between two single-walled CNTs, the two
kinds of coarse-grained (CG) non-bonded models between different CG beads are systematically
analyzed. Checking against full atom MD calculations and our analytical results, we find that the
first non-bonded CG model is only effective under small deformation since only the minimum
potential energy at the equilibrium distance between two CNTs is fitted. However, the second
non-bonded CG model has high accuracy under large formation when the equilibrium bond
length (EBL) of two CG beads is not more than 5 A, in which the accuracy strongly depends on
the EBL and sharply decreases with increasing EBL (>5 A). The explicit expressions of the CG

stretching, bending and torsion potentials are obtained by the stick-spiral and the beam models.

Furthermore, the binding energy between two parallel (and two crossing) single-walled (and
multi-walled) CNTs is obtained by continuum modeling of the van der Waals interaction
between them. The dependence of the binding energy on their diameters, number of walls and
crossing angles is systematically analyzed. The critical length for the mechanical stability and
adhesion of the CNTs has been determined by the function of Eif;, # and y, where Eil;, h and y are
the CNTs bending stiffness, distance and binding energy between them.

For crystalline polymers, an analytical molecular mechanics model is developed to obtain the

size-dependent elastic properties of crystalline polyethylene. An effective “stick-spiral” model is
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adopted in the polymer chain. Explicit equations are derived from the Lennard-Jones potential
function for the van der Waals force between any two polymer chains. By using the derived
formulas, the nine size-dependent elastic constants are investigated systematically. The present
analytical results are in reasonable agreement with those from present united-atom MD

simulations.

In particular, we show that the two molecular mechanics models, the stick-spiral and the beam
models, predict considerably different mechanical properties of materials based on energy
equivalence. The difference between the two models is independent of the materials since all
parameters of the beam model are obtained from the harmonic potentials. We demonstrate this
difference for finite width graphene nanoribbons and a single polyethylene chain comparing
results of the MD simulations with harmonic potentials and the finite element method with the
beam model. We also find that the difference strongly depends on the loading modes, chirality
and width of the graphene nanoribbons, and it increases with decreasing width of the
nanoribbons under pure bending condition. The maximum difference of the predicted mechanical
properties using the two models can exceed 300% in different loading modes. Comparing the
two models with the MD results of AIREBO potential, we find that the stick-spiral model
overestimates and the beam model underestimates the mechanical properties in narrow armchair

graphene nanoribbons under pure bending condition.

For amorphous polymers, the tensile and shear failure behavior dependence on chain length
and temperature in amorphous polymers are scrutinized using molecular dynamics simulations.
A wide range chain length of alkane is tested under tension and shear with various temperatures.
We find that the broken rate (the broken bond number to all polymer chain number ratios) under
tension and shear increases with increasing chain length and temperature. For a given chain
length and temperature, the broken rates under shear are always higher than those under tension
at a same large strain. For a given chain length, the tensile and shear stresses decrease with
increasing temperature. We propose three typical fracture mechanisms to effectively elucidate

the ductile fracture response based on the predominance of chain scission process.

Finally, the influence of polymer wrapped two neighbouring single-walled nanotubes'

(SWNTs) dispersion on their load transfer is investigated by MD simulations. The influence of
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the SWNTs' position, the polymer chain length and the temperature on the interaction force
between the two neighbouring SWNTs are systematically studied. There are four main findings
from our simulations: (1) The dispersion angle dominates the amplitude and the interaction force
evolution with or without polymer during the pulling process of two SWNTs. (2) The chain
length doesn't affect the two SWNTSs' interaction force within a short separation distance, the so
called "Force enhancing point". The enhanced load effect of the polymer takes place after the
load displacement goes across this point. (3) The temperature has a minor influence on the
maximum pull force, while the increased temperature greatly decreases the pullout energy. (4)
Based on the detailed analysis of the separation process, the self-repairing function of the system

1s found.
9.2 Recommendations for future work

The CG potentials for multi-walled carbon nanotubes (MWCNTs) will be done soon. The
mechanical properties and thermal conductivity of CNT networks dependence on CNT length,
crosslink density and temperature will be done by MD simulations in the recent future. The
mechanical properties and failure behavior as well as the thermal conductivity of amorphous
polymers dependence on chain length and crosslink density will be done by MD simulations in
the future. The mechanical and thermal properties of CNT and graphene based polymer
nanocomposites could be done in the future. The quantitative fracture behavior of amorphous
polymers could be accomplished by full atom MD simulations in the future, which is very
important to the subsequent finite element method modeling the macroscale fracture behavior of

the polymers.

Furthermore, the mechanical and physical functional CNTs with polymers are a potential
study field in the future. The mechanical and physical CNT reinforced polymers composites

could be also done in the future since they are important potential applications.
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