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Abstract

In recent years increasingly consideration has been given to the lifetime extension
of existing structures. This is based on the fact that a growing percentage of civil in-
frastructure as well as buildings is threatened by obsolescence and that due to simple
monetary reasons this can no longer be countered by simply re-building everything
anew. Hence maintenance interventions are required which allow partial or com-
plete structural rehabilitation. However, maintenance interventions have to be eco-
nomically reasonable, that is, maintenance expenditures have to be outweighed by
expected future benefits. Is this not the case, then indeed the structure is obsolete—
at least in its current functional, economic, technical, or social configuration—and
innovative alternatives have to be evaluated.

An optimization formulation for planning maintenance interventions based on
cost-benefit criteria is proposed herein. The underlying formulation is as follows:
(a) between maintenance interventions structural deterioration is described as a ran-
dom process; (b) maintenance interventions can take place anytime throughout life-
time and comprise the rehabilitation of all deterioration states above a certain mini-
mum level; and (c) maintenance interventions are optimized by taking into account
all expected life-cycle costs (construction, failure, inspection and state-dependent
repair costs) as well as state- or time-dependent benefit rates. The optimization
is performed by an evolutionary algorithm. The proposed approach also allows to
determine optimal lifetimes and acceptable failure rates.

Numerical examples demonstrate the importance of defining benefit rates ex-
plicitly. It is shown, that the optimal solution to maintenance interventions requires
to take action before reaching the acceptable failure rate or the zero expected net
benefit rate level. Deferring decisions with respect to maintenance not only results,
in general, in higher losses, but also results in overly hazardous structures.





Kurzfassung

Die Verlängerung der Nutzungsdauer bestehender Tragwerke hat in den letzten Jah-
ren zunehmend an Bedeutung gewonnen. Dies liegt in der Tatsache begründet, dass
ein nicht unerheblicher Anteil der Infrastruktur wie auch an Gebäuden durch Über-
alterung bedroht ist, und dass es aus rein wirtschaftlichen Gründen nicht länger
möglich ist diesen Zustand durch Neubau zu entgegnen. Es sind also Instand-
haltungsstrategien notwendig, die eine teilweise oder vollständige Revitalisierung
von Tragwerken erlauben. Allerdings müssen diese Instandhaltungsstrategien auch
einen volkswirtschaftlichen Sinn haben, das heißt die entsprechenden Aufwendun-
gen müssen durch einen zukünftig zu erwartenden Nutzen aufgewogen werden. Ist
dies nicht der Fall, so sind die Tragwerke in der Tat veraltet—zumindest in ihrer
momentanen funktionellen, wirtschaftlichen, technischen oder gesellschaftlichen
Bedeutung—und Alternativvorschläge müssen untersucht werden.

In dieser Arbeit wird die Planung von Instandhaltungsmaßnahmen als Optimie-
rungsaufgabe unter Verwendung von Kosten-Nutzen-Kriterien formuliert. Die zu-
grunde liegende Beschreibung ist wie folgt: (a) die Abnahme der Tragfähigkeit zwi-
schen den Instandhaltungsmaßnahmen wird als Zufallsprozess beschrieben; (b) die
Instandhaltungsmaßnahmen können jederzeit während der Nutzungsdauer stattfin-
den und bestehen in der Reparatur von Schadenszuständen eines gewissen Nive-
aus; (c) die Instandhaltungsmaßnahmen werden hinsichtlich aller Lebensdauerko-
sten (Errichtungs-, Versagens-, Inspektions- und schadensabhängiger Reparaturko-
sten) sowie des zustands- und zeitabhängigen Nutzens optimiert. Die Optimierung
erfolgt mit Hilfe eines evolutionären Algorithmus. Die vorgeschlagene Formulie-
rung erlaubt darüber hinaus auch die Bestimmung von optimalen Nutzungsdauern
und zulässigen Versagensraten.

Die Rechenbeispiele weisen die Bedeutung einer expliziten Ausweisung des
Nutzens aus. Es wird gezeigt, dass eine optimale Strategie für Instandhaltungs-
maßnahmen ein aktiv werden vor Erreichen zulässiger Versagensraten oder dem
Verschwinden des Nettonutzens je Zeiteinheit erfordert. Das Aufschieben von Ent-
scheidungen bezüglich der Durchführung von Instandhaltungsmaßnahmen zieht in
der Regel nicht nur höhere Folgekosten nach sich, sondern resultiert auch in Trag-
werke mit unzulässig hohem Gefährdungspotential.
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Basic Notation

a transition rate, alternative (Ch. 3)
A transition rate matrix
A set of feasible acts
b, B benefit
c cost
C cost, damage growth parameter (Ch. 5)
C rehabilitation matrix
d damage levels (Ch. 5)
D event of detection, damage (Ch. 5)
D inspection matrix
e equality constraint
E elastic modulus
E[·] expected value
f probability density function, fitness function (Ch. 4)
F cumulative distribution function, failure event
g objective function, net present benefit function
G set of design vectors
h failure rate, inequality constraint (Ch. 2), rate function (Ch. 5)
H transformation matrix
i index
I inspection costs
I identity matrix
j index
k index
l loss, length (Ch. 5), index
L loss, failure cost
L set of design vectors
m maintenance cost, number of states, renewal density (Ch. 2)
M set of design vectors
n number of maintenance interventions, index
N number of events, number of selections
N nilpotent matrix



xiv Basic Notation

p probability, coefficient (Ch. 5)
p probability vector
P transition matrix
Pr(·), Pr(·|·) probability, conditional probability
PV[·] present value
q coefficient, index
Q rehabilitation quality matrix
r index
R, R rehabilitation cost, rehabilitation cost vector
R set of real numbers
s string, length, index
S subset
t, t, T time, lifetime
u utility function, sample of uniform random number (Ch. 4)
U uniform random number
v value function
V volume, vertical loads (Ch. 5)
Var[·] variance
W strain energy
x, x design variables, consequences (Ch. 3)
α, α quality of inspection
β reliability index
γ discount rate
∆,∆ rehabilitation level
ε small parameter (Ch. 2), strain (Ch. 5)
ζ ‘forcing’ term
λ occurrence rate, parameter (Ch. 4)
Λ Jordan block
µ mean time (Ch. 2), parameter (Ch. 4)
ν parameter
ξ parameter
π probability
̺ mass density
σ, ∆σ stress, stress amplitude
Φ normal cumulative distribution function
Ψ fundamental matrix
ω impact (Ch. 3), eigenvalue (Ch. 5)
˙(·) time derivative

[·]∗ optimal, Laplace transform (Ch. 2)
[·]T transposed
[·]−1 inverse



1
Introduction

Structural and architectural engineers primarily design and analyze structures and
structural components. They ensure that these structures satisfy a given design
intent with respect to safety standards, that is, that the risk of structural collapse is
below an acceptable level, and with respect to serviceability (for example, that the
floor vibration and sway of buildings does not discomfort its occupants). However,
structural engineers have not only to fulfill technical constraints, but also have to
take into account on an ever increasing scale economical, environmental, esthetic
and social aspects. That is, they are responsible for making efficient use of different
types of resources to provide the best possible performance of structures throughout
the (structural) lifetime. In fact, the life of a building is sometimes compared with
the human body. As Levy and Salvadori (2002) write in the introduction to Why
Buildings Fall Down: How Structures Fail:

“A building is conceived when designed, born when built, alive while stand-
ing, dead from old age or unexpected accident. It breathes through the mouth
of its windows and the lungs of its air-conditioning system. It circulates fluids
through the veins and arteries of its pipes and sends messages to all parts of
its body through the nervous system of its electric wires. A building reacts to
changes in its outer or inner conditions through its brain of feedback systems,
is protected by skin of its facade, supported by the skeleton of its columns,
beams, and slabs, and rests on the feet of its foundations. Like most human
bodies, most buildings have full lives, and then they die.”

Clearly, the mission of an engineer is not only to design and construct (to conceive
and give birth), but also to maintain the best performance of all structural and non-
structural components throughout the entire life-cycle of a structure.

The decision to construct a building or not is, in general, based on the prospect
that expected future benefits will outweigh expected costs. While building and civil
engineering structures mostly show a high profitability after construction, this prof-
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itability quite often gradually diminishes with time, that is, the expected benefit per
time decreases. The decrease may have its origin, for example, in the deteriorat-
ing performance of the structure, but maybe also originate from changing demands
or changing public satisfaction. Hence, when designing a structure all costs and
benefits as accumulated throughout lifetime have to be taken into account.

A similar situation is given in case of lifetime extensions of existing structures.
This is a field of increasing activity, since a growing percentage of civil infrastruc-
ture as well as buildings is threatened by obsolescence, and due to simple mone-
tary reasons this can no longer be countered by building everything anew. Hence
maintenance interventions are required, which allow partial or complete structural
rehabilitation and to restore profitability. However, the same economic reasoning
which leads to the implementation of maintenance policies has also to be applied to
the maintenance strategies themselves. In other words, maintenance interventions
have to be economically reasonable, that is, maintenance expenditures have to be
outweighed by expected future gains. If this is not the case, then indeed the struc-
ture is obsolete—at least in its current functional, economic, technical, or social
configuration—and innovative alternatives have to be evaluated. Thus, the overall
objective is to find an optimal balance between recovering the profitability of struc-
tural operation over a designated time horizon and the maintenance expenditures
spent—without compromising safety issues.

A way to rationally balance advantages and disadvantages of proposed design
solutions or maintenance strategies is cost-benefit analysis. Cost-benefit analysis—
as well as its most general form, that is, decision analysis—is primarily normative
in intent and, hence, serves as an aid to decision-making. It can be easily scrutinized
and thus allows decision makers to evaluate each quantitative input or qualitative as-
sumption with respect to possible alternatives and their consequences. Principally,
cost-benefit analysis, as we apply it herein, consists of four steps:

i.) Modeling of all alternatives, that is, possible design solutions or sequences of
maintenance actions and their consequences.

ii.) Assignment of probabilities to alternative-consequence relationships either
based on past empirical data or derived from stochastic models.

iii.) Assignment of utilities to all consequences, that is, advantages as well as
disadvantages, of proposed design solutions or maintenance strategies.

iv.) Optimization of structural design or maintenance strategies by maximizing
expected utilities.
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In cost-benefit analysis utility is measured in monetary units and is, but does not
necessarily have to be, linear therein.

Although life-cycle considerations, lifetime performance, as well as designing
for durability and sustainability gain more and more interest, the application of
cost-benefit analysis still lies in its infancy. If cost considerations are performed
at all, then in form of a so called life-cycle cost minimization, where—in the ideal
case—all significant (adverse) costs (such as, for example, costs for construction,
operation, maintenance, or failure) throughout lifetime are considered, but no ben-
efit at all. Hence, the implicit assumptions hereby are that all alternatives have the
same benefit, benefit neither depends on the condition of the structure nor on time,
and benefit always outweighs all costs. The reason for not specifying benefit explic-
itly is the traditional focus of structural engineers on preventing structural collapse,
though this is gradually changing through the utilization of performance-based cri-
teria in design.

The aim of the present work is to apply consistently cost-benefit criteria in the
planning of maintenance interventions and lifetime extensions of existing structures.
We will show, that taking into account costs and benefits explicitly not only allows
us to minimize expenditures, like can be done by life-cycle cost minimization, but
enables us to determine whether expenditures spent for construction or maintenance
are justified by future gains, allows us to assess the lifetimes of structures, and pro-
vides us with a rational method to define acceptable failure rates. In other words, the
proposed analysis discloses the close relationship between monetary expenditures
spent and the hazardousness of a structure through its entire lifetime, and shows the
principal structure of how and when decisions for lifetime extensions and mainte-
nance should be undertaken for maximum effect.

The remainder of this work is organized as follows. In Ch. 2 an overview on
procedures in reliability-based structural optimization is given. The chapter de-
scribes the basic principles of reliability- and cost-based design, but also points out
deficits of current formulations with respect to time-variant problems, that is, de-
teriorating structures, non-periodic maintenance policies and changing cost factors.
Hence, in the following Ch. 3 a novel formulation for maintenance optimization is
given, which is based on cost-benefit criteria. The time-variant formulation takes
into account the different statistical characteristics of structural performance (state
occupation probabilities and transition rates of performance states) as well as their
corresponding cost factors. This not only allows a more refined optimization of
maintenance interventions, but also allows to determine optimal lifetimes and ac-
ceptable failure rates. The proposed concept is likewise applicable for structures
with and without systematic re-construction after failure.
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When solving the in Ch. 3 formulated optimization problems, we have to maxi-
mize an objective function with respect to design variables which are not only con-
tinuous, but also discrete (for example, the number of maintenance times). These
mixed-discrete problems are tackled herein by a hybrid of genetic algorithm and
evolutionary strategy. The main operators of the proposed evolutionary algorithm
and their working mechanisms are described in Ch. 4.

In the subsequent Ch. 5 the proposed cost-benefit criteria are prototypically ap-
plied to optimization problems in maintenance planning of deteriorating structures.
These analyses take into account all life-cycle costs, such as construction, failure,
quality-dependent inspection and state-dependent rehabilitation costs, as well as
state- and time-dependent benefit rates. The numerical examples investigate the
effects of different quantitative and qualitative assumptions on decision making.
Ch. 6, finally, contains a summary of the important results of this work and dis-
cusses their implications for issues of lifetime extensions and sustainability.



2
Reliability-Based Optimization

2.1 INTRODUCTORY REMARKS

The ultimate goal of any engineer in designing or maintaining a structure or building
can be principally described as achieving an ‘acceptable’ structural performance in
the most efficient, that is, economic way. However, to specify what is ‘acceptable’
in terms of structural performance or safety raises important questions—not only
in terms of structural mechanics or physical modeling, but also in terms of ethics,
economics, and politics. Whereas the complex of issues dealing with questions like
member sizing, structural redundancy allocation, or inspection and rehabilitation
planning is of the more traditional engineering fare, the complex of issues dealing
with, in principle, economical and political questions, such as the evaluation of con-
sequences of component and structural failure, life-cycle costs, acceptable failure
rates, etc. is mostly eschewed in the engineering community. Nevertheless, design
or maintenance decisions are permanently made at the intersection of these mostly
conflicting issues. This may not be as obvious as it should be, since questions of so-
cietal acceptance of technological risks are quite often treated in a form of ‘division
of labor’. That is, problems of risk acceptance are delegated to commissions and
committees, which in most cases provide standards and comprehensive guidelines
based on operational experience and historically evolved rules. However, this ap-
proach tacitly assumes that past engineering practice is already nearly optimal. As
has been vividly pointed out by Rackwitz (2002), since present rules were devel-
oped widely by trial and error, and are mainly formulated in terms of safety factors
and cautiously selected nominal or representative design values, it is difficult to
believe that design and maintenance rules based solely on past and present prac-
tice indeed provide structures which are at the same time economically optimal and
‘safe enough’. The dilemma of setting up rules based on historical knowledge gets
even more evident when new conceptual problems arise, such as design for durabil-
ity and the question of lifetime extensions, where only scarce previous operational
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experience is available.
When we want to tackle the problem of ‘acceptability’ of structural perfor-

mance in a consistent way, then it is mandatory to take into account uncertainties.
Clearly, compliance with structural performance criteria is almost never perfect.
In structural operation or usage there is basically always some likeliness of non-
performance or failure present—with all its associated adverse consequences. For
example, the maximum load during a structure’s lifetime or the evolution of the load
carrying capacity of a deteriorating structure can not be predicted exactly. In fact,
any prediction into the future is prone to randomness, and thus an absolute assurance
of safety of a structure—in the sense of absence of failure—is realistically not feasi-
ble. The same holds for the assurance of serviceability. Hence, structural safety and
serviceability may be warranted only in terms of certain probabilities. Such types of
reliability and safety problems are typical not only in structural engineering, but are
also quite common in industrial and mechanical engineering. An additional point
to be mentioned is, that the determination and assurance of adequate system per-
formance throughout its lifetime is quite often treated as a time-invariant problem.
That is, it is assumed that the structural condition or the demand on the structure do
not change with time. However, reliability and safety problems are usually time-
dependent as, for example, in the case of structures whose capacities deteriorate
with time and usage.

Until recently, the methods and strategies developed by engineers to manage the
life cycle of a structure or building have been of purely technical nature. That is,
design solutions or rehabilitation efforts have been proposed which allow to extend
the structural lifetime by improving its reliability and durability, or which enable
a more easily adaptation to other types of usage than initially anticipated. The
development of these methods and strategies is certainly an important aspect of
life-cycle engineering, but as in the case of safety considerations in initial structural
design, also in life-cycle engineering questions of economic efficiency have to be
asked. In fact, for most—at least still partially operable—structures there will be
almost always a technical solution available to extend their lifetime. But are these
solutions also justified in economic terms? Thus similar to the problem of ‘how safe
is safe enough?’ in initial structural design we have to ask in life-cycle engineering
the question of ‘how much rehabilitation is too much rehabilitation?’. It should be
emphasized, that this question is not meant in the sense that certain safety standards
should be revised because of possible extensive costs of rehabilitation. What has to
be answered, however, is, whether the expenditures spent on, say, maintenance and
rehabilitation are justified by future gains or benefits from structural operation, or
whether alternatives (for example, other types of usage, but also decommissioning)
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have to be addressed instead.
From the above follows, that to solve problems of life-cycle engineering princi-

ples of probability as well as economic theory have to be utilized. This gets evident
from the fact that different costs and benefits are associated with different condi-
tion states of a structure or building. For example, due to wear and tear, fatigue,
etc. bridges may have structural deficiencies which may affect structural safety. A
bridge management option in such cases is to impose weight restrictions (Minchin,
Jr. et al., 2006). However, this may require a re-routing of vehicles, resulting in ex-
tended travel or transportation times, additional accidents due to longer routes, in-
creased environmental deterioration, and other economic or social losses (Minchin,
Jr. et al., 2006; Sugimoto et al., 2002). In other words, the expected costs and
benefits depend on the performance of the structure.

Expected costs accrue during the life cycle due to the occurrence of certain
hazards (that is, they are related to the safety of the structure) and due to further,
so to say, investment decisions in form of maintenance and rehabilitation efforts
(which are related to the structural condition at the time of intervention). Similarly,
expected benefits aggregate over time depending on the fulfillment of certain per-
formance criteria. For a structure to be acceptable, the expected benefits have to
outweigh the expected costs. That is, the structure has to give rise to welfare or hu-
man well-being during its lifetime. This is precisely what is meant by sustainability
(Pearce, 2006; Rackwitz et al., 2005). And cost-benefit analysis—the principle of
comparing benefits and costs in terms of social utility gains and losses—is nothing
else than a quantitative approach for the evaluation of the possible decision alterna-
tives (Boardman et al., 2006; Fuguitt and Wilcox, 1999).

However, before introducing cost-benefit criteria for life-cycle management, let
us first give a critical overview of existing procedures or approaches in reliability-
based optimization. We start with a short description of the historical development
of reliability-based structural optimization, before we explain the components of
reliability-based optimization formulations. This is followed by a more in-deep look
at some state-of-the-art applications of reliability-based design and maintenance
optimization. Finally, we draw some conclusions for our further work herein.

2.2 SHORT HISTORICAL OVERVIEW

According to Johnson (1953), the earliest formulation for a reliability-based eco-
nomical design of civil engineering structures has been done, most likely, in the
1920s and 30s by Forssell and Gibrat. They proposed to minimize the expected to-
tal costs during the structural lifetime, that is, their objective function included not
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only the initial or construction costs, but also the expected future costs from failure
or other damage. Also the work by Johnson (1953) is based on this approach. It
should also be noted, that in Johnson’s work all future costs are already properly
discounted to their present value.

Whereas these early efforts remained basically unnoticed during the next
decades, it was the influential paper by Freudenthal (1956) on structural safety in
combination with the development of deterministic minimum weight design meth-
ods for aircrafts in the 1940s and 50s (see Kirsch, 1993), which led to the first
widely recognized formulations of reliability-based optimum design in the 1960s.
Due to their origin in aircraft and aerospace engineering, the design objectives have
been formulated as minimum weight problems with constraints expressed in terms
of probabilities of failure (Broding et al., 1964; Hilton and Feigen, 1960; Kalaba,
1962; Moses and Kinser, 1967; Switzky, 1965). Parallel to the maturing of math-
ematical programming techniques (Arora and Thanedar, 1986; Fletcher, 1987) and
structural reliability theory (Madsen et al., 1986; Shinozuka, 1983) in the 1970s
to mid 80s, these approaches become more widespread and were also increasingly
applied in civil engineering (Frangopol and Moses, 1994). Although weight mini-
mization has been also applied in civil engineering (for example, Frangopol, 1985),
most applications utilize as objective function the expected total costs (Mau and
Sexsmith, 1972; Moses, 1977; Moses, 1997; Parimi and Cohn, 1975; Pu et al.,
1997; Rackwitz and Cuntze, 1987). This has also been reinforced in the last decade
by a growing interest in performance-based design criteria (Ang and Lee, 2001;
Ellingwood, 2001; Wen, 2001), as well as in maintenance or rehabilitation plan-
ning for deteriorating structures (Frangopol et al., 1997; Liu and Frangopol, 2004;
Mori and Ellingwood, 1994a; Mori and Ellingwood, 1994b; Thoft-Christensen and
Sørensen, 1987). In both cases life-cycle costs play a prominent role.

A quite singular position in reliability-based optimization is taken by the paper
of Rosenblueth and Mendoza (1971). Contrary to all other papers up to this time
and some time after, they propose not only to utilize a proper cost-benefit analy-
sis, but they also take into account that any kind of safety or reliability problem is
in principle time-variant, that is, they treat the load carrying capacities and loads
consistently as stochastic processes. Interestingly, until the end of the last millen-
nium this paper has been either ignored, or treated as a variant of the total expected
cost approach (see, for example, Frangopol and Moses, 1994). Only recently the
importance and the potential of this approach for risk acceptability, structural opti-
mization and life-cycle engineering has been fully recognized (in a series of papers
by Kuschel and Rackwitz, 2000; Rackwitz, 2000; Rackwitz et al., 2005; Streicher
and Rackwitz, 2004).
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2.3 FORMULATION OF OPTIMIZATION PROBLEMS

2.3.1 General Form

Let us look at reliability-based optimization problems in more technical detail. The
formulation of any optimization problem requires the definition of an objective g(·),
that is, a scalar quantity1 which should be maximized or minimized, and the defi-
nition of a vector x of n design variables x1, x2, . . . , xn, which are allowed to be
varied for maximizing or minimizing this objective. Since

min
x∈Rn

[g(x)] = −max
x∈Rn

[−g(x)] (2.1)

the optimization problem can be formulated without loss of generality as

x∗ = argmax
x∈Rn

[g(x)] (2.2)

In addition, it may be necessary—either due to physical or due to functional
limitations—to limit the range of the design variables x to a subset S ⊆ R

n. That
is, the optimization problem of eq. (2.2) is modified to be

x∗ = argmax
x∈S⊆Rn

[g(x)] (2.3)

Quite often, the subset S is formulated in terms of constraints, that is, equalities and
inequalities involving x.

2.3.2 Design Variables

Any engineering structure or process is defined or controlled by a set of quanti-
ties. Some of them are fixed to a certain value at the outset of optimization, but
to others we can freely assign different values from a given set of possible ones.
These freely assignable quantities are called design variables. Design variables can
be continuous or discrete. In addition, we can distinguish between structural and
non-structural design variables.

Structural design variables include all variables directly related to the actual
size, shape and topology of a structure. In fact, sizing, shape and topology opti-
mization represent three principle strands in optimum structural design with their
specific solution techniques (Kirsch, 1993). Hence, it is suitable to further classify
structural design variables with respect to these categories:

i.) Sizing design variables: These are all quantities which are related to struc-
1This holds also for multi-objective optimization, where the ‘objective’ is simply a vector of

scalar quantities (Rao, 1996).
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tural component parameters such as material values, cross-sectional proper-
ties (area, moment of inertia, etc.) and thicknesses. Sizing only allows to
find the best solution on component level, that is, for a given structural layout
(geometry and topology).

ii.) Geometrical design variables: These design variables include all quantities
which allow to modify the overall geometry of structures or structural com-
ponents, that is, the shape of their boundaries. Examples are the coordinates
of a shell structure, the location of supports in a bridge, the length of spans in
a building, or the height of a truss.

iii.) Topological design variables: Whereas sizing and shape optimization results
in geometrically different, but topological equivalent structures, topology op-
timization interferes with the connectivity pattern of components or bound-
aries within a structure. Topological design variables are, for example, the
number of columns supporting a roof, the number of beams supporting a
floor, etc. In principle, this includes also the optimization with respect to
the structural system type, for example, whether a bridge is cable-stayed or
uses suspension.

It goes without saying, that structural design problems can be, in general, a combi-
nation of the above three categories.

Beside the mentioned structural design variables, in problems involving perfor-
mance criteria or deteriorating structures, also non-structural design variables are
present. Non-structural design variables are related to the condition state of a struc-
ture, but they do not allow to change the overall structural design. Typical examples,
as also used in this work, are maintenance times (that is, the time intervals between
successive inspections and rehabilitations) or the quality of maintenance work (for
example, threshold levels above which deteriorated condition states should be re-
habilitated, or the efficiency of non-destructive inspection techniques), but also the
number of maintenance interventions or the structural lifetime.

2.3.3 Constraints

Any realization of the design variables represents a design of the structure or an
instance of the maintenance process. Clearly, some of these designs are useful
solutions to the optimization problem, but others might be inadequate in terms of
structural behavior or other considerations. If a design meets all the requirements
placed on it, it is called a feasible design. The restrictions that must be satisfied in
order to produce a feasible design are called constraints.
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From a mathematical point of view, constraints are either expressed as a set of
inequalities, written in vector form as

h(x) = [h1(x), h2(x), . . .]T ≤ 0 (2.4)

or equalities
e(x) = [e1(x), e2(x), . . .]T = 0 (2.5)

Hence, the feasible design space S for the design variables x, as used in eq. (2.3), is
defined as

S = {x : h(x) ≤ 0 ∧ e(x) = 0} (2.6)

The constraints may be linear or non-linear functions of the design variables.
From a physical point of view, we can distinguish the following two different

types of constraints:

i.) Mechanical behavior constraints: These are constraints from behavior
requirements, for example, acceptable stress, displacement, or buckling
strength. Explicit behavior constraints are often given by formulas presented
in design codes, standards or specifications. Implicit behavior constraints are,
in general, derived from performance objectives, that is, failure or service-
ability limit states, etc.

ii.) Side or technological constraints: These constraints restrict the range of de-
sign variables for reasons other than behavioral ones. They may derive from
various considerations such as functionality, fabrication, or even esthetic. Ex-
amples are the minimum width of a beam or column, or the maximum height
of a truss.

In deterministic structural optimization problems, the most typical constraints—
beside side constraints—are certainly displacement and stress constraints. But also
cost or weight constraints are used. In reliability-based structural optimization con-
straints are either deterministic as described above, or they are interpreted in prob-
abilistic terms. That is, for example, stress and displacement constraints define
performance or ultimate limit states, which are only allowed to be violated with a
certain probability per unit time or whose expected number of violations per unit
time should not exceed an acceptable level, respectively.

2.3.4 Objective Functions

Having given a set of feasible design vectors x, the best design solution for a specific
criterion has to be found. Thereto, a function g(·) is introduced which allows to
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compare design alternatives consistently. This function is called objective and is
defined in such a way, that a better design solution always corresponds to a larger
(or smaller) value of the objective than a worse solution and attains its largest (or
smallest) value for the optimal design solution x∗. The objective function is usually
non-linear in the design variables and it may represent the weight of a structure,
its costs for construction and operation, or any other criterion by which a possible
design is preferred to others. In general, the objective function represents the most
important single property of a design, but it may also be given by a combination
(for example, a weighted sum) of different properties.

The most widely used objective in structural design optimization is certainly the
total structural weight (see also Sec. 2.2). The weight or mass of a structure with k

components can be easily quantified as

g(x) =

k∑

i=1

̺iVi (2.7)

where ̺i is the mass density of the ith component, and Vi its volume, that is, the
quantity of material used. Minimum weight design has been typically applied in
aircraft and aerospace design, but also for building and civil engineering structures
subjected to seismic or similar dynamic loads (Rao, 1996). However, minimum
weight is only a convenient substitute criteria for cost. That is, the historical choice
of, for example, minimizing gross take-off weight as the objective in commercial
aircraft design is indeed intended to improve performance and subsequently lower
operating costs, primarily through reduced fuel consumption (Peoples and Willcox,
2006).

A similar situation prevails in building and civil engineering design. If we take,
for the moment, only the construction process, then the quantity of material used
in construction constitute a significant part of its cost, but also other cost factors
are important. For concrete structures, for example, not only the material costs for
the concrete and reinforcement are significant, but also the costs for transportation,
formwork or prestressing (Sarma and Adeli, 1998). Or in case of steel structures,
for example, also costs related to the design of connections should be taken into
account (Sarma and Adeli, 2002). Obviously, besides these costs, which are related
to the structural capacity, there are also costs of similar magnitude for non-structural
elements like technical facilities and electrical services (Kirk and Dell’Isola, 1995).
Hence, strictly speaking, the weight-minimization problem should be formulated in
terms of cost factors.

Let us assume that there are m different (random) cost factors Cj (j =

1, 2, . . . , m), that is, the (random) initial cost C0 is
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C0(x) =
m∑

j=1

Cj(x) (2.8)

where x is the vector of design variables. There are now different approaches to uti-
lize the initial cost C0 as an objective function for optimization. These approaches
differ in the way how we rank the possible outcomes, that is, how we express for dif-
ferent design vectors x our preferences for the respective probability distributions
of C0(x) by a utility function (Luce and Raiffa, 1957). If there is a certain type
of consistency in our preference description, then Von Neumann and Morgenstern
(1947) showed that all our decisions should be solely based on the expected value
of this utility function2. Thus, if we prefer to minimize the initial cost C0(x), but
we do not care about possible large (and small) values of C0(x), that is, if we are
so to say risk-neutral, then our utility is a linear function in the costs Cj(x). Hence,
the objective function g(x) to be minimized is in this case

g(x) = c0(x) = E
[
C0(x)

]
=

m∑

j=1

E
[
Cj(x)

]
(2.9)

with c0(x) denoting the expected initial cost. For obtaining an acceptable structural
design, the objective function of eq. (2.9) has to be subjected, in general, to perfor-
mance constraints. The minimum requirement is, at this, that the expected failure
rate h(x, t) does not exceed a socially, economically or otherwise accepted limit
ha(t). Eq. (2.9) is the most common form of objective function when minimizing
initial costs (Frangopol and Moses, 1994).

As getting evident from the linear form of eq. (2.9), we are indifferent with
respect to design solutions x which have different probability distributions of the
initial costs C0(x) and hence, for example, also different variances Var[C0(x)], as
long as the expected costs c0(x) are the same. This is not a weak point of utility
theory, but only owed to our description of utility as a function linear in costs. If we
want to be more risk-averse, we can do so, for example, by utilizing an exponential
function for the utility (for other functions see also Levy and Markowitz, 1979). In
this case, the objective function to be minimized is

g(x) =
1

ε
ln{E [exp (εC0(x))]} (2.10)

with ε > 0 as a parameter controlling our aversion. From the concept of certainty
equivalence (Keeney and Raiffa, 1993), we see that

exp (εg(x)) = E [exp (εC0(x))] (2.11)
2More on this in Ch. 3.
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Using Taylor’s formula for the right-hand side of eq. (2.11), we can approximate
the objective function g(x) for small values of ε as

g(x) ≈ c0(x) +
ε

2
Var [C0(x)] (2.12)

Thus, when using eq. (2.10) as an objective to minimize, we simultaneously mini-
mize the expected initial cost and its variance—at least approximately.

A refinement of eq. (2.9) is to directly incorporate the failure consequences in
the objective function. Let us denote with L the possible (future) loss, then the
objective function for a structure without re-construction after failure is

g(x, t, t0) = c0(x) +

t∫

t0

L exp(−γτ )h(x, τ )[1 − Pr(F ; x, τ, t0)]dτ (2.13)

where γ is the discount rate. For γ = 0, above formulation can be simplified to give

g(x, t, t0) = c0(x) + L Pr(F ; x, t, t0) (2.14)

with Pr(F ; x, t, t0) being the probability of first-passage to the failure domain F in
the time interval [t0, t]. The formulation of eq. (2.14) is the most common one in
reliability-based structural design (Ang and Lee, 2001; Frangopol and Moses, 1994;
Wen, 2001). It should be noted, however, that the respective structural optimization
problem now refers to a specific period of time, that is, the time interval [t0, t].

A slight variation of the objective function of eq. (2.13) is given when the struc-
ture is systematically repaired (that is, re-constructed) after failure. In this case, we
no longer operate with a single structure, but with an ‘inventory’ of structures which
get activated one by one. For non-deteriorating structures the objective function is

g(x, t, t0) = c0(x) +

t∫

t0

(c0(x) + L) exp(−γτ )h(x)dτ (2.15)

For γ = 0, we can again simplify this to give

g(x, t, t0) = c0(x) + (c0(x) + L) ln

[

1 +
Pr(F ; x, t, t0)

1 − Pr(F ; x, t, t0)

]

(2.16)

Although, in both eqs. (2.13) and (2.15) the failure consequences are incorporated
directly, for an acceptable design we still require, in general, performance con-
straints. This is because these objective functions only contain ‘negative’ conse-
quences to be minimized, but there is no term present which represents the ‘posi-
tive’ consequences of operating these structures and which is able to outweigh all
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‘negative’ consequences. Or, to view it from a different perspective, when using an
unconstrained objective of the form

g(x, t, t0) = c0(x) + l(x, t, t0) (2.17)

to be minimized, where l(x, t, t0) is the expected loss3, we implicitly assume that
all design solutions have the same (time-invariant) benefit rate, and that this benefit
rate will always outweigh the cost rate ġ(x, t, t0).4

A formulation of the objective, which is sometimes proposed alternatively to the
minimization of the weight according to eq. (2.7) or the expected costs according to
eq. (2.14), is to minimize the probability of failure directly, that is,

g(x, t, t0) = Pr(F ; x, t, t0) (2.18)

Obviously, for an economically reasonable design this objective has to be aug-
mented with a cost constraint, or—as a substitute criteria—with a weight constraint
(Frangopol and Moses, 1994; Rackwitz and Cuntze, 1987)5.

As already mentioned in Sec. 2.2, a singular position in reliability-based op-
timization is taken by the approach in (Rosenblueth and Mendoza, 1971). Their
objective to be maximized is a net present benefit function

g(x, t, t0) = b(x, t, t0) − c0(x) − l(x, t, t0) (2.19)

where b(x, t, t0) is the expected benefit, which depends on the vector of design
variables x (Rosenblueth and Mendoza, 1971; Kuschel and Rackwitz, 2000). For a
structure without re-construction after failure the expected benefit is

b(x, t, t0) =

∫ t

t0

Ḃ(x, τ ) exp(−γτ )[1 − Pr(F ; x, τ, t0)]dτ (2.20)

that is, the benefit aggregates only as long as the structure has not failed. For a time-
constant benefit rate Ḃ(x) = const. and a zero discount rate γ = 0, the expected
benefit is determined as

b(x, t, t0) = Ḃ(x)

∫ t

t0

[1 − Pr(F ; x, τ, t0)]dτ (2.21)

3The expected loss can be defined in a much wider sense than done herein so far. That is, it
may not only include the costs from structural collapse, but also costs due to violating performance
criteria, costs from operation and maintenance, etc.

4We investigate the subject of costs and benefits in structural design in more detail in Ch. 3.
5Strictly speaking, this type of optimization problem is not reliability-based, but indeed a cost-

or weight-based reliability optimization problem.
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and hence the net benefit function is

g(x, t, t0) = Ḃ(x)

∫ t

t0

[1 − Pr(F ; x, τ, t0)]dτ − c0(x) − L Pr(F ; x, t, t0) (2.22)

In eqs. (2.20) to (2.22) we assumed that the benefit rate Ḃ(·) does not depend on the
condition state of the structure.

The most often employed variant of eq. (2.19) is with systematic re-construction
after failure. In this case, the structure is always available to generate benefit.
Hence, the expected benefit is, in general,

b(x, t, t0) =

∫ t

t0

Ḃ(x, τ ) exp(−γτ )dτ (2.23)

and, with the same assumptions as above (that is, Ḃ(x) = const. and γ = 0), the net
benefit function is given as

g(x, t, t0) = Ḃ(x)[t− t0]− c0(x)− (c0(x)+L) ln

[

1 +
Pr(F ; x, t, t0)

1 − Pr(F ; x, t, t0)

]

(2.24)

See also eq. (2.16) for the failure cost term. The objective function of eq. (2.19) has
been originally used without any constraints (Rosenblueth and Mendoza, 1971),
but has been recently augmented by reliability or cost constraints (Rackwitz, 2001;
Rackwitz, 2004).

The typical optimization problem in structural design involves a single objec-
tive function like weight or expected cost and multiple constraints formulated in
terms of displacements, stresses, frequencies etc. (Kirsch, 1993). As we have seen
above, under conditions of uncertainty, probabilistic measures such as probabili-
ties of failure or failure rates enter the objective function or the constraints. This
becomes, in general, an additional burden in the optimization process, since the
calculation of these probabilistic measures poses quite often a formidable task in
itself. For example, when utilizing the first order reliability method, the determina-
tion of the reliability index is again an optimization problem to be solved. Different
methods have been developed to solve such types of problems, like the bi-level ap-
proach (Enevoldsen and Sørensen, 1994), the mono-level approach (Kuschel and
Rackwitz, 2000) or the decoupling approach (Royset et al., 2001). Nevertheless,
reliability-based design certainly remains also in the foreseeable future a challeng-
ing task. In case of reliability-based maintenance optimization the formulations are
computationally more amenable, since the problem of determining the probabilistic
measures can be solved, in general, independently from the optimization task.
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2.4 STATE OF THE ART IN RELIABILITY-BASED OPTIMIZATION

2.4.1 Structural Design Optimization

Now, let us take a more in-deep look at some state-of-the-art applications in
reliability-based optimization. We start with the papers by Rosenblueth and Men-
doza (1971) and Rackwitz (2000), since these will be most instrumental for our
formulation of cost-benefit criteria in maintenance optimization herein. In fact,
these papers are so far the only ones which formulate an optimal structural design
problem as a cost-benefit problem and, at the same time, take into account the time-
variant nature of reliability problems. However, they are only interested in the time
interval [0,∞), that is, in the value of g(x,∞, 0), but not in the evolution of the net
present benefit throughout time t. Whereas the formulation of the present benefit
in case of no re-construction after failure by Rosenblueth and Mendoza (1971) is
identical to eq. (2.20), Rackwitz (2000) gives a somehow different description:

b(x,∞, 0) =

∞∫

0

τ∫

0

Ḃ(x, ξ) exp(−γξ)dξf(x, τ )dτ (2.25)

where f(·) is the probability density function of the time to first failure. The ‘short-
coming’ of eq. (2.25) is, that the benefit only accrues when the structure fails. Thus,
eq. (2.25) is only correct for the written case t → ∞, that is, when the structure
has failed with probability one, and gives in fact in this case the same value like
eq. (2.20). The identity of both equations for t → ∞ can also be shown by inte-
grating eq. (2.25) py parts. However, eq. (2.25) can not be used for calculating the
present benefit for t < ∞ by just modifying the upper integration limit in the first
integral.

The expected present loss is in (Rosenblueth and Mendoza, 1971; Rackwitz,
2000) also written in terms of the probability density function of the time to first
failure as

l(x,∞, 0) =

∞∫

0

L exp(−γτ )f(x, τ )dτ (2.26)

Eq. (2.26) is identical to the loss calculation in eq. (2.13), since the failure rate h(·)

is defined as
h(x, t) =

f(x, t)

1 − F (x, t)
(2.27)

and the cumulative distribution is

F (x, t) = Pr(F ; x, t, 0) (2.28)
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Hence,
f(x, t) = h(x, t)[1 − Pr(F ; x, t, 0)] (2.29)

The integrals on the right hand sides of eqs. (2.25) and (2.26) are nothing else
than Laplace transforms, where the discount rate γ is the Laplace variable. Thus,
the net benefit function is written in (Rosenblueth and Mendoza, 1971; Rackwitz,
2000) in terms of the Laplace transform f ∗(·) of f(·) as

g(x,∞, 0) =
Ḃ(x)

γ
(1 − f ∗(x, γ)) − c0(x) − Lf ∗(x, γ) (2.30)

with Ḃ(·) is assumed to be constant in time. In the important case that the failure
events occur according to a Poisson process with intensity λ(·) we simply get

g(x,∞, 0) =
Ḃ(x)

γ + λ(x)
− c0(x) −

Lλ(x)

γ + λ(x)
(2.31)

The main focus in (Rosenblueth and Mendoza, 1971; Rackwitz, 2000), however,
is on systematic re-construction after structural failure. For this purpose they utilize
a renewal process, that is, the j-th event (j = 1, 2, . . .) in the process occurs at time
T1 + T2 + · · · + Tj , where {T1, T2, . . .} are identically distributed with probability
density function f(·), but where T1 may have a different density function f1(·). In
fact, we can distinguish three types of renewal processes (Cox and Miller, 2001):

i.) Ordinary renewal process: All random variables Tj are identically dis-
tributed, hence, f1(t) = f(t).

ii.) Modified renewal process: The probability density functions f1(t) and f(t)

are not necessarily the same.

iii.) Equilibrium (or stationary) renewal process: The probability density function
f1(t) has the special form:

f1(t) =
1 − F (t)

µ
(2.32)

where F (t) is the distribution function corresponding to f(t) and µ = E[Tj ]

(with j = 2, 3, . . .).

The third type of renewal process is certainly the form which is entirely in agree-
ment with the basic argument of ‘stationarity’ made in (Rosenblueth and Mendoza,
1971; Rackwitz, 2000).
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In case of systematic re-construction, the cost and benefit functions are formu-
lated in terms of the renewal density m(t), which is defined as

m(t) =
∞∑

r=1

f (j)(t) (2.33)

where f (j)(·) is the j-fold convolution of the density with itself, that is,

f (j)(t) =

t∫

0

f (j−1)(t − τ )f(τ )dτ (2.34)

whereby f1(·) has to be taken into account in the first convolution. Now taking
the Laplace transform of the renewal density m(t) gives for the ordinary renewal
process

m∗(γ) =
f ∗(γ)

1 − f ∗(γ)
(2.35)

for the modified renewal process

m∗(γ) =
f ∗

1 (γ)

1 − f ∗(γ)
(2.36)

and for the equilibrium renewal process

m∗(γ) =
1

γµ
(2.37)

Just mentioning the equilibrium renewal process, we get for the net present benefit
the following relation:

g(x,∞, 0) =
Ḃ(x)

γ
− c0(x) −

c0(x) + L

γµ(x)
(2.38)

Thus, the only probabilistic measure entering the objective function is the mean time
to failure µ(x). In case of the Poisson process with intensity λ(·) above equation
reads

g(x,∞, 0) =
Ḃ(x)

γ
− c0(x) −

(c0(x) + L)λ(x)

γ
(2.39)

In (Rosenblueth and Mendoza, 1971) the objective functions of eqs. (2.30) and
(2.38) have been proposed without any constraints. In (Rackwitz, 2000), however,
the objective functions are initially subjected to constraints formulated in terms of
failure rates, and later, for example in (Rackwitz, 2004), to a constraint formulated
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in terms of a social indicator called life-quality index (Lind, 1993; Pandey and Nath-
wani, 1997). If these constraints are active, then, in both cases, a more expensive
design solution is selected than would be necessary according to the net-benefit
criterion (see Fig. 2.1). The failure-rate constrains, however, have been added
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Figure 2.1: Schematic sketch of cost and benefit functions with optimal solution for constrained
problem according to (Rackwitz, 2000; Rackwitz, 2004).

only for reliability verification purposes or compliance with codified admissible
failure rates (Rackwitz, 2000) and can indeed also “[. . .] be absent” (Rackwitz,
2001) from the optimization problem, since in case of an already optimal design
practice they would be always fulfilled anyway. A similar argument holds for the
life-quality-index constraint—at least as long as the life-saving costs are included
in L (Rackwitz, 2004). It should be mentioned, however, that in (Rackwitz, 2004) it
is the life-quality index which determines what is acceptable for a technical facility,
and not the net present benefit function of, say, eq. (2.38).

In (Streicher and Rackwitz, 2004) there has been made an attempt to apply
eq. (2.38) to maintenance problems. However, the only maintenance policy which
fits to the formulation based on renewal processes is obviously age replacement
(Barlow and Proschan, 1965; Streicher and Rackwitz, 2004), that is, the structure
will be newly re-constructed at failure or some fixed replacement time tR, whichever
comes first. This restrictive capability of the renewal formulation with respect to
maintenance planning has a simple reason. The structures under investigation can
be essentially only in one of two possible states: the safe state S or the failure
state F . In other words, there are no deterioration or condition states present which
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could be directly addressed as would be necessary for any kind of condition-based
approach. Consequently, only the probability density function of the time to first
failure can be manipulated. In case of age replacement this simply means that the
probability density function f(·) is no longer integrated until t → ∞, but only until
the replacement time tR (Streicher and Rackwitz, 2004). A further restriction in the
maintenance policy arises due to the usage of systematic renewals and infinite time
horizons. This leads necessarily to a stationary policy, that is, constant replacement
times tR. Thus, the important problem of remaining lifetimes of existing structures
can not be addressed satisfactorily.

Further below herein, we will model the probability evolution of deteriorating
structures by continuous-time Markov chains (Ross, 1970; Ross, 2003). At the
moment it may suffice to show exemplarily, that such approach leads to the same
results of the net present benefit as when using the probability density functions
of the time to first failure. Let us denote the probability of being at time t either
still in the safe state S or already in the failure state F as πS(t) = Pr(S; t) and
πF(t) = Pr(F ; t), respectively. In case of no re-construction and failure events
occurring according to a Poisson process with intensity λ, we get the following
differential equation

π̇(t) =

[
π̇S

π̇F

]

=

[
−λ 0

λ 0

][
πS

πF

]

= Aπ(t), π(t = 0) =

[
1

0

]

(2.40)

Inserting the solution of eq. (2.40) in the net present benefit function gives

g(t, 0) =

t∫

0

Ḃ exp(−γτ )πS(τ )dτ − c0 −

t∫

0

L exp(−γτ )π̇F(τ )dτ

=
Ḃ

γ + λ
{1 − exp[−(γ + λ)t]} − c0

−
Lλ

γ + λ
{1 − exp[−(γ + λ)t]}

(2.41)

Performing the passage to the limit t → ∞ finally results in

g(∞, 0) =
Ḃ

γ + λ
− c0 −

Lλ

γ + λ
(2.42)

which is the solution reported in eq. (2.31). Clearly, in case of deteriorating struc-
tures the intensity λ is a function of time and, hence, the two-state transition matrix
A of eq. (2.40) is also time-dependent.
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In case of systematic re-construction ‘additional’ structures become available at
a rate proportional to the failure rate (see Fig. 2.2). This can be interpreted as a

Without re-construction

S F

λ

S F

With re-construction

λ

πSλ

Figure 2.2: Transition rate diagrams for a two-state structure (S: safe state; F : failure state).

‘forcing’ term ζ(t) which is added to the autonomous eq. (2.40) to give

π̇(t) = Aπ(t) +

[
πSλ

0

]

︸ ︷︷ ︸

= ζ(t)

=

[
0 0

λ 0

]

π(t), π(t = 0) =

[
1

0

]

(2.43)

Analogously, the net present benefit is

g(t, 0) =

t∫

0

Ḃ exp(−γτ )πS(τ )dτ − c0 −

t∫

0

(c0 + L) exp(−γτ )π̇F(τ )dτ

=
Ḃ

γ
[1 − exp(−γt)] − c0 −

(c0 + L)λ

γ
[1 − exp(−γt)]

(2.44)

which results for t → ∞ in the solution of eq. (2.39):

g(∞, 0) =
Ḃ

γ
− c0 −

(c0 + L)λ

γ
(2.45)

As already mentioned above in a different context, for designing condition-based
maintenance policies the Markov chain has to be augmented by deterioration or
condition states which are (directly or indirectly) observable.

With respect to this identified necessity of including deterioration states in
the analysis, the paper of Ang and Lee (2001) is of interest. They formulate
an earthquake-resistant design of reinforced concrete structures as a minimization
problem of the expected total life-cycle costs subject to failure rate constraints. The
first interesting aspect of their formulation is, that the life-cycle costs include also
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the costs for rehabilitating damage due to (minor or moderate) earthquakes. The
condition state of the reinforced concrete structures are determined with the help of
the damage index of Park et al. (1985). The rehabilitation costs are modeled as an
increasing function of this damage index, that is, the more overall damage present
in the structure, the higher the rehabilitation costs for restoring the structure to an
‘as new’ state. By this approach the authors take into account the requirement from
performance-based design to consider different levels of performance objectives for
reducing the high costs associated with the loss of use and rehabilitation of heavily
damaged structures (Ghobarah, 2001).

The second interesting aspect of the paper by Ang and Lee (2001) is, that they
give an unusually detailed breakdown of the losses or failure costs. They differen-
tiate between direct and indirect losses. The direct losses include the above men-
tioned damage repair costs, the costs for replacement of property and non-structural
components, costs for avoiding injuries, and life-saving costs. The costs for life
saving and injury avoidance are determined from the relations between structural
collapse rates and fatality or injury rates, the expected number of persons affected,
and appropriate economic estimates of the value of statistical injury and statistical
life as taken from (Viscusi, 1993). The indirect losses are attributed to the eco-
nomic effects caused by structural failure, the so called ripple effects. In fact, such
effects can have quite substantial and sustained impact, whereby variations of the
total impact are explained by the seriousness of the respective failure and the a priori
riskiness assigned to it (see thereto also Broder, 1990).

Since the paper by Ang and Lee (2001) has been written for the purpose of
earthquake-resistant design, the rehabilitation actions are assumed to be event-
based. That is, the earthquake is the only event which causes damage or failure, and
this event is always followed by rehabilitation or re-construction of the structure
to an ‘as new’ state. Hence, despite the sophisticated cost modeling, in the actual
calculation the effect of taking into account structural damage is just a simple mod-
ification of the cost function—an additional term like the indirect losses. In fact,
Ang and Lee (2001) do not take into account structural deterioration during the life
cycle, nor does their approach allow a more refined maintenance or rehabilitation
policy.

2.4.2 Optimization of Maintenance Strategies

Although there are many publications in reliability engineering dealing with the
problem of optimal maintenance planning for deteriorating single- or multi-unit sys-
tems (for a comprehensive overview see Barlow and Proschan, 1965; Pierskalla and
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Voelker, 1976; Valdez-Flores and Feldman, 1989; Wang, 2002), reliability-based
maintenance optimization for structures or infrastructure did not receive any con-
siderable interest until the late 1980s (Thoft-Christensen and Sørensen, 1987; Mad-
sen et al., 1990). Madsen et al. (1990) propose to minimize the expected present
life-cycle costs, which are composed of initial costs c0, inspection costs I(·), reha-
bilitation costs R and failure costs L, throughout a given lifetime [0, T ]. The opti-
mization variables are the number n of maintenance interventions, the maintenance
times t = {t1, t2, . . . , tn} and the quality α = {α1, α2, . . . , αn} of the inspection
procedure. The optimization problem in (Madsen et al., 1990) is formulated as6

min
n,t,α

c0 +

n∑

j=1

{I(αj)[1 − Pr(F ; tj)] + RE[Mj]}
1

(1 + γ)tj

+
T∑

s=1

L[Pr(F ; s) − Pr(F ; s − 1)]
1

(1 + γ)s

(2.46)

subject to
β(T ) = −Φ−1(Pr(F ; T )) ≥ βmin (2.47)

In eq. (2.46) the term E[Mj] denotes the expected number of rehabilitations at the
j-th maintenance intervention. Also, the inspection costs I(·) are a function of
the inspection quality αj , whereas the rehabilitation costs R are independent of the
amount of damage present. Thus, the cost modeling indicates more likely a pure
replacement strategy.

The objective function of eq. (2.46) is subjected to the constraint of eq. (2.47)
formulated in terms of the probability of failure (or reliability index β) for the entire
lifetime [0, T ]. This or similar formulations are quite typical for most applications in
structural engineering. However, the probability of failure is an ‘integral measure’,
that is, it allows to trade-off an overly hazardous structure at, say, the last period
of the life cycle against an overly safe structure from earlier on. Hence, instead
of a time-dependent probability of failure specified for an arbitrary horizon, it is
the failure rate which should be utilized for setting safety targets (Rackwitz, 2000).
This also allows to avoid principal inconsistencies like in (Thoft-Christensen and
Sørensen, 1987), where the objective function to be minimized is additionally con-
strained in terms of the reliability indices β(tj) (j = 1, 2, . . . , n) to always the
same minimum reliability index βmin between maintenance interventions, although

6It should be noted that we modified the failure cost term given in (Madsen et al., 1990) to have
proper yearly discounting. Moreover, in (Madsen et al., 1990) it is assumed that the failure cost L is
a function of time, although no description of this function is given.
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the time intervals (tj−1, tj] between the interventions are to be optimized and differ
considerable.

In (Mori and Ellingwood, 1994b) the formulation developed in (Thoft-
Christensen and Sørensen, 1987; Madsen et al., 1990) is applied to the optimal
maintenance planning for concrete beams. In their paper not only the inspection
costs are dependent on its quality, but also the repair costs depend on the amount
of damage present in the structure. The optimization is again performed with re-
spect to inspection qualities (in their case a detection threshold) and maintenance
times. They do not discount any costs, because they claim that “[. . .] the future
discount rate is unknown” (Mori and Ellingwood, 1994b). More interesting, how-
ever, are their optimization results when the cost factors for maintenance and fail-
ure are varied. In case of high failure-cost/maintenance-cost ratios the structure
is subjected to extensive maintenance interventions to keep the structure in a ‘as
new’ state throughout the given lifetime [0, T ], whereby the probability-of-failure
constraint of the type like eq. (2.47) does not become active. In case of low failure-
cost/maintenance-cost ratios, however, only a minimum of number maintenance
interventions are performed at the beginning of the life cycle just to ensure compli-
ance with the probability-of-failure constraint at time T .

The latter is in contrast to the findings in (Frangopol et al., 1997). Although
Frangopol et al. (1997) refer explicitly to the work in (Thoft-Christensen and
Sørensen, 1987) and (Mori and Ellingwood, 1994b), and utilize similar cost models,
an expected present life-cycle cost as objective to be minimized and probability-
of-failure constraints as in (Thoft-Christensen and Sørensen, 1987), their optimal
solutions indicate that maintenance interventions should not be performed in the
beginning of the lifetime, but at the end of the lifetime when deterioration becomes
more manifest. Unfortunately, the descriptions in (Frangopol et al., 1997) are some-
how incongruous (for example, failure costs are not discounted, although all other
costs are discounted; or the probability of failure in the lifetime is determined as
maximum of the probabilities of failure between maintenance interventions) for be-
ing able to perform a more detailed comparison. But what is most notable at the
analyses of Mori and Ellingwood (1994b), Frangopol et al. (1997) and similar ones
is, that the probability-of-failure constraints quite often strongly affect the solutions.
Nevertheless, so far there has basically no attempt been made to utilize cost-benefit
analysis for maintenance optimization—with the exception of Streicher and Rack-
witz (2004) mentioned above—which would, among others, allow to avoid incon-
sistencies between failure costs and reliability constraints. Nor are there any formu-
lations available which take into account other performance criteria than failure—as
done recently in structural design optimization.
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2.5 CONCLUSIONS

During the past decades there has been tremendous progress towards solving life-
cycle-based and cost-optimal design or maintenance problems. Nevertheless, from
the short review of state-of-the-art applications given above it becomes evident that
the following four topics require further development:

i.) Whereas the minimization of the expected life-cycle costs is an important
contribution to determine cost-effective design or maintenance solutions, it
has some shortcomings in so far as it always implicitly assumes that all solu-
tions have the same benefit and that the benefit always outweighs the costs.
In general, however, we have to justify why we want to allocate resources for
a new or existing structure. And this can only be done by showing that the
‘advantages’ (benefits) outweigh the ‘disadvantages’ (costs). For example,
in case of maintenance planning we have to determine the conditions under
which is it worth to extend the lifetime of an existing structure by rehabili-
tation efforts and, equally important, when not, that is, when is the structure
indeed obsolete and warrants no further investments. Similarly, “[. . .] the
concept of an ‘acceptable risk’ is without proper meaning unless benefits are
known” (Pearce, 1981). Hence, in both the decision on investments and in
the setting of acceptable limits a cost-benefit analysis is required.

ii.) In reliability-based maintenance optimization, but also in reliability-based
structural design, it is still common practice to utilize the probability of failure
specified for an arbitrary time horizon as a criterion of ‘risk acceptability’—
for example, in the form of constraints. Such a practice can be certainly
justified for non-deteriorating structures subjected to stationary loads or de-
mands, since in this case the general time-variant reliability problem can be
transformed in a time-invariant one in terms of the just mentioned probabili-
ties of failure. However, in general cases, like when deterioration is present,
the problem has to be treated as an intrinsic time-variant one. That is, the
‘acceptability’ of the structure has to be verified for each point in the entire
lifetime. Hence, the appropriate choice for setting safety targets is the failure
rate. Only thereby we can avoid the implicit trade-offs between overly safe
and overly hazardous periods in the life cycle of a structure.

iii.) In basically all applications of reliability-based design or maintenance opti-
mization it is assumed that the optimal lifetime of the structure is known. But
what about an existing structure which has been used already for some time?
Is its lifetime the remaining time of use? Or does it have the same lifetime like
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a new structure? And what is the lifetime of an existing structure which will
be used in a different way than originally designed for? Clearly, these kind
of questions are closely related with the acceptable failure rate of a structure.
For example, if we have a non-deteriorating structure which is designed in
such a way that its failure rate is smaller than the acceptable failure rate, then,
under the condition that the loads or demands acting on the structure will not
increase in time, the failure rate of the structure will be for any future point
in time smaller than the acceptable failure rate. In other words, the lifetime
of a non-deteriorating structure is infinite7. This should not be misunderstood
in such a way, that the structure will not fail at all. Rather, the probability
of failure per, say, year, under the condition, that the structure has not failed
so far, is the same in each year, and is always less than what is deemed ac-
ceptable. In case of deterioration, or more precisely, increasing failure rates,
the lifetime is certainly finite. But in both cases the lifetime is related to the
acceptable failure rate and the current condition of the structure.

iv.) Beside preventing structural collapse, an important aspect of maintenance
planning and structural design is to assure a certain performance of the struc-
ture throughout its lifetime. That is, the benefit from using or operating a
structure may be reduced due to structural deficiencies. The same holds
for functional aging, where the structure is still technical sound, but does
no longer meet its current demands. Such effects can only be consistently
described when the condition- and time-dependency of benefits is explicitly
taken into account.

In the following we will develop along the line of these four topics a novel for-
mulation for maintenance optimization based on cost-benefit criteria. This formu-
lation will not only allow a more refined optimization of maintenance interventions,
but will simultaneously allow to determine optimal lifetimes and acceptable failure
rates.

7The use of a finite time interval in traditional design is only due to the use of the probability of
failure as an acceptance criteria, which is always related to a time interval.





3
Fundamentals of Cost-Benefit

Analysis

3.1 VALUE FUNCTIONS AND UTILITY FUNCTIONS

Before we introduce cost-benefit analysis, let us formally investigate the process of
decision making. Given is a set A of all feasible acts or alternatives a. To each act
a ∈ A we associate n indices of value: X1(a), X2(a), . . . , Xn(a). In principle,
we can think of the n evaluators Xj(a) as mapping each a from the act space into a
point

x = (x1 = X1(a), x2 = X2(a), . . . , xn = Xn(a)) (3.1)

in the n-dimensional consequence space (Fig. 3.1). Now, the decision maker’s prob-
lem is how to choose a in such a way, that he will be ‘happiest’ with the resulting
consequences x. In some cases there may exist a dominant solution adom which is

a
x = (x1, x2, . . . , xn)

X1, X2, . . . , Xn

Act space Consequence space

Figure 3.1: Mapping of acts into consequences, as adopted from (Keeney and Raiffa, 1993).
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better than all alternatives ã ∈ A\{adom} in terms of the evaluators Xj , that is,

Xj(adom) ≥ Xj(ã) for all j (3.2)

and
Xj(adom) > Xj(ã) for some j (3.3)

(In eqs. (3.2) and (3.3) we assumed, without any loss of generality, that the evalua-
tors are defined in such a way, that higher values are preferred.)

In general, however, it is not possible to maximize all evaluators (or objectives)
simultaneously. In such cases, a scalar-valued function v(·) has to be constructed,
representing the decision maker’s preference structure. That is, if the decision
maker is indifferent between two consequences x′ and x′′ (written x′ ∼ x′′), then
the value functions v(x′) and v(x′′) are equal, and vice versa:

x′ ∼ x′′ ⇔ v(x′) = v(x′′) (3.4)

And if the decision maker prefers outcome x′ over outcome x′′ (written x′ ≻ x′′),
then v(x′) is greater than v(x′′), and vice versa:

x′ ≻ x′′ ⇔ v(x′) > v(x′′) (3.5)

With such a value function, the problem of choosing the best alternative a∗ is put
into the format of the standard optimization problem

a∗ = argmax
a∈A

v(x) (3.6)

Clearly, the difficulty of the original multi-objective decision problem is, thereby,
shifted to the construction of the value function v(·). Some techniques for assessing
multi-attribute value functions are given in (Keeney and Raiffa, 1993). Our focus
later on, however, will not be on decisions in general, but on problems concerning
the welfare of a community, a region or society at large. Thereby, the value function
to be maximized, that is, welfare, is given by the net benefit function (Adler and
Posner, 2006; Boardman et al., 2006).

Thus far, we have only treated the problem of decisions under certainty. In case
of decisions with respect to optimal maintenance planning we have to make pre-
dictions about the future—predictions about future loads, structural deterioration,
etc. These predictions are, in general, uncertain. Consequently, when we choose
an act a, the resulting consequences of this act are also uncertain. This is shown
in an illustrative way in Fig. 3.2 for the two acts a′ and a′′. Their respective uncer-
tain (uni-variate) consequences x′ and x′′ are described by the probability density
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Figure 3.2: Illustration of uncertain consequences x′ and x′′.

functions fX′(x′) and fX′′(x′′), respectively. Similar to the case of decisions under
certainty, the decision maker’s problem is again to choose between different acts
a ∈ A, however, now in such a way, that he will be ‘happiest’ with the resulting
probability distribution function FX(x) of the consequences x. And as before, there
may be cases when a solution adom, now, probabilistically dominates all alternatives
(Keeney and Raiffa, 1993), but, in general, we need again a function u(·) represent-
ing the decision maker’s preference structure. In case of decisions under uncertainty
such a function is called utility function. The salient characterizing property of the
utility function is, that the decision maker’s preference structure with respect to dif-
ferent probability distribution functions is replaced by the comparision of expected
utilities. Thus, the case of indifference is

FX′(x′) ∼ FX′′(x′′) ⇔ E[u(x′)] = E[u(x′′)] (3.7)

and the case of preference is

FX′(x′) ≻ FX′′(x′′) ⇔ E[u(x′)] > E[u(x′′)] (3.8)

where the expected utility is given as

E[u(x)] =

∫

Rn

u(x) dFX (3.9)

Consequently, the best alternative a∗ has the highest expected utility, that is,

a∗ = argmax
a∈A

E[u(x)] (3.10)

It should be noted, that the ordering of preferences as determined by the ex-
pected utility function E[u(x)] generally differs from the one by taking the expected
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value E[v(x)] of the value function—unless v(x) is a linear transformation of u(x)

(Keeney and Raiffa, 1993; Schoemaker, 1982).
The idea of utility goes back to Bernoulli (1738), but it was Von Neumann and

Morgenstern (1947) who showed that the utility function can be derived from a
set of preference axioms: completeness, transitivity, continuity, monotonicity, and
substitution (Von Neumann and Morgenstern, 1947; Schoemaker, 1982). That is, as
long as all these preference axioms hold, then there exists an utility function such
that an ordering of possible alternatives with respect to the expected utility fully
coincides with the decision maker’s actual preferences. It should be noted, that
there exist also alternative formulations of preference axioms (see, for example,
Fishburn, 1987; Luce and Raiffa, 1957; Pratt et al., 1964; Savage, 1954) which
nevertheless result in the same expected utility theorem.

The utility functions u(·) differ in the way they represent the decision maker’s
preferences towards risky situations. For example, a decision maker may reject
an uncertain situation (often called a lottery or a gamble) which would give him a
certain expected value of return in favor of a smaller value he will receive for sure.
In this case we say that the decision maker or his preference structure is risk-averse.
In cost-benefit analysis it is assumed that the utility function is linear in wealth v(·).
Hence, we can write without any loss of generality:

u(x) = v(x) (3.11)

That is, society at large is risk-neutral. Eq. (3.11) also implies that decisions are not
affected by changes in wealth position. Applying now the expected utility theorem
for societal decision making means, that that alternative should be chosen which
maximizes the expected wealth of society. For other utiliy functions for wealth and
their implied preference structures see (Bell and Fishburn, 2000).

3.2 COST-BENEFIT ANALYSIS AS DECISION-AIDING RATIONALE

We now want to focus on those decisions which are related to the well-being or wel-
fare of society. To ensure efficiency in resource allocation and to achieve a maxi-
mum rise in social welfare, it may be necessary to use decision-aiding rationales that
are based on systematic and careful assessment of all alternatives or options under
consideration. Decision-making theory distinguishes thereby between descriptive
theories, which are concerned with understanding and predicting how decisions are
actually made, and normative theories dealing with the problem of how people ide-
ally should act (Fischhoff et al., 1981). Nevertheless, normative theories may also
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contain descriptive elements in the form of empirically observed or expressed val-
ues of beliefs, which, however, have to fulfill certain consistency requirements—the
above mentioned preference axioms.

The most common types of decision-aiding approaches are displayed in Fig. 3.3,

......... ......... ......... ......... ......... ......... ......... ......

.....................................................................

.........

.........

.........

.........

.........

.........

.........

......

.........
.........

.........
.........

.........
.........

.........
.........

.........

.........
.........

.........
.........

.........
.........

.........
.........

.........

......... ......... ......... ......... ......... ......... ......... ......... .........

Social
perspective

Technical
perspective

Subjective
perspective

CBA DA

Applied

SWT

Social DA

Supra DADecision-
maker CBA

Figure 3.3: Partition of the space of decision-aiding rationales, as adopted from (Merkhofer, 1987).
[CBA: cost-benefit analysis; DA: decision analysis; SWT: social welfare theory.]

schematically separating the space of rationales. The approaches differ in terms of
the decision criterion adopted for identifying the ‘best’ alternative and in terms
of procedures utilized to implement the respective criterion (Merkhofer, 1987).
Thus, cost-benefit analysis utilizes the expected net present value as decision cri-
terion and deduces preference structures from choices and prices observed in the
marketplace—either directly or indirectly. Decision analysis, on the other hand,
employs subjective value judgements, that is, utilities, and the preferred choice is
indicated by the maximum expected utility, instead of an expected monetary value.
Applied social welfare theory, finally, aggregates individual preferences to form a
social welfare function to be maximized. According to the classification given in
(Merkhofer, 1987), cost-benefit analysis has a more technical perspective, whereas
decision analysis shows a more subjective one, and applied welfare theory a more
social one.

Clearly, there is also a transition between or a blending of approaches. For
example, a supra decision maker (Keeney and Raiffa, 1993) aggregates the indi-
vidual utility functions to a social utility function, social decision analysis may use
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willingness-to-pay and efficiency arguments to construct an utility (or, more pre-
cisely, value) function, or a decision-maker cost-benefit analysis adopts procedures
from social choice or decision theory for representing preferences. Similarly, the
decision criterion associated with one approach can, in principle, be derived from
each of the other theories by making appropriate assumptions. For example, cost-
benefit analysis may be interpreted as a special kind of decision analysis whose
utility function can be decomposed into costs and benefits, is measured in monetary
terms and is linear therein (see previous Sec. 3.1).

Employing the (more technical) perspective of cost-benefit analysis in deter-
mining optimal solutions to maintenance implies by no means, that differing (non-
technical) perceptions of risk (Starr, 1969; Slovic, 1987) should be ignored in the
decision-making process. Quite to the contrary, taking into account public risk per-
ception is a key component in successful risk communication and risk management
(Fischhoff et al., 1981; Slovic, 2000). However, cost-benefit analysis is in our view
normative in intent, not predictive or explanatory. Like any normative analysis,
cost-benefit analysis articulates norms and principles that its agents ‘ought’ to fol-
low. But ‘ought’ means ‘can’, not ‘will’ or ‘have to’. As is convincingly argued in
(Adler and Posner, 2006), cost-benefit analysis is not a super-procedure. It tracks
overall well-being, not rights, distributive considerations, or putative moral factors.
But this means also, that cost-benefit analysis has always to be imbedded in a po-
litical and institutional context, which allows to monitor those external components
throughout the decision-making process and to determine whether alternatives are
morally advisable in its entirety (see also Hubin, 1994; Sunstein, 2002).

The origin of applying cost-benefit to assess public expenditure decisions can
be traced back to the U.S. Flood Control Act of 1936. After a series of disastrous
floods in the 1920s and 30s, the U.S. Congress declared in Section 1 of the Flood
Control Act (as cited in Arnold, 1988),

“[. . .] that the Federal Government should improve or participate in the
improvement of navigable waters or their tributaries, including watersheds
thereof, for flood-control purposes if the benefits to whomsoever they may ac-
crue are in excess of the estimated costsa, and if the lives and social security
of people are otherwise adversely affected.”

aEmphasis added.

This authorization of cost-benefit analysis became even more widespread by the
U.S. Reclamation Project Act of 1939. In both cases, cost-benefit analysis has been
seen as a useful source of information in supporting the decision process, not as its
sole determinant (Fuguitt and Wilcox, 1999).
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In the 1950s and 60s application of cost-benefit analysis in the U.S. not only
widened to military expenditures and health care, although in the derivate form of
cost-effectiveness analysis, but spread also to other countries like the U.K., where
it was utilized for investment planning in transportation projects. In the 1980s
and 90s, finally, cost-benefit analysis has also been incorporated into environmen-
tal evaluations as exemplified by the U.S. Clean Air Act Amendments of 1990,
which allows marketable emission permits and auctions of emission rights. In Japan
cost-benefit analyses are performed for diverse public projects as dams, roads, rail-
ways, or coastal fishing grounds. Also cost-benefit criteria are employed in the
re-evaluation of government policies (Yamada, 2006). In summary, cost-benefit
analysis became over the decades a standard economic tool in policy making, and
its use in the future will rather increase than decline (Fuguitt and Wilcox, 1999).

3.3 BASIC ANALYSIS STEPS

To summarize, cost-benefit analysis is a quantitative approach that discloses any
input to the decision-making process as well as any qualitative assumption made
and, at the same time, provides formal criteria for identifying the ‘best’ alternative
under situations of risk. For the cost-benefit analysis of maintenance interventions
we distinguish four basic analysis steps:

i.) Modeling of all alternatives, that is, possible types or sequences of mainte-
nance actions and their consequences.

Since in most cost-benefit analyses no explicit optimization is performed,
usually only a small number of in advance already ‘fixed’ alternatives are
compared among each other and the status quo. But in most technical prob-
lems, like maintenance planning for deteriorating structures herein, the alter-
natives can vary with respect to many design variables, for example, the time
and number of maintenance interventions, the quality of inspection, the reha-
bilitation strategy, etc. Hence, we actually have to develop a ‘parameterized’
model of the maintenance process and its consequences.

ii.) Assignment of probabilities to alternative-consequence relationships, either
based on past empirical data, or derived from stochastic models.

When planning future maintenance interventions we have to take into account
all uncertainties with respect to the condition states of the structures and the
imperfections of maintenance actions. Although there exist some empirical
data on the deterioration of structures (as in the case of bridge management
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systems), future structural condition states depend on a such a multitude of
factors like, for example, structural design, loads, environmental conditions,
etc., but also on the maintenance interventions themselves, that it is not overly
realistic to assume that there will be ever enough data available to describe
stochastic deterioration without recursion to a physical or chemical model.
Hence, structural reliability methods are mandatory to determine how the
structure will evolve in time.

iii.) Monetization of all impacts, that is, all alternatives with their favorable as
well as detrimental consequences (benefits and costs).

Benefits of infrastructure projects, for example, are reduction of travel or
transportation times and, therewith, a reduction in transportation costs, num-
ber of accidents as well as environmental deterioration. But benefits can also
be more indirect like in the case of economic strengthening of a certain re-
gion. Costs may include construction costs, costs for operation and mainte-
nance, costs due to failure, etc. For being able to compare the benefits and
costs, they have to be expressed in a common unit. In cost-benefit analysis
this is some monetary unit like dollars, yens or euros. The monetary valu-
ing is done via direct or indirect market methods (Boardman et al., 2006). It
should be also noted, that when specifying benefits and costs this has to be
done with due diligence to avoid ‘double counting’.

iv.) Optimization of maintenance interventions by maximizing the expected net
present benefit.

The decision criterion—the objective function—in cost-benefit analysis is the
expected net present benefit, that is, benefits minus costs—with proper dis-
counting. This net present benefit should be positive for a project to get ac-
cepted. If there are several alternatives, then the project with the largest net
present benefit is selected. Herein we will not just select the ‘best’ mainte-
nance policy from a set of possible alternatives, but we will indeed optimize
the maintenance interventions in such a way that the net present benefit is
getting maximized throughout the structural lifetime.

The term ‘net present benefit’ in above analysis step (iv.) needs some further ex-
planation. As already mentioned, the net benefit g(t, t0) throughout the time period
[t0, t] is the difference between the benefits b(t, t0) and the losses or costs l(t, t0):

g(t, t0) = b(t, t0) − l(t, t0) (3.12)
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In general, decisions have important consequences that extend over time, that is,
we expect to derive benefits and incur costs over a number of years. However, for
different projects these benefits and costs may arise in different future time periods,
so that we are required to make intertemporal comparisons. Thereto, we discount
future benefits and costs such that all monetary amounts are in a common metric,
the so called present value (Boardman et al., 2006). If we take the beginning t0 of
the lifetime as the ‘present’, then the present value PVt0 [·] of the net benefit is

PVt0 [g(t, t0)] = PVt0 [b(t, t0) − l(t, t0)] = PVt0 [b(t, t0)] − PVt0 [l(t, t0)] (3.13)

In other words, the present value of the net benefit—the net present benefit—equals
the difference between the present value of the benefits and the present value of the
costs. How to calculate present values, that is, how to discount, is discussed next.

3.4 DISCOUNTING

Most discounting is done annually at an annual discount rate γ ≥ 0. Hence, the
present value PVt=0 of an impact w(t)—either a benefit b(t) derived, or a cost l(t)

incured—after one year (t = 1) is determined as

PVt=0 [w(t = 1)] =
w(t = 1)

1 + γ
(3.14)

Consequently, the present value of an impact w(t = n) occuring after t = n years
is given as

PVt=0 [w(t = n)] = w(t = n) [1 + γ]−n (3.15)

The term [1 + γ]−n is also called present value factor, or discount factor.
If we want to discount for a different resolution of time than years, we can do so

by adjusting eq. (3.15). Let us assume we have a given time period [t0, t], and we
want to discount ξ times per year. Then the present value is

PVt0 [w(t)] = w(t)

[

1 +
γ

ξ

]−ξ(t−t0)

(3.16)

or after expansion

PVt0 [w(t)] = w(t)

{[

1 +
γ

ξ

]ξ/γ
}−γ(t−t0)

(3.17)
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In fact, in our following analysis we want to discount all monetary amounts conti-
nously. That is, we perform the following passage to the limit for ξ/γ → ∞:

lim
ξ/γ→∞

[

1 +
γ

ξ

]ξ/γ

= e (3.18)

where e is the base of the natural logarithm, also sometimes called Euler’s number,
which equals 2.71828 truncated to five decimal places. Hence when continuously
discounting, the present value of an impact w(t) is given as

PVt0 [w(t)] = w(t) exp[−γ(t − t0)] (3.19)

Thus far we tacitly assumed that the (annual) discount rate is undisputedly
known. However, there exists quite a controversy in the literature about discounting
and the appropriate values of discount rates to be utilized.1 Proponents of discount-
ing, that is, non-zero discount rates, argue mostly along the lines of opportunity cost
or time preference (Boardman et al., 2006; Morrison, 1998). The basic opportunity-
cost argument for discounting is, that decision-makers have more options to produce
future benefits than just prolonging the status quo or implementing the project un-
der investigation. Thus, discounting alerts the decision-maker to these additional
alternatives. In other words, if discounted net benefits are less than zero, then there
is at least a third option, for example, some different project, available that is better
for overall welfare than the project currently under investigation.

In case of the social rate of time preference, economic theory hypothesizes, al-
beit backed by empirical evidence, that members of society prefer present welfare
impacts to future ones. Thereby, the discount rate depends on the welfare func-
tion utilized, even though most popular welfare models result in a discount rate that
contains two additive terms: one related to pure time preference and one related
to economic growth (Boardman et al., 2006; Rackwitz, 2006). As pointed out in
(Arrow et al., 1996; Morrison, 1998), the choice between the two competing ap-
proaches of opportunity cost and time preference is primarily a matter of regulatory
policy.

As already mentioned above, there exists also a controversy whether social dis-
counting should be performed at all. Opponents of discounting argue mainly along
the line of intertemporal distributive fairness, that is, that future generations should
not be worse off than present one, and vice versa (Cowen and Parfit, 1992; Heinzer-
ling, 1999). As mentioned by Adler and Posner (2006), however, any discount rate,

1For a more than typical example of this controversy see the correspondence between Donohue
III (1999) and Heinzerling (1999).
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for example, also a zero value, may produce conflicts between overall welfare and
distributive norms. Since cost-benefit analysis is only designed for tracking overall
welfare, Adler and Posner (2006) suggest to accompany cost-benefit analysis by a
separative distributive analysis to determine whether certain projects or policies are
on balance morally advisable.2

3.5 COST-BENEFIT ANALYSIS OF MAINTENANCE INTERVENTIONS

3.5.1 Expected Net Present Benefit

With these prerequisites we can now formulate our maintenance optimization prob-
lem in the framework of cost-benefit analysis. For assessing the acceptability of
a certain maintenance policy we have to take into account not only the expected
maintenance costs mj , but all expected future losses l(t, t0) and benefits b(t, t0)

throughout the time interval [t0, t]. Moreover, we include also the expected initial
cost c0 in our calculations to ensure that the structure has been originally designed
in an economically reasonable way. All these cost factors are aggregated in the net
benefit function g(t, t0) as

g(t, t0) = b(t, t0) − l(t, t0) −
n∑

j=1

mj − c0 (3.20)

Whereas the expected initial cost c0 and the expected maintenance costs mj accrue
at discrete times t0 and tj , respectively, benefits and losses aggregate continuously
throughout the entire lifetime. Utilizing the principle of cost-benefit analysis, the
maintenance interventions will be justified when the total expected costs are out-
weighed by the total expected benefits.

For being able to calculate all benefits and costs, we need to have a descrip-
tion of structural deterioration in terms of directly or indirectly observable dam-
age or deterioration states, which can be related to specific structural performance
conditions—including their effect on the load carrying capacity and the remain-
ing lifetime—as well as possible rehabilitation actions (Hearn, 1998a; Das, 1998).
Moreover, since deterioration is uncertain over time due to the variability inherent
in load effects and operating environments, it should be ideally modeled as a (mono-
tonically increasing) stochastic process {X(t), t ≥ t0}, where t denotes time.

Let us describe the condition of the deteriorating structure by a finite number
of, say, m discrete states: 1, 2, . . . , m. With such a description we can achieve

2In our following numerical analyses we will utilize a constant, non-zero discount rate. However,
it should be mentioned, that our formulation is general. Thus, any type of discount rate, that is, also
a zero discount rate, can be utilized.
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a certain compatibility with the condition rating of existing infrastructure manage-
ment systems (Hawk and Small, 1998; Thompson et al., 1998; De Brito et al.,
1997; Söderqvist and Veijola, 1998; Miyamoto et al., 2001; Roelfstra et al., 2004).
The states are numbered in our case in such a way, that state 1 corresponds to no
deterioration, state 2 corresponds to minor deterioration, and so on, until state m,
which denotes structural failure, that is, structural collapse. Thus, the probability
distribution π(t) of being in one of the m possible states at time t is

π(t) =








π1(t)

π2(t)
...

πm(t)








=








Pr(X(t) = 1)

Pr(X(t) = 2)
...

Pr(X(t) = m)








(3.21)

The explicit inclusion of the failure state m as a condition state allows us to take
into account the effect of structural deterioration on structural safety. This inclusion
clearly differs from existing infrastructure management system, where failure is ad-
dressed only indirectly via the verbal description of the most severe condition state
as ‘requiring immediate action’ (see, for example, Roelfstra et al., 2004; Scherer
and Glagola, 1994).

For calculating the benefits and losses, two basic quantities of the deterioration
process X(t) are required:

i.) Pointwise availability (Barlow and Proschan, 1965): The probability that the
structure is at a given instant of time t in one of the (m − 1) deterioration
states, that is, that the structure is still operable. These probabilities are given
as πk(t) = Pr(X(t) = k) with k = 1, 2, . . . , m − 1.

ii.) Number of failures per time interval: The probability that the structure, which
is still operable at time t, will fail in the following time interval (t, t + dt],
where dt is a small time increment. This probability is given as h(t)dt =

π̇m(t)dt/(1 − πm(t)) = dPr(X(t) = m)/(1 − Pr(X(t) = m)).

With these two quantities we can calculate the costs and benefits which accrue dur-
ing the existence of the structure, as well as the ones which occur in case of failure.

3.5.2 Expected Benefits

The reason why we use or operate a structure is, that we expect a certain benefit
from doing so. For getting this benefit, the structure has to be usable or operable,
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that is, the structure has to be available. As mentioned abobe, the availability of the
structure is determined by the probabilities πk(t) with k = 1, 2, . . . , m− 1. But this
is only part of the picture in the benefit calculation, since the benefits generated may
also depend on the condition of the structure. For example, due to wear and tear,
fatigue, etc. bridges may have structural deficiencies which may affect structural
safety. Bridge management systems deal usually with such deficiencies by imposing
weight restrictions (Minchin, Jr. et al., 2006). Such weight restrictions, however,
decrease the benefit we can derive from the structure, because this may require a re-
routing of vehicles, resulting in extended travel or transportation times, additional
accidents due to longer routes, increased environmental deterioration, and other
economic or social losses (Minchin, Jr. et al., 2006; Sugimoto et al., 2002). Hence,
the received benefit db(t) per time interval (t, t + dt] is determined as the sum of
the products of the state-dependent benefit rates Ḃk and the probabilities πk(t) of
the structure being at time t in one of the deterioration states k = 1, 2, . . . , m − 1:

db(t) =
m−1∑

k=1

Ḃkπk(t)dt (3.22)

The problem of structural deficiency is aggravated by the additional problem
of functional aging. By functional aging we mean the case that structures may
still be technically sound, but may simply no longer meet current demands. For
example, also comparatively recently constructed bridges and highways serve traffic
loads and volumes which exceed by far the anticipated values (Minchin, Jr. et al.,
2006), and thus require likewise management interventions as, for example, weight
or speed limit restrictions—with all its economic consequences. Thus, the benefit
rates in eq. (3.22) are, in general, not only state-, but also age- or time-dependent,
such that the received benefit db(t) per time interval (t, t + dt] is given as

db(t) =
m−1∑

k=1

Ḃk(t)πk(t)dt (3.23)

Since the received benefits arise at different future time intervals, we contin-
uously discount all future benefits with the discount rate γ. Hence, the expected
present benefit b(t, t0) for the time interval [t0, t], as used in eq. (3.20), is

b(t, t0) =

t∫

t0

exp(−γτ )db(τ ) =
m−1∑

k=1

t∫

t0

exp(−γτ )Ḃk(τ )πk(τ )dτ (3.24)
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3.5.3 Expected Losses

When using or operating a structure, we are well aware, that there is, in general,
no risk-free structure. In other words, there is always a small probability that a
structure may collapse. The probability that a structure collapses in the time interval
(t, t + dt] is given as dπm(t). This probability of failure can be expressed with the
help of two quantities. First, the structure may only fail, if it has not failed so far.
The probability of no failure until time t is (1 − πm(t)), which is nothing else than
the probability of the structure being still in one of its operable states, that is,

1 − πm(t) =

m−1∑

k=1

πk(t) (3.25)

Second, the probability of failure, conditional that the structure is still operable at
time t, is given by the failure rate h(t) as h(t)dt. Combining both quantities gives
the probability of failure dπm(t) in the time interval (t, t + dt]:

dπm(t) = h(t)(1 − πm(t))dt (3.26)

The failure consequences are composed of indirect failure costs, such as eco-
nomic losses, and direct failure costs, such as life saving costs, environmental pro-
tection costs, costs for de-commissioning, etc. (Rackwitz, 2000; Rackwitz, 2004).
All these cost factors are aggregated in the failure cost L. Thus, the loss dl(t) in the
time interval (t, t + dt] is given as

dl(t) = Ldπm(t) = Lh(t)(1 − πm(t))dt (3.27)

that is, the failure consequences are multiplied with the probability of failure. Like
in the case of benefits, the losses may occur at different time intervals. Hence, also
the losses have to be discounted to give present values. Thus, the expected present
loss l(t, t0) for the time interval [t0, t], as used in eq. (3.20), is

l(t, t0) =

t∫

t0

exp(−γτ )dl(τ ) =

t∫

t0

exp(−γτ )Lh(τ )(1 − πm(τ ))dτ (3.28)

3.5.4 Expected Maintenance Costs

Maintenance actions can be performed anytime before failure. The expected dis-
counted maintenance costs mj at time tj are composed of inspection and rehabil-
itation costs. Thereby, rehabilitation work is always preceded by inspection. That
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is, we first have to assess the deterioration state of an existing structure by (mostly)
non-destructive inspection techniques (Aktan et al., 1996; Rens et al., 1997; Hearn,
1998b; Pandey, 1998). However, such procedures are, in general, of imperfect na-
ture due to limited resolutions, partial observability of the structure, measurement
errors, humen errors, imperfect interrelations between measured and sought-for
quantities, etc. That is, there is always the possibility given, that the inspection
techniques do not disclose the actual condition state of the structure.

The standard method for characterizing and validating the quantified detec-
tion/discrimination capability of a non-destructive inspection technique is the prob-
ability of detection (Rummel, 1998; Achenbach, 2000). The probability of de-
tecting a given deterioration state (event D) is a conditional probability, that is,
Pr(D|X(t) = k, α), in so far as the capability of the inspection technique de-
pends, in general, on the degree of deterioration present, say, X(t) = k—in gen-
eral, a higher degree of deterioration is more likely to be detected than only minor
deterioration—and the amount of effort spent in assessing the structural condition.
For example, utilizing different, partial complementary inspection methods (Horn
and Mayo, 2000) may lead to an overall improved inspection capability, described
herein by the parameter of inspection quality α, but may also result in higher in-
spection costs I(α). It should go without saying, that the inspection efforts can vary
from maintenance to maintenance, that is, for each maintenance at time tj we can
have a different parameter αj of inspection quality.

Since inspection or condition assessment makes only sense as long as the struc-
ture has not failed, the cost for inspection I(αj) has to be multiplied by the proba-
bility of no failure (1−πm(t−j )), where t−j is the time just prior to the j-th rehabilita-
tion. Thus, the expected cost of inspection is I(αj)(1−πm(t−j )). The rehabilitation
costs depend on whether a damaged structure has been identified during inspection
as being actually damaged. The probability that a structure has been identified as
being in a certain damage state k is the product of the probability πk(t

−
j ) of being

in this state and the probability Pr(D|k, aj) of just detecting such damage, that is,

Djπ(t−j ) =












0

Pr(D|2, aj)π2(t
−
j )

Pr(D|3, aj)π3(t
−
j )

...
Pr(D|m − 1, aj)πm−1(t

−
j )

πm(t−j )












(3.29)

The (m×m)-matrix Dj = D(αj) in eq. (3.29) is defined as

Dj = diag {0, Pr(D|2, αj), Pr(D|3, αj), . . . , Pr(D|m − 1, αj), 1} (3.30)
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where we assume, without any restrictions, that a failed structure (state m) is de-
tected with probability one.

Having performed a condition rating of the structure, we have to decide to which
extent rehabilitation work should be performed. Since we are interested in a more
or less simple rehabilitation policy, which can be easily implemented in practice, we
base our policy on a structural damage or deterioration threshold ∆. That is, if the
condition assessment reveals, that the overall structural deterioration has reached
the value, say, X(t) = k and if this value equals or exceeds the threshold ∆, then
the structure will be rehabilitated. If, however, X(t) = k is less than the threshold
∆, then no action is performed. We call this deterioration threshold herein rehabili-
tation level. The above described maintenance policy as such can be interpreted as
a variant of the classical failure limit policy (Barlow and Proschan, 1965; Pierskalla
and Voelker, 1976; Valdez-Flores and Feldman, 1989; Wang, 2002).

From the above follows, that for determining the probability vector of the struc-
tural condition states which will be de-facto rehabilitated, we have to delete those
entries of the probability vector of eq. (3.29) which are not related to any possible
rehabilitation work. Hence, we pre-multiply the vector Djπ(t−j ) with a matrix Cj

to get

CjDjπ(t−j ) =

















0
...
0

Pr(D|∆j, aj)πk(t
−
j )

Pr(D|∆j + 1, aj)πk+1(t
−
j )

...
Pr(D|m − 1, aj)πm−1(t

−
j )

0

















(3.31)

That is, the (m×m)-matrix Cj = C(∆j), which can also vary from maintenance
intervention to maintenance intervention, just filters out the deterioration states to
be rehabilitated. It has the following diagonal form:

Cj = diag{0, . . . , 0, c∆j∆j
= 1, . . . , 1, 0} (3.32)

where ∆j denotes the rehabilitation level at the j-th maintenance intervention. That
is, all deterioration states k ≥ ∆j are rehabilitated. The (m,m)-th entry in matrix
Cj is equal to zero, because we do not re-build any failed structure.

The expected rehabilitation cost is then the scalar product of the probability
vector CjDjπ(t−j ) and the rehabilitation cost vector R = [0, R2, R3, . . . , Rm−1, 0],
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that is, RCjDjπ(t−j ). With proper discounting, the expected present maintenance
costs at time tj are finally

mj = exp(−γt−j )RCjDjπ(t−j ) + exp(−γt−j )I(αj)(1 − πm(t−j )) (3.33)

3.6 ACCEPTABLE FAILURE RATE AND OPTIMAL LIFETIME

Optimal solutions in structural design and maintenance planning are obtained by
maximizing the expected net present benefit

g(T, t0) = b(T, t0) − l(T, t0) −
n∑

j=1

mj − c0 (3.34)

throughout a designated time horizon [t0, T ], where T denotes the lifetime of the
structure. As can be seen from eq. (3.34), the quantity g(T, t0) depends on the
difference between expected benefits and expected costs. In fact, these factors are
a description of our preferences towards the structure. Optimally these preferences
have to be fulfilled for any time interval. In other words, we are indeed interested
in maximizing the expected net present benefit rate

ġ(t) =

m−1∑

k=1

exp(−γt)Ḃk(t)πk(t) − exp(−γt)Lh(t)(1 − πm(t)) (3.35)

for all t in [t0, T ]. Thus, eq. (3.35) evaluates the present trade-off between expected
benefit and expected costs per unit time, whereas eq. (3.34) determines whether the
investments in terms of expected initial costs c0 and expected maintenance costs mj

are economically reasonable for the time horizon [t0, T ].
For a structure to be acceptable with respect to our preferences, the expected

benefit has to outweigh the expected costs for all t, that is, the expected net present
benefit rate has to be positive:

ġ(t) > 0 (3.36)

Since exp(−γt) > 0, this condition can also be written in terms of the non-
discounted, expected net benefit rate

ġn(t) =
m−1∑

k=1

Ḃk(t)πk(t) − Lh(t)(1 − πm(t)) (3.37)

as
ġn(t) > 0 (3.38)

The requirement of a positive net benefit rate for all t is especially relevant since
most of the quantities that influence the decision-making process change during the
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lifetime of a structure, such as failure rates, structural performance, operation costs
or public satisfaction. It should also be noted that for assessing a structure as being
acceptable according to eq. (3.38) only the present preferences towards the structure
and the present state of the structure have to be known.

From eq. (3.38) follows that the lifetime T is reached as soon as the expected
loss starts to be prevalent:

ġn(T ) = 0 (3.39)

The zero net benefit rate criterion of eq. (3.39) implicitly defines the acceptable
failure ha(t) rate of the structure. Rearranging eq. (3.37), that is, ġn(t) = 0, for the
failure rate gives

ha(t) =

m−1∑

k=1

Ḃk(t)

L

πk(t)

1 − πm(t)
(3.40)

Thus, as long as the expected net benefit rate is positive, the failure rate h(t) of the
structure is less than the acceptable failure rate ha(t):

h(t) < ha(t) (3.41)

This shows the close relation between cost-benefit criteria and structural safety,
since a violation of eq. (3.38) leads inevitable to a violation of eq. (3.41), and vice
versa. If the benefit is state-independent, that is, Ḃk(t) = Ḃ(t) for all k, the accept-
able failure rate is simply given as

ha(t) =
Ḃ(t)

L
(3.42)

Eqs. (3.40) and (3.42) also show that a non-deteriorating structure will never over-
stay its lifetime as long as the preference towards the structure, in terms of bene-
fit rates, and the demand on the structure, in terms of the failure rate h(t), is not
changing with time t. As already mentioned above, that this does not imply, that
the structure will not fail at all, but the probability of failure per, say, year, under
the condition, that the structure has not failed so far, is the same in each year, and is
always less than what is deemed acceptable.

3.7 OPTIMIZATION PROBLEM

3.7.1 Maximization of Net Present Benefit Rate

As already mentioned, for a structure to be built, operated and maintained, all in-
vestments also have to be economically reasonable in total. Hence, the expected net
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present benefit has to be positive at the end of lifetime T :

g(T ) > 0 (3.43)

Moreover, maintenance interventions are only economically reasonable when the
maintenance costs mj are outweighed by the net benefit accumulated until the next
maintenance intervention, that is,

b(tj+1, tj) − l(tj+1, tj) − mj ≥ 0 (3.44)

or the end of lifetime T , whichever comes first. Thus the optimal maintenance plan
for a given number n of maintenance interventions is found by solving the following
maximization problem:

g∗(T ∗) = max
t∗,∆∗,α∗,T∗

T∫

t0

ġ(t)dt −
n∑

j=1

mj − c0 (3.45)

subject to
g∗(T ∗) ≥ 0 (3.46)

and
b∗(t∗j+1, t

∗
j) − l∗(t∗j+1, t

∗
j) − m∗

j ≥ 0 (3.47)

with (·)∗ denoting optimal values. In eq. (3.45), t∗ = {t∗1, t
∗
2, . . . , t

∗
n}, ∆

∗ = {∆∗
1,

∆∗
2, . . . , ∆∗

n} and α∗ = {α∗
1, α∗

2, . . . , α∗
n} are the optimal sequences of mainte-

nance times, rehabilitation levels and inspection qualities, respectively. It should be
also noted, that the formulation of eq. (3.45) with respect to the lifetime T to be
optimized imposes the end constraint

ġ∗(T ∗) = 0 (3.48)

on the maximization problem. That is, the optimal lifetime T ∗ is reached as soon as
the expected net present benefit rate becomes zero, or, equivalently, as soon as the
failure rate h(t) reaches the acceptable failure rate ha(t).

3.7.2 Budget Constraints

In real applications there are quite often constraints with respect to the available
budget on maintenance efforts (Miyamoto et al., 2003). In other words, for an
optimal solution to be actually realizable the additional constraint

m̃∗
j ≤ mb (3.49)
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has to be fulfilled, where mb is the maximum available maintenance budget and (̃·)

denotes the solution of the optimization problem of eq. (3.45) taking into account
the constraints of eqs. (3.46), (3.47) and (3.49). However, whereas the constraints
of eqs. (3.46) and (3.47) just assure that the expected future net benefits will out-
weigh the initial cost c0 and the maintenance costs mj , respectively, the constraint
of eq. (3.49) indeed restricts the scope of maintenance actions and thus the long-
term availability of the structure. Hence, a budget constraint, if active, leads, in
general, to a sub-optimal solution, that is, smaller net benefits. The following sce-
narios are examples of possible consequences of budget constraints:

i.) For a given number n of maintenance interventions the lifetime T̃ ∗ is short-
ened, that is, T̃ ∗ ≤ T ∗, since not all rehabilitation work necessary can be
performed.

ii.) For a fixed time period [t0, T ] the structure is, because of deterioration, from
time to time in such a bad condition (that is, structural deficient), that—until
budgetary funds become again available—it can be used only in a restricted
way or even not at all (Minchin, Jr. et al., 2006; Miyamoto et al., 2003), at
least not without violating safety standards.

iii.) Maintenance has to be performed more often (ñ ≥ n), resulting in the long
run in higher than necessary overall maintenance costs, that is,

∑ñ
j=1 m̃∗

j ≥
∑n

j=1 m∗
j .

The usefulness of the optimization formulation of eqs. (3.45) to (3.47), be it with
or without eq. (3.49), is indeed, that it discloses this relation between benefits, costs
and failure rates. Thus, if budget constraints exist, it also shows the resulting con-
sequences: smaller net benefits, shorter lifetimes and reduced periods of usability,
or, if no management intervention is performed, for example, in terms of weight
restrictions or complete closure of bridges, the prolonged usage of non-acceptable,
that is, potentially hazardous structures. In the following we will utilize the formu-
lation without any budgetary constraint, that is, our optimization problem is given
by eqs. (3.45) to (3.47) only.



4
Evolutionary Algorithms

4.1 MIXED-DISCRETE OPTIMIZATION PROBLEMS

There are many applications in structural engineering where we have to maximize
(or minimize) an objective function g(x) with respect to a vector x of design vari-
ables xi (i = 1, 2, . . . , m) which are not continuous, but which have to be selected
from a given set of possible values. Typical examples of such discrete design vari-
ables are: member cross-sections to be taken from commercially available standard
sizes, material properties which have to correspond to available materials, connec-
tivity patterns of structural members, or in our case herein, number of maintenance
actions to be performed, different rehabilitation strategies to be utilized, and so on
(see Sec. 3.7.1). At first glance, it seems that, since there exist only a finite num-
ber of feasible points, optimization problems with discrete variables may be easier
to solve than those with continuous variables. However, even in moderately sized
problems the number of possible solutions is too large to make an exhaustive search
for the best solution x∗. Moreover, discrete optimization problems do not have the
smoothness properties of continuous problems that allows us to use objective and
constraint information at a point x to deduce information about the function’s be-
havior at all points close to x. In other words, in the discrete case, points that are
‘close’ in some sense to x may have markedly different function values. Hence, dis-
crete or mixed-discrete optimization problems are indeed far more difficult to solve
than those involving only continuous variables (Arora et al., 1994; Arora, 2002).

The type of mixed-discrete optimization problem to be solved herein is char-
acterized by the fact, that the discrete variables can not be simply ‘simulated’ as
being continuous, that is, they can have only discrete values during optimization.
Moreover, the objective function is not continuously differentiable. Hence, with-
out performing the quite difficile task to approximate the optimization problem
as one with a continuously differentiable objective function involving only con-
tinuous design variables, solution techniques like, for example, branch and bound,
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rounding-off, penalty approach, Lagrangian relaxation, or sequential linearization
are not directly applicable (Arora, 2002; Thanedar and Vanderplaats, 1995). Thus,
currently, only random search methods, such as simulated annealing, genetic al-
gorithms, or evolutionary strategies, qualify as practicable, albeit computationally
expensive techniques.

The most effective and customizable random search methods are presumably
evolutionary algorithms. Historically, four different types of evolutionary algo-
rithms originated: genetic algorithms (Holland, 1992), genetic programming (Koza,
1992), evolutionary strategies (Schwefel, 1995), and evolutionary programming
(Fogel et al., 1966). Although developed separately, they are viewed nowadays
just as algorithmic variants in evolutionary computing (Eiben and Smith, 2003). A
historical review of the different evolutionary algorithms is given in (De Jong et al.,
2000). Evolutionary algorithms are successfully applied for optimal sizing, shape
and topology optimization in structural design (Cai and Thierauf, 1996; Grierson
and Pak, 1993; Pezeshk and Kamp, 2002; Rafiq et al., 2003; Soh and Yang, 2000;
Yang and Soh, 1997—among others), but also for scheduling problems (for exam-
ple, Jong and Schonfeld, 2001; Vergara et al., 2002) and maintenance planning (for
example, Levitin and Lisnianski, 2000).

The main difference between local random search methods and evolutionary al-
gorithms is, that the latter operate simultaneously on a set of design vectors. This
set, thereby, defines implicitly a non-uniform probability distribution for generat-
ing new design vectors. Possible interactions are taken into account by combining
partial solutions from two or more members of the set. This clearly contrasts with
the globally uniform distribution functions of simple random search methods, or the
locally uniform distribution functions utilized by many other stochastic algorithms
such as, for example, simulated annealing.

4.2 PRINCIPAL STRUCTURE OF EVOLUTIONARY ALGORITHMS

Although genetic algorithms, genetic programming, evolutionary strategies and
evolutionary programming have been designed for different purposes with, in part,
highly specialized operators, these algorithms, nevertheless, are based on the same
two underlying ideas:

i.) Instead of a single design vector x, evolutionary algorithms utilize a set M =

{x(1), x(2), . . . , x(µ)} of µ different design vectors x(j) (j = 1, 2, . . . , µ), which
are processed simultaneously.

ii.) In place of the usual deterministic operators for finding a search direction
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and step size to improve the design vector, evolutionary algorithms utilize
randomized ones like selection, recombination and mutation, which generate
new and, hopefully, but not necessarily, improved design vectors.

The difference between variants of evolutionary algorithms are mainly in the em-
phasis they put on different operators and how they represent the optimization prob-
lem. For example, prototypical genetic algorithms utilize binary representations,
whereas evolutionary strategies work directly with real-valued design vectors. Or,
genetic algorithms emphasize recombination as the most important search operator
and apply mutation only with a very small probability as a so called ‘background
operator’, whereas evolutionary strategies qualify both mutation and recombination
as essential operators and apply them not only to design vectors, but also to strategy
parameters, such as, for example, mutation rates and distribution parameters. Nev-
ertheless, these differences are mainly of historical origin, rather than an unalterable
technical necessity (Eiben and Smith, 2003). Thus, in the following, we will not dif-
ferentiate too strongly between the different variants, but we will give a description
of the principle structure and main components of evolutionary algorithms.

Given an objective function g(x) to be maximized with respect to the m de-
sign variables x = [x1, x2, . . . , xm]T, a set M of µ different design vectors
M = {x(1), x(2), . . . , x(µ)} is created randomly—all of them possible solutions to
the optimization problem. This set M then starts the evolutionary cycle, as sketched
in Fig. 4.1 (‘Initialization’). To decide how to proceed, the quality of all design vec-

Evolutionary
cycle

Fitness
evaluation

SelectionReplacement

RecombinationMutation

Initialization

M = {x
(1), . . . , x

(µ)}

Termination

x
∗ = argmax

x∈M

f(x)

Figure 4.1: Principal structure of an evolutionary algorithm.

tors in M is determined (Fig. 4.1, ‘Fitness evaluation’). Therefore, the objective
function g(x) is mapped to a fitness function f(x), such that a ‘better’ design vector
corresponds to a larger value of the fitness function than an ‘inferior’ design vector
and, hence, has a higher probability of being selected for recombination and muta-
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tion. Although, in principle, the objective function g(x), or a linear mapping of it,
can be used directly as a fitness function, special types of fitness functions f(x) are
available, which allow to control the distribution of the selection probabilities and,
as a consequence, the operation of the algorithm.

Having assigned to each design vector in M its selection probability, or at least
its fitness value, λ design vectors are chosen from M to form a new set L (Fig. 4.1,
‘Selection’). The selection is done most of the time by random sampling from
M according to the selection probabilities, but also by fitness-related deterministic
procedures operating on a randomly drawn subset of M. The number λ of design
vectors in L can be smaller, equal or larger than µ, that is, also multiple selections
of the same design vector are, in principle, allowed to take place.

Thus far, the set L contains only design vectors which are also in M, also on
the average the design vectors in L are more ‘fit’. To find new and ‘better’ solu-
tions, evolutionary algorithms utilize two stochastic search operators: first recom-
bination, and then mutation. Recombination generates new design vectors x̃ ∈ L′

by exchanging information between two (or more) design vectors from the set L
(Fig. 4.1, ‘Recombination’). Obviously, the exchange of information is only effec-
tive, if at least parts of the design vectors chosen for recombination differ. Now,
since we have only selected ‘good’ design vectors for being in L, non-differing
parts of the design vectors indicate subspaces of the design variable space, where
on the average higher fitness values can be expected. Thus, recombination can be
interpreted as a directed stochastic search operator.

After recombination, mutation is applied to the new design vectors x̃ to get
˜̃x ∈ L′′ (Fig. 4.1, ‘Mutation’). Whereas recombination is a directed search operator,
mutation can be interpreted as a random walk. That is, the design vectors x̃ are
subjected with a certain probability to random perturbations, such that each feasible
design vector can be reached—at least, in the long run. From the description of
the working mechanisms of recombination and mutation, it follows that, for being
effective, recombination has to be performed before mutation. However, there is no
restriction about the number of different recombination or mutation operators that
can be applied back-to-back.

To finish the evolutionary cycle, from the λ newly generated design vectors
˜̃x in L′′ and the µ old design vectors x in M, a new set M′ has to be formed
(Fig. 4.1, ‘Replacement’). This set M′, then, replaces M in the next cycle. There
are two principle ways for replacement: age-based or fitness-based. In age-based
replacement, the new design vectors (with λ ≤ µ) simply replace the old ones—
independent whether the new design vectors have a higher fitness value or not. In
fitness-based replacement, new design vectors are generated (with λ ≥ µ), and
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either the best µ new design vectors from L′′ are utilized to form the new set M′,
or the best µ design vectors from the unified set L′′ ∪M.

The combined application of selection and variation (that is, recombination and
mutation) generally leads to improving fitness values from evolutionary cycle to
evolutionary cycle, until a design vector x∗ is found that fulfills the termination
criteria (Fig. 4.1, ‘Termination’). As already mentioned, the different variants of
evolutionary algorithms do not differ with respect to the above described principal
structure, but only with respect to which actual type of operators are used for its
components. In Table 4.1 the components of prototypical genetic algorithms and

Table 4.1: Components of prototypical genetic algorithms and evolutionary strategies.

Component Genetic algorithm Evolutionary strategy
Representation Binary Real-valued
Fitness evaluation Fitness-proportional scaling Uniform selection probability
Selection Random sampling Random sampling
Recombination Single-point crossover Discrete or intermediary
Mutation Bit flip Perturbation with normal distribution
Replacement Age-based Fitness-based

evolutionary strategies are listed. In the following Secs. 4.3 to 4.8, we explain
the most important operators and their working mechanism in more detail, before
specifying in Sec. 4.9 the evolutionary algorithm we utilize herein.

4.3 FITNESS EVALUATION

4.3.1 Fitness-Proportional Scaling

In cost-benefit analysis our aim is to maximize the utility or net present benefit
function g(x). However, this function will not be non-negative for all x as required
for the fitness function f(x) in evolutionary algorithms. Thus it is necessary to map
the function g(x) to a fitness function f(x) in one way or the other. The most simple
form is certainly given by just adding all possible cost factors, such as, for example,
the initial cost c0 and the loss L, to the net present benefit function:

f(x) = g(x) + c0 + L ≥ 0 (4.1)
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Utilizing the above mapping, the probability for the design vector x(j) (with j =

1, 2, . . . , µ) to be selected from population M = {x(1), x(2), . . . , x(µ)} is

Pr(j) =
f(x(j))

µ∑

k=1

f(x(k))

(4.2)

The probability of the design vector x(j) to be selected for reproduction or reinser-
tion is proportional to its fitness value as compared to the fitness values of all other
elements in M. However, this type of fitness-proportional scaling has some known
problems (Eiben and Smith, 2003):

i.) Design vectors with large fitness values take over the entire population very
quickly leading to premature convergence of the algorithm.

ii.) On the other hand, when the fitness values of the design vectors are all very
similar, then there is almost no selection pressure and the improvement of
design vectors progresses quite slowly.

iii.) Transposed versions of the same objective or fitness function lead to different
behaviors of the algorithm, that is, its performance is scaling dependent.

To level down above effects on evolutionary algorithms, different modifications
of the fitness scaling procedure have been suggested. These range from logarith-
mic, power law, or exponential mappings of the objective function, depending on
whether the fitness values should be more centered or more spread out, to dynamic
scaling procedures utilizing statistical estimators of the gain distribution of the cur-
rent or last few populations (Grefenstette, 2000a). A typical example of the latter is
sigma scaling (Goldberg, 1989), defined as

f(x) = max
{

g(x) − E[g(x)] + ξ
√

Var[g(x)] , 0
}

(4.3)

with ξ being a scaling parameter usually chosen between 1 and 3. Nevertheless,
none of the above mentioned modifications allows a robust control of the fitness
values and, therewith, the selection pressure in general settings, that is, without prior
knowledge of the population dynamics. Therefore, fitness-proportional scaling has
been abandoned more and more in recent history and has been nowadays replaced
almost exclusively by rank-based schemes.
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4.3.2 Rank-Based Scheme

For any rank-based scheme the µ design vectors x in M are sorted increasingly
with respect to the values of their objective functions (or fitness values). Then
the rank k is assigned to the design vector x(j) according to its (sorted) position
k, with rank 1 being assigned to the worst design vector and rank µ to the best
one. Note, that all design vectors get a different rank, even if they have the same
objective value. Ranking eliminates the problems of fitness-proportional scaling
(premature convergence, loss of selection pressure, dependency on formulation of
fitness function) by preserving a constant selection pressure, since the selection
probabilities are assigned solely with respect to the rank of the design vectors.

The mapping from the rank to the selection probability can be done again in
different ways. The most common mappings are linear and exponential ranking
(Grefenstette, 2000b). In the former, the selection probability for the design vector
x(j) is

Pr(j) =
1

µ

{

(2 − ξ) + 2(ξ − 1)
rank(x(j)) − 1

µ − 1

}

, 1 ≤ ξ ≤ 2 (4.4)

Hence, the probability of an average good design vector to be selected is µ−1,
whereas the probabilities of the best and worst design vector being selected are,
respectively, ξµ−1 and (2 − ξ)µ−1. If a higher selection pressure is required, an
exponential ranking scheme is often used. In this case the selection probability is
defined as

Pr(k) =
(1 − ξ) ξµ−rank(x(j))

1 − ξµ
, 0 < ξ < 1 (4.5)

The closer ξ is to 1, the lower the ‘exponentiality’ of the ranking procedure.

4.4 SELECTION

4.4.1 Roulette Wheel Selection

Selection is one of the main operators used in evolutionary algorithms. There are, in
general, two instances in the algorithm where a selection mechanism is utilized. The
first instance is, when we derive for recombination a set L of λ ‘good’ vectors from
a given set M of µ design vectors. This is most typical for genetic algorithms. The
second instance, being more typical for evolutionary strategies, is in the replacement
phase, that is when we join the sets L and M to form a new, ‘better’ set M′.

One way to perform the selection, is simply by sampling randomly from the
set M = {x(1), x(2), . . . , x(µ)}. Since the probability of selecting the design vector
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x(j) should be proportional to Pr(j), we generate a random variate U , which is
uniformly distributed over (0, 1), and set

X =







x(1) if U < Pr(1)

x(2) if Pr(1) ≤ U < Pr(1) + Pr(2)
...

x(j) if
j−1∑

k=1

Pr(k) ≤ U <
j∑

k=1

Pr(k)

...

x(µ) if
µ−1∑

k=1

Pr(k) ≤ U

(4.6)

where X is our (random) selection. This procedure is repeated, until the required
number λ of selections is made. The expected number E[N (j)] of times the design
vector x(j) is thereby chosen is E[N (j)] = λ Pr(j).

In evolutionary computing, such sampling scheme is called roulette wheel selec-
tion, since we can think of the probability distribution as defining a roulette wheel.
That is, each design vector is represented by a pocket of the wheel, where the
size of the j-th pocket corresponds to the selection probability Pr(j). The sam-
pling can then be visualized as spinning the one-armed roulette wheel by a ran-
dom amount U ∈ (0, 1) and selecting the design vector whose pocket ends up at
the top. As an example, let us select (λ = 2) times a design vector from the set
M = {x(1), x(2), . . . , x(9)} (see Fig. 4.2). Thus, we spin the wheel by the random
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Figure 4.2: Example of roulette wheel selection (λ = 2).

amount U1 ∈ (0, 1) and select the design vector in the upper position, that is in our
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example x(2). Then we turn back the wheel to its initial position and spin it again
by a random amount U2 ∈ (0, 1). This results, finally, in the set of selected design
vectors L = {x(1), x(2)}.

4.4.2 Stochastic Universal Sampling

When selecting λ design vectors from the set M by making λ calls to the roulette
wheel procedure, then the number N (j) of times an individual vector x(j) is chosen
shows a large variance. To reduce this variance, Baker (1987) developed an algo-
rithm called stochastic universal sampling. Therefore, only a single random variate
U1 is generated from the uniform distribution in (0, λ−1). The remaining variates
U2, U3, . . . , Uλ are then calculated systematically by

Ui = U1 +
i − 1

λ
, i = 2, 3, . . . , λ (4.7)

Conceptually, this is equivalent to making a single spin of the roullette wheel with
λ equally spaced arms, rather than λ spins with a one-armed wheel. Obviously, for
λ = 1, roulette wheel selection and stochastic universal sampling are identical.

Fig. 4.3 shows an exemplary realization of stochastic universal sampling. The
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Figure 4.3: Example of stochastic universal sampling (λ = 5).

set M consists of µ = 9 design vectors M = {x(1), x(2), . . . , x(9)} with different
selection probabilities Pr(j). For selecting (λ = 5) times a design vector, the
roulette wheel is spun once by a random amount U1 ∈ (0, λ−1). The design vector in
the upper position is selected first. The remaining design vectors are then found by
rotating the wheel (λ−1) times by the (deterministic) amount λ−1, finally resulting
in the set L = {x(1), x(2), x(4), x(6), x(9)}.
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For stochastic universal sampling, the expected number of times the design vec-
tor x(j) is chosen is E[N (j)] = λ Pr(j), as before for the roulette wheel selection.
Due to the systematic nature of the scheme, however, the actual number of times
x(j) is selected in a call of the procedure is either ⌊λ Pr(j)⌋ or ⌈λ Pr(j)⌉, thus reduc-
ing the variance drastically. Moreover, if stochastic universal sampling is utilized in
combination with a ranking scheme, also multiple selection of design vectors can
be easily controlled.

4.4.3 Tournament Selection

The previous two selection methods are based on sampling λ times from the entire
set M according to the explicitly given selection probabilities Pr(j). A selection
mechanism, which only utilizes an implicit definition of selection probabilities, is
tournament selection. Thereto, a set G ⊂ M of γ design vectors are randomly
drawn from M, that is, the design vectors are chosen with equal probability µ−1.
Then, the design vectors in G take part in a so called tournament. That is, they are
compared pairwise according to their fitness or rank, and the lower ranking design
vector is removed from the set G (deterministic tournament), or, a game of chance
is played to select the design vector to be deleted, with the higher ranking design
vector having a higher probability of winning the game (stochastic tournament).
The winner of the tournament is then inserted in the set L. The procedure is repeated
λ times.

A description of the main properties of tournament selection is given in (Blickle,
2000). Tournament selection is translation and scaling invariant, that is, scaling
techniques as used for fitness-proportional selection are not required. The selection
probability is implicitly controlled via the tournament size γ. If the tournament size
is larger, ‘bad’ design vectors have a smaller chance of being selected. In most ap-
plications γ is chosen between 6 and 10 (Blickle, 2000). Since tournament selection
only needs knowledge about the relative ranking of the design vectors in set G, but
not of the absolute ranking with respect to set M, it is widely used in parallel pro-
cessing applications. However, the algorithm leads, like roulette wheel selection, to
a high variance in the expected number of times a design vector is chosen, because λ

independent trials are carried out from the implicitly given probability distribution.

4.4.4 Truncation Selection

A selection method which is, in general, associated with evolutionary strategies,
and mostly applied in the replacement phase, is truncation selection. Truncation
selection is a deterministic rank-based scheme. The µ design vectors x(j) in the set
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M are given by their rank rank(x(j)) for j = 1, 2, . . . , µ. Then a fraction λµ−1 is
specified, such that only the ‘best’ λ design vectors are selected for the set L, that
is,

L =
{

x(j) : rank(x(j)) > µ − λ
}

(4.8)

There exists also a stochastic version of the method (Grefenstette, 2000b). In this
case the following selection probabilities

Pr(j) =

{

λ−1 if rank(x(j)) > µ − λ

0 otherwise
(4.9)

are assigned to the design vectors x(j). The assignment of the λ design vectors to
the set L is done in this case by roulette wheel selection. Since in both versions
of truncation selection the ‘worst’ design vectors are excluded from being selected,
truncation selection is clearly biased.

4.5 RECOMBINATION

4.5.1 Binary Crossover

What distinguishes evolutionary algorithms fundamentally from gradient-based op-
timization methods are their search operators. Instead of utilizing gradients of the
objective and constraint functions to arrive at an improved design vector, as is the
case in gradient-based optimization methods (see, for example, Fletcher, 1987; No-
cedal and Wright, 1999), evolutionary algorithms generate new and, hopefully, but
not necessarily, ‘better’ solutions directly from the set L of different design vectors.
This creation of new design vectors is done, thereby, in two different ways: either
by recombination, or by mutation.

Recombination or crossover combines information of different design vectors
by swapping information between them. The basic idea behind recombination is
like this: having given two design vectors with good performance but different fea-
tures, we would like to generate a new design vector which combines the best fea-
tures from each. Since we do not know which features are responsible for the good
performance, the best thing we can do is to perform the recombination at random.
Clearly, some of these new design vectors will have undesirable combinations of
traits, most of them may be no better or worse than their origins, but, nevertheless,
there is a certain chance that some may have an improved performance.

Traditionally, recombination is done for binary representations of design param-
eters (Goldberg, 1989). Having given a pair (s(j), s(k)) of strings, each having l bits,
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a common random position U ∈ [1, 2, . . . , l−1] along the two strings is chosen and
the bits from one side of this position are swapped between the two strings to cre-
ate a new pair (s̃(j), s̃(k)) of strings (see Fig. 4.4). Obviously, this operator—called

0 1 0 1 0 0 1 1s(k)

1 0 0 0 1 1 1 0s(j) 1 0 0 1 0 0 1 1s̃(j)

0 1 0 0 1 1 1 0s̃(k)

Before crossover After crossover

swap

u u

Figure 4.4: Principle of single-point crossover (8-bit string).

single-point crossover—can be generalized to multi- or n-point crossover. In this
case the strings are cut into n + 1 segments, which are then swapped alternately.
There exist even operators which utilize more than two strings for recombination
(Eiben and Smith, 2003).

The overall effect of recombination is that of focusing the search on hyperplanes
whose points (that is, parts of the bit string) show on average the best performance.
Over time this search becomes more and more focused as more and more elements
of the strings converge and the creation of new strings is restricted to the remaining
variation in these strings. To avoid premature convergence, recombination is, in
general, combined with mutation, since the latter produces variations independent
of the convergence status of the string elements.

In our problem of maintenance optimization, the design variables have integer-
or real-valued representations. Hence, to apply binary crossover, we would have to
binary encode these variables before performing crossover, and then decode them
again after crossover. As an example, let us encode an integer-valued variable x ∈

[0, 1, . . . , 255] in an 8-bit string s. Two possible 8-bit strings s(j) and s(k) are given
in Fig. 4.4. There respective integer values x(j) and x(k) are depicted in Fig. 4.5
as solid circles. Fig. 4.5 displays also all seven possible outcomes (x̃(j), x̃(k)) of
single-point crossover as open circles. It should be noted that two of these pairs are
doubly, since the two strings s(j) and s(k) have at two positions the same bit (that is,
the third and the seventh bit are identical).

As can be shown, the arithmetic mean of the decoded values of the original
integer pair (x(j), x(k)) equals the arithmetic mean of each integer pair (x̃(j), x̃(k))
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|x̃(j) − x̃(k)|

Figure 4.5: Spread of single-point crossover (using the two 8-bit strings of Fig. 4.4).

after crossover (Deb and Agrawal, 1995), that is

x(j) + x(k)

2
=

x̃(j) + x̃(k)

2
(4.10)

Moreover, the pair (x̃(j), x̃(k)) lies either inside or outside the region bounded by the
original pair (x(j), x(k)). As can also be seen from Fig. 4.5, most of crossed-over
pairs (x̃(j), x̃(k)) lie in the neighborhood of the original pair (x(j), x(k)). That is,
if the original pair has spread |x(j) − x(k)|, then it is more likely that the crossed-
over pairs have spread |x̃(j) − x̃(k)| of similar magnitude. The only exception in the
present example is when the crossover is performed after the first bit. In this case
the spread is much larger than the original spread. This is a known problem from
(natural) binary coding, that is, different bits have so called different significance
(Goldberg, 1989; Eiben and Smith, 2003).

A variation of the natural binary coding from above is Gray coding, which is
a binary numeral system where two successive values differ in only one bit. To
see the effect of different binary encoding schemes on the spread after crossover,
Figs. 4.6 and 4.7 display all possible combinations for an integer-valued variable
x ∈ [0, 1, . . . , 63] encoded for a 6-bit natural binary code and 6-bit Gray code,
respectively. As can be seen, for Gray coding the possible spreads after crossover
are more confined to the region around the spread of the original pair as is the case
for natural binary coding.

4.5.2 Simulated Binary Crossover

Instead of utilizing binary encdoing and decoding to be able to perform crossover
of integer- and real-valued representations of design variables, specially constructed
recombination operators can also be applied directly to the original variables. One
of these crossover operators is called simulated binary crossover (Deb and Agrawal,
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Figure 4.6: Possible combinations of spreads
|x(j) − x(k)| and |x̃(j) − x̃(k)| for 6-bit natu-
ral binary code.
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Figure 4.7: Possible combinations of spreads
|x(j) − x(k)| and |x̃(j) − x̃(k)| for a 6-bit Gray
code.

1995), which can be applied to real-valued pairs (x(j), x(k)). Simulated binary
crossover is constructed to mimic binary crossover, that is:

i.) The arithmetic mean of the original pair equals the arithmetic mean of each
crossed-over pair.

ii.) Each crossed-over pair lies either inside or outside the region bounded by the
original pair.

iii.) There is a higher likelihood that the crossed-over pair lies in the vicinity of
the original pair, than more far away.

Whereas the first two conditions can be easily fulfilled by using a linear combi-
nation of the arithmetic mean (x(j) + x(k))/2 and the spread |x(j) − x(k)|, the third
condition is taken into account by a probability distribution function. Hence, for a
given real-valued pair (x(j), x(k)), the crossed-over pair (x̃(j), x̃(k)) is generated by

x̃(j) =
x(j) + x(k)

2
+ ξ

x(j) − x(k)

2

x̃(k) =
x(j) + x(k)

2
− ξ

x(j) − x(k)

2

(4.11)

where

ξ =

{

(2u)1/(1+ν) if u ≤ 1/2

[2(1 − u)]−1/(1+ν) otherwise
(4.12)
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In eq. (4.12) u denotes a random sample drawn from U uniformly distributed over
(0, 1), and ν > 0 is a parameter controlling the variation of the spread. Fig. 4.8
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Figure 4.8: Scatter plot of spreads |x(j) − x(k)| and |x̃(j) − x̃(k)| for simulated binary crossover of
two independent and uniformly distributed random variates X(j) and X(k) (ν = 2, λ =1000).

shows a scatter plot for a real-valued random vector X = [X(j), X(k)]T, whose
components are independent and uniformly distributed over (0, 1). The preference
of the crossed-over pairs to lie in the vicinity of the original pairs can be clearly
seen. It should also be noted, that the crossed-over variates X̃(j) and X̃(k) can have
values—and, therewith, spreads—outside the range (0, 1).

4.6 MUTATION

Mutation is a stochastic operator which causes a random, unbiased change to a
variable. As in the case of recombination, mutation operates, traditionally, on binary
codes. Different to recombination, however, mutation utilizes only a single bit-
string, that is, the mutation is peformed without taking into account the properties
of any other bit-string. Mutation allows, thereby, each bit to flip, that is, to change
its value from 1 to 0, or from 0 to 1, with a small probability, the so called bitwise
mutation rate. An illustration of this procedure is shown in Fig. 4.9 for an 8-bit
string s̃(j), where the third and the sixth bit are flipped.

To apply mutation to integer- or real-valued design vector x̃(j), we have, again, to
investigate the properties of binary mutation. Obviously, mutation is a random walk
through the string space. For example, in Fig. 4.10 fifty mutations of an integer-
valued pair (x̃(j), x̃(k)) are shown. The initial pair (x̃(j) = 31, x̃(k) = 31) and its mu-
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Before mutation After mutation

flipflip

Figure 4.9: Principle of mutation (8-bit string).
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Figure 4.10: Mutation walk (50 mutations, 6-
bit natural binary code).
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Figure 4.11: Possible mutations for a 6-bit nat-
ural binary code.

tations ˜̃x(j), ˜̃x(k) ∈ [0, 1, . . . , 63] are encoded as a 6-bit natural binary code. Only
one bit of each component is flipped in each mutation step. As can be seen, the
mutation walk tends to fill in the entire integer space [0, 63] × [0, 63]. In fact, mu-
tation assures, in principle at least, that each feasible design vector can be reached.
Hence, mutation is combined, in general, with recombination to avoid premature
convergence (Eiben and Smith, 2003).

When displaying all possible mutations of an integer-valued design variable, as
done, for example, in Fig. 4.11 for a 6-bit natural binary code, we see that muta-
tion results in new design values ˜̃x(j) which have a larger likelihood of being in the
vicinity of the original design value x̃(j), than being more far away. Taking this into
account, we can construct mutation operators for integer- or real-valued representa-
tions of design variables. One of these operators is non-uniform mutation with fixed
distribution (Eiben and Smith, 2003). Thereby, the current design vector x̃(j) is per-
turbed by a small amount. This can be achieved by drawing for each component
x̃

(j)
i (i = 1, 2, . . . , n) of x̃(j) a value ξ

(j)
i randomly from a probability distribution
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function which is symmetric about zero, and more likely to generate small changes
than large ones. This random value ξ

(j)
i is then added to the component x̃

(j)
i to give

˜̃x
(j)
i = x̃

(j)
i + ξ

(j)
i (4.13)

For real-valued representation, most often, a normal distribution function with zero
mean and user-specified standard deviation is utilized. For integer-valued represen-
tations a corresponding probability mass function has to be constructed. A short
overview of other types of mutation operators can be found in (Eiben and Smith,
2003).

4.7 REPLACEMENT

4.7.1 Age-Based Replacement

After recombination and mutation we have a set L′′ of λ design vectors, which
are different—in terms of their components, but also their fitness values—from the
µ design vectors in M. To start the next evolutionary cycle, we have to decide
which design vectors should be taken from L′′ and M to form a new, ‘better’ set
M′—to replace the old set M. Although replacement is conceptually similar to
selection, there are two noteworthy differences. First, the decision which design
vectors to choose is not always based on their fitness values, favoring those with
‘better’ performance, but in certain variants of evolutionary algorithms (like, for
example, simple genetic algorithms) only on their age. And second, whereas selec-
tion is typically stochastic, replacement is quite often deterministic. For example,
the design vectors in the unified set L′′ ∪ M are ranked according to their fitness
values and only the ‘best’ design vectors are taken (fitness-based). Or, the design
vectors for M′ are only selected from the set L′′ (age-based).

The idea of age-based replacement is that each design vector exists in the set
M for the same number of evolutionary cycles. This does not necessarily preclude
the continuing presence of highly preferable solutions in M. But it is dependent
on their being chosen at least once in the selection phase and then surviving intact
recombination and mutation. Age-based replacement is typically utilized in simple
genetic algorithms (Goldberg, 1989). Since in this variant of evolutionary algo-
rithms the number λ of design vectors in L′′ is the same as the number µ of design
vectors in M, that is, µ = λ, each design vector exists just for one cycle. In other
words, the set M is simply replaced by the set L′′. We say that the sets M and M′

are non-overlapping, since, in general, M∩M′ = ∅. A variant of this replacement
strategy are generation-gap methods (Sarma and De Jong, 2000). In this case the
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sets M and M′ are overlapping. That is, the set L′′ contains λ < µ design vectors.
Hence, only a fraction λ/µ of M is replaced by the new design vectors in L′′ and,
thus, M ∩ M′ = L′′. For age-based strategies the replacement is, typically, done
on a first-in-first-out basis.

4.7.2 Fitness-Based Replacement

Whereas genetic algorithms are based, mostly, on age-based replacement, evo-
lutionary strategies utilize fitness-based replacement. Likewise, fitness-based re-
placement can be grouped in overlapping and non-overlapping strategies. A non-
overlapping strategy is the (µ, λ) or comma strategy. Thereby λ > µ (in general, λ

is a multiple of µ) new design vectors are generated via recombination and muta-
tion, and the ‘best’ µ vectors are selected deterministically—by truncation selection
of the set L′′—to represent the new set M′. In evolutionary programming, stochas-
tic tournament is used to select the design vectors for M′, and, hence, the elitist
policy is not quite as strong as in the case of evolutionary strategies.

An overlapping strategy is the (µ + λ) or plus strategy. Thereby, λ ≥ µ new
design vectors are generated for the set L′′. Different to the comma strategy, how-
ever, all (µ+λ) design vectors compete directly. That is, the ‘best’ µ design vectors
are chosen from the unified set L′′ ∪M via truncation selection. Thus, the (µ + λ)

strategy is a strong elitism method, since it always retains the ‘best’ design vectors
unless they are replaced by ‘superior’ ones. Although this method can lead to very
rapid improvements in the mean fitness, it can also lead to premature convergence
as the design vectors tend to rapidly focus on the ‘fittest’ member currently present.
Thus, it should be utilized in combination with sufficiently large sets and rank-based
schemes for selection.

4.8 INITIALIZATION, OPERATION AND TERMINATION

Initialization of the set M is kept simple in most evolutionary algorithm applica-
tions, that is, the first instance of the set M is generated by randomly generated
design vectors—mostly uniform distributed over a certain range of values. In prin-
ciple, however, also problem-specific heuristics can be used in the initialization
phase to generate an initial set M with higher mean fitness. Whether this is worth
the extra computational effort or not, very much depends on the application at hand.
It should also be noted, that recombination is most effective when the population
is diverse. Thus, an initial set M, which is too focused around a possible solution,
makes recombination, potentially, ineffective, and leaves mutation as the only oper-
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ator to avoid premature convergence. Nevertheless, it is certainly profitable to start
with a set of feasible design vectors, than to squander the initial evolutionary cycles
on finding such feasible vectors.

A weak point in the theoretical formulation of evolutionary algorithms are their
termination criteria. Whereas in gradient-based optimization procedures the neces-
sary (and sufficient) optimality conditions are checked, evolutionary algorithms can
only utilize information on the evolution of the design vectors x(j) and their cor-
responding fitness values f(x(j)). Consequently, the most often used termination
criteria in evolutionary algorithms are:

i.) The total number of fitness evaluations or evolutionary cycles reaches a given
limit.

ii.) For a given period of time (that is, for a given number of evolutionary cycles
or fitness evaluations), the fitness improvement remains under a threshold
value.

iii.) The diversity, that is, the number of different design vectors in the set M,
drops under a given threshold value.

That is, the termination criteria in evolutionary algorithms are either related to
the elapsed computational time, or how the design vectors and their fitness values
change from one evolutionary cycle to the next.

To get a better understanding of above termination criteria, let us have an ex-
emplary look at the operation of evolutionary algorithms. Assume, we want to
maximize the objective function

g(x) = 99 − 10 x4
1 + 20 x2

1x2 − 10 x2
2 − x2

1 + 2 x1 (4.14)

with respect to the design variables x1 and x2. In Fig. 4.12 the isolines of the
objective function g(x) are displayed. The function has a maximum at (x∗

1 = 1,
x∗

2 = 1) with g∗(x∗) = 100. We start with a set M of µ = 20 real-valued design
vectors x, which are randomly spread over the search space [−2, 2] × [−1, 3], as
can be seen in Fig. 4.13. We utilize an exponential ranking scheme with ξ = 0.9

and stochastic universal sampling to select λ = 20 design vectors for the set L.
Each randomly picked pair is subjected to simulated binary crossover with ν = 2.
Moreover, each design vector is subjected at a mean rate of 0.2 to non-uniform
mutation with a normal distribution, having zero mean and standard deviation σ =

0.1. A plus strategy is used for recombination.
The progress of the maximization problem with the number of evolutionary

cycles is shown in Fig. 4.14. The curves in Fig. 4.14 are quite characteristic for
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of eq. (4.14).
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Figure 4.14: Progress of the maximization problem with number of evolutionary cycles.

evolutionary algorithms, that is, there is a rapid progress in the beginning, where
recombination is most effective, followed by a dying-out of the progress, where
the search is pressed ahead mainly by mutation. This can also seen by inspecting
Figs. 4.15 and 4.16. After ten evolutionary cycles, the design vectors have aban-
doned the low-fitness regions and are scattered in the region above a certain mini-
mum objective function value of approximately 99.9 (see Fig. 4.15). At this time the
difference—in terms of objective function values—between the worst design vector
and the best design vector in the set M, or the mean value of all design vectors and
the best design vector, almost completely vanished (Fig. 4.14). Nevertheless, the
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design vectors in M still show some diversity (Fig. 4.15). Only at a later time, after
twenty cycles, say, the design vectors are concentrated clearly around the optimal
solution x∗, as can be seen in Fig. 4.16.

As the above maximization example shows, an effective termination criteria
should be a combination between the stalling of the fitness improvement and the
loss of diversity of the design vectors in M. It should also be noted, that although
carefully constructed evolutionary algorithms have the feature to converge almost
surely to the global optimum for t → ∞ (Rudolph, 1994a; Rudolph, 1994b), in
practical (finite-time) applications it is, nevertheless, possible that either only a lo-
cal optimum is reached, or that the search is terminated too early, due to the slow
improvement rates in the final stage of evolutionary algorithms.

4.9 SUMMARY

An overview of the main components and the principle working mechanisms of
evolutionary algorithms has been given. There is no definite, universally applicable
evolutionary algorithm, but rather a wide variety of algorithms, that can be created
from above described components to fit different problem definitions. Whereas,
historically four separate types of evolutionary algorithms developed (that is, ge-
netic algorithms, genetic programming, evolutionary strategies, and evolutionary
programming), nowadays a convergence of these different algorithms and an in-
terchange of their components can be observed. A typical example of such con-
vergence are self-adaptive genetic algorithms with real-valued representations (Deb
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and Beyer, 2001). Similarly, in this thesis we do not use one of the prototypical
algorithms, but a hybrid of genetic algorithm and evolutionary strategy. Its main
components are listed in Table 4.2.

Table 4.2: Main components of evolutionary algorithm utilized herein.

Component Utilized herein
Representation Integer and real-valued design variables
Fitness evaluation Exponential ranking
Selection Stochastic universal sampling
Recombination One-point crossover (between vector components) and

simulated binary crossover
Mutation Non-uniform mutation with fixed distribution
Replacement Plus strategy



5
Optimizing Maintenance

Interventions

5.1 CLASSIFICATION OF MAINTENANCE STRATEGIES

Maintenance interventions allow to ensure sustained integrity and serviceability of
structures. However, maintenance interventions can only be justified when the mon-
etary expenditures spent on, say, inspection and rehabilitation are outweighed by ex-
pected future benefits from structural operation. If this is not the case, then the struc-
tures under investigation are indeed obsolete—at least in their current functional,
economic, technical or social configuration—and innovative alternatives have to be
evaluated. Thus, the key element in any maintenance effort is the definition of ra-
tional criteria which enable us to decide whether these maintenance interventions
are economically reasonable or not. For this purpose, we developed in Ch. 3 an
optimization formulation based on cost-benefit criteria, which takes into account all
significant life-cycle costs, such as construction, failure, inspection and rehabilita-
tion costs, as well as state- or time-dependent benefit rates. Utilizing the principle
of cost-benefit analysis, the maintenance interventions will be justified when the
total expected (discounted) costs are outweighed by the total expected (discounted)
benefits. The proposed formulation also allows to determine optimal lifetimes and
acceptable failure rates, that is, it enables us to disclose the close relation between
monetary expenditures spent and the hazardousness of structures throughout their
entire lifetime.

Before applying our proposed formulation in optimizing maintenance interven-
tions, let us shortly summarize existing maintenance models. Maintenance strate-
gies can, in principle, be categorized into two major classes: corrective maintenance
and preventive maintenance (Wang, 2002). Corrective maintenance takes place
when a structure or structural component fails. That is, corrective maintenance—
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or, as it is most often simply called, repair—means all actions performed as a result
of failure, to restore a structure to a specified condition. By contrast, preventive
maintenance denotes all actions performed in an attempt to preserve a still operat-
ing structure in a specified condition. This includes timely inspection, detection and
prevention of incipient failures, that is, decisions to rehabilitate deteriorated compo-
nents. It goes without saying, that due to the generally disastrous consequences of
structural failure, only preventive maintenance strategies are generally acceptable
policies in structure and infrastructure engineering.

Preventive maintenance policies can be further classified in age-dependent pre-
ventive maintenance, periodic preventive maintenance, sequential preventive main-
tenance and failure limit preventive maintenance—just to name the most promi-
nent ones (Pierskalla and Voelker, 1976; Valdez-Flores and Feldman, 1989; Wang,
2002). These models assume, in general, that statistical descriptors of failure—as,
for example, the mean time to failure, the expected number of failures or the mean
residual life—are readily available. The models are then optimized with respect to a
cost criterion, like, for example, total cost (for finite planning horizons) or long-run
expected cost per unit time (for infinite planning horizons). A coarse description of
the above mentioned preventive maintenance policies is as follows:

i.) Age-dependent preventive maintenance has its origin in age replacement poli-
cies, where a structure is always replaced when it reaches a certain age (that
is, deterioration level) or repaired at failure, whichever occurs first. Exten-
sions thereof led to age-dependent preventive maintenance policies, where the
structure is preventively maintained at some predetermined age, or repaired
at failure, until perfect maintenance is undertaken. Maintenance, thereby, can
be either minimal, imperfect, or perfect.

ii.) In case of periodic preventive maintenance, structures are preventively main-
tained at fixed time intervals. Most common in this class of maintenance poli-
cies are periodic replacement with minimal repair and imperfect maintenance
with minimal repair. Also combinations thereof are utilized, for example,
an imperfect repair until a specified number of repairs are reached and the
structure is replaced.

iii.) Sequential preventive maintenance is based on the state of the structure at
maintenance. The next time for preventive maintenance is selected to min-
imize the expected expenditure during the remaining lifetime. This policy
allows a more flexible scheduling then periodic preventive maintenance and,
hence, also more cost-effective maintenance solutions.
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iv.) Finally, failure limit preventive maintenance utilizes predetermined levels of
failure rates or other reliability measures. That is maintenance is undertaken
only when the structure reaches an acceptable failure rate or an equivalent re-
liability measure. This policy can be combined with inspections, when main-
tenance interventions are based on measurements of some increasing state
variable like, for example, wear or accumulated damage.

Above described preventive maintenance models cost-optimize, in general, al-
ways only one specific aspect of maintenance: maintenance times, deterioration
levels, rehabilitation levels, acceptable failure rates, etc. Since however all these
different aspects are closely related, we will optimize herein the above mentioned
aspects of maintenance intervention simultaneously. (For our objective function see
Sec. 3.7.1.)

5.2 MODELING DETERIORATION WITH CONTINUOUS-TIME MARKOV

CHAINS

When formulating our cost-benefit analysis for maintenance interventions in
Sec. 3.5, we described the condition state of a deteriorating structure by the time-
dependent discrete probability distribution π(t), without specifying further how to
derive such a distribution. We want to catch up on this now. Another derivation
utilizing time distributions will be given in Sec. 5.7.2.

A large variety of structures deteriorate as a result of cumulative effects induced
by a sequence of random shocks occurring over time. Each shock causes a random
amount of damage which accumulates additively until rehabilitation or failure. As
before, and in agreement with the method of condition rating of structural elements
(Cesare et al., 1992; Madanat et al., 1995), let us consider a structure which at any
given time can be identified as being in one of m possible discrete states: 1, 2, . . . ,
m. For a single random shock, the probability pi,j that the structure is in state i after
the shock, provided the structure was in state j before the shock, is defined by the
(m×m)-transition matrix

P =








p1,1 0 . . . 0

p2,1 p2,2 . . . 0
...

... . . . ...
pm,1 pm,2 . . . 1








(5.1)

Hence, specifying the initial probability distribution π0 of the structure as being in
one of the possible states, the probability distribution πq after q shocks is given by
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Markov chain theory as
πq = Pq · · ·P2P1π0 (5.2)

with Pk (k = 1,2,. . . ,q) being the transition matrix for the k-th shock. For a discus-
sion of the appropriateness of the Markovian hypothesis in deterioration modeling
and some relaxations thereof see (Sobczyk and Spencer, Jr., 1992). The entries
in the transition matrix P can either be determined from experimental data (Bog-
danoff and Krieger, 1978; Cesare et al., 1992; Madanat et al., 1995) or by utilizing
analytical models (Gansted et al., 1991; Lassen, 1991).

In the following we assume that the number N(t) of random shocks in the time
interval [t0, t] follows an inhomogeneous Poisson counting process with occurrence
rate λ(t). Thus N(t) is a Poisson variable with mean

τ (t) =

∫ t

t0

λ(s) ds (5.3)

In general, matrix P has eigenvalues ω1, ω2, . . . , ωk with multiplicities m1, m2, . . . ,
mk, respectively, that is,

det(P − ωI) =
k∏

i=1

(ωi − ω)mi (5.4)

where I is the identity matrix. Hence matrix P is similar to a block-diagonal matrix
of the form (Cox and Miller, 2001; Gusella, 2000)

H−1PH = J =








Λ1 0 · · · 0

0 Λ2 · · · 0
...

... . . . ...
0 0 · · · Λk








= Λ1 ⊕ Λ2 ⊕ · · · ⊕ Λk =

k⊕

i=1

Λi (5.5)

In eq. (5.5) the so called Jordan blocks Λi are (mi×mi)-matrices of type

Λi = ωi Imi×mi
+ Nmi×mi

(5.6)

with Nmi×mi
being a nilpotent matrix (Horn and Johnson, 1990), that is,

Nj
mi×mi

= 0 for j ≥ mi (5.7)

The usefulness of above representation is that powers of P can be simply ex-
pressed as powers of Jordan blocks:

Pq = HJqH−1 = H
k⊕

i=1

Λ
q
i H−1 (5.8)
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with

Λ
q
i = ωq

i Imi×mi
+

mi−1∑

j=1

(
q

j

)

ωq−j
i Nj

mi×mi
(5.9)

and the binomial coefficients defined as

(
q

j

)

=







q!

j! (q − j)!
for 0 ≤ j ≤ q

0 for 0 ≤ q < j
(5.10)

Since the number N(t) of random shocks follows an inhomogeneous Poisson count-
ing process, the powers of the Jordan blocks Λi have to be weighted by its proba-
bility of occurrence:

∞∑

n=0

exp(−τ (t))
τn(t)

n!
Λ

n
i =

{

exp(−τ (t))
∞∑

n=0

(ωiτ (t))n

n!
Imi×mi

+

mi−1∑

j=1

τ j(t)

j!

∞∑

n=j

(ωiτ (t))n−j

(n − j)!
Nj

mi×mi

}

= exp[(ωi − 1)τ (t)]

×

{

Imi×mi
+

mi−1∑

j=1

τ j(t)

j!
Nj

mi×mi

}

(5.11)

Hence, given the initial propbability distribution π0 = π(t0), the probability distri-
bution π(t) at time t is

π(t) = H
k⊕

i=1

exp[(ωi − 1)τ (t)]

{

Imi×mi
+

mi−1∑

j=1

[τ (t)]j

j!
Nj

mi×mi

}

H−1π0 (5.12)

Eq. (5.12) can be compactly written as

π(t) = Ψ(t, t0)π0 (5.13)

with Ψ(t, t0) being the fundamental matrix. Moreover, eq. (5.12) is nothing else
than the solution of the differential equation

π̇(t) = λ(t) H
k⊕

i=1

[(ωi − 1) Imi×mi
+ Nmi×mi

] H−1π(t) (5.14)

or simply

π̇(t) = λ(t)(P − I)π(t) = A(t)π(t) with π(t0) = π0 (5.15)
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where A(t) denotes the (time-dependent) system matrix:

A(t) =








a1,1(t) 0 · · · 0

a2,1(t) a2,2(t) · · · 0
...

... . . . ...
am,1(t) am,2(t) · · · 0








(5.16)

with amm(t) = 0, since state m is an absorbing state. The matrix elements alk(t)

have to fulfill the conditions

ak,k(t) = −
m∑

l=k+1

al,k(t) and al,k(t) ≥ 0 (l > k = 1, 2, . . . , m − 1) (5.17)

Thus, when optimizing maintenance interventions we have to solve the differ-
ential eq. (5.15) to get the probability evolution in time—at least between interven-
tions. The only thing still to be done is to describe the effect of inspection and
rehabilitation on the vector π(t), which we will do next.

5.3 INSPECTION AND REHABILITATION

The lifetime of a deteriorating structure is reached as soon as its failure rate h(t),
given in the present case by

h(t) =
π̇m(t)

1 − πm(t)
(5.18)

exceeds an acceptable limit ha(t), or when the profitability of structural operation
is exhausted. To recover profitability, or to reduce the failure rate, maintenance
interventions, that is, inspections and rehabilitations, have to be performed. Using
eq. (5.15), the probability evolution of a deteriorating structure subject to a sequence
of n maintenance interventions at times t1 < t2 < . . . < tj < . . . < tn can be
described as

π̇(t) = A(t)π(t), t 6= tj (5.19)
δπ(t) = QCjDjπ(t), t = tj (5.20)

The probability distribution π(t+j ) after inspection and rehabilitation is determined
from the probability distribution π(t−j ) before the jth maintenance intervention as

π(t+j ) = π(t−j ) + δπ(tj) = [I + QCjDj] π(t−j ) (5.21)

with I denoting the identity matrix. The matrices Q, Cj and Dj describe the reha-
bilitation quality, the extent of rehabilitation to be done and the inspection quality,
respectively.
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The matrices Cj and Dj have already been introduced in Sec. 3.5.4 when deter-
mining the expected maintenance costs. Here we give only a short description of
the imperfect nature of non-destructive inspection methods. There is quite a consid-
erable body of analytical as well as experimental work available on how to model
non-destructive inspections (Mori and Ellingwood, 1994a; Rummel, 1998; Achen-
bach, 2000; Thoft-Christensen and Sørensen, 1987; Frangopol et al., 1997; Simola
and Pulkkinen, 1998). In general, the probability of detection function is a non-
decreasing function of damage (Mori and Ellingwood, 1994a). In fact, quite often
experimental data shows a sigmoidal trend, which can be modeled, for example, by
the following function:

Pr(D|k, αj) = 1 − exp

[

−
α2

j (k − 1)2

(m − 1)2

]

(5.22)

In Eq. (5.22) the probability of detection Pr(D|k, αj) is a function of the possible
deterioration states k = 2, 3, . . . , m − 1 and the inspection quality αj ≥ 0, which
can vary from inspection to inspection. Other, but similar models can be found in
(Mori and Ellingwood, 1994a; Thoft-Christensen and Sørensen, 1987; Frangopol
et al., 1997).

The probability of detect function Pr(D|k, αj) of eq. (5.22) is displayed in
Fig. 5.1 for different values of αj , which cover the range of possible values in the
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Figure 5.1: Probability of detection Pr(D|k, αj) as a function of the condition state k for different
inspection qualities αj (number of states m = 21).

following examples. Typically, we will utilize a value of αj = 5. As can be seen
from Fig. 5.1, this allows to detect damage states X(t) ≥ 7 with a probability of 0.9
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or higher. It should be noted, however, that the actual shape of the probability of
detection function is quite often of secondary importance and can be replaced by
a unit step function centered around the median value of the probability of detec-
tion curve (Mori and Ellingwood, 1994a). Thus, in our case this would mean, that
all damage states X(t) ≥ 5 would be detected (see Fig. 5.1). In case of perfect
inspection, that is, for αj → ∞, the probability of detection is simply given as:

lim
αj→∞

Pr(D|k, αj) = 1 (k = 2, 3, . . . , m − 1) (5.23)

Because of technological limitations, inadequate rehabilitation solutions or
faulty execution of construction work, among others, any kind of rehabilitation
work is, in general, also imperfect. Hence, we model the rehabilitation of dete-
riorated states by the (m×m)-matrix Q, which is defined as

Q = [ql,k]m×m (5.24)

where the matrix elements ql,k have to fulfill the conditions (l < k = 2, 3, . . . , m−1)

−1 ≤ qk,k = −
k−1∑

l=1

ql,k ≤ 0 (5.25)

and
0 ≤ ql,k ≤ 1 (5.26)

All other matrix elements are equal to zero. The description of eqs. (5.24) to (5.26)
can be interpreted as a generalization of the classical imperfect repair model (Brown
and Proschan, 1983; Pham and Wang, 1996). In case of perfect maintenance
eqs. (5.25) and (5.26) reduce to

−1 = qk,k = −q1,k (k = 2, 3, . . . , m − 1) (5.27)

that is, when applying matrix Q the state k is transformed to the initial or non-
deteriorated state 1. In case of imperfect maintenance only a fraction |qk,k| of the
deteriorated state k is rehabilitated and, due to the imperfect nature of rehabilitation,
this fraction is distributed to the states l < k ‘proportionally’ to ql,k.

The joint effect of imperfect inspection and rehabilitation work is exemplary
shown in Fig. 5.2. (The shown example corresponds to the optimal solution for
n = 6 in Table 5.7.) Just before the first maintenance at time t∗1 = 38.5 years, we
have a distribution of damage states with its median value around X(t∗−1 ) = 8. After
inspection and rehabilitation (with a rehabilitation level of ∆∗

1 = 5), the probability
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Figure 5.2: Probability distribution Pr(X(t) ≤ k) before and after maintenance at t∗1 = 38.5 years.

that the structure is ‘as new’ is Pr(X(t∗+1 ) = 1) ≈ 0.85 (see Fig. 5.2). However,
due to the imperfections, there is also a probability of Pr(X(t∗+1 ) ≥ 5) = 1 −

Pr(X(t∗+1 ) ≤ 4) ≈ 0.1, that the structure is still in a damage state larger than
X(t∗+1 ) = 4. Nevertheless, this probability is considerable smaller than before
maintenance, where this probability had a value of Pr(X(t∗−1 ) ≥ 5) ≈ 0.95.

5.4 OBJECTIVE FUNCTIONS

When optimizing the maintenance interventions we will mainly utilize the formu-
lation given in Sec. 3.7.1, that is, we solve the following maximization problem
throughout the lifetime [0, T ]:

g∗(T ∗) = max
t∗,∆∗,α∗,T∗







T∫

0

exp(−γτ )

[
m−1∑

k=1

Ḃk(τ )πk(τ ) − Lπ̇m(τ )

]

︸ ︷︷ ︸

= ġ(τ )

dτ

−
n∑

j=1

exp(−γt−j )
[
RCjDjπ(t−j ) + I(αj)(1 − πm(t−j ))

]

︸ ︷︷ ︸

= m(t−j )

−c0







(5.28)

subject to
t∗j+1∫

t∗
j

ġ(τ )dτ − m(t∗−j ) ≥ 0 (5.29)
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and
g∗(T ∗) ≥ 0 (5.30)

The vectors t∗ = {t∗1, t
∗
2, . . . , t

∗
n}, ∆

∗ = {∆∗
1, ∆∗

2, . . . , ∆∗
n} and α∗ = {α∗

1, α∗
2,

. . . , α∗
n} are the optimal sequence of maintenance times, rehabilitation levels and

inspection qualities, respectively, and T ∗ is the optimal lifetime.
A slightly different optimization problem can be formulated when the length

of the designated time horizon, that is, [0, T ] is known (fixed terminal time). In
this case we have the following maximization problem with respect to the optimal
number of inspections n∗:

g∗(T ) = max
t∗,α∗,∆∗,n∗







T∫

0

ġ(τ )dτ −
n∑

j=1

m(t−j ) − c0






(5.31)

subject to the constraints of eqs. (5.29) and (5.30) and the additional constraint

ġ∗(t) > 0 (5.32)

for all t ∈ [0, T ]. It should be recalled, that the objective function of eq. (5.28)
fulfills the type of constraint of eq. (5.32) implicitly. In the following examples we
will mainly utilize the formulation of eqs. (5.28) to (5.30) with the exception of the
first example in Sec. 5.6.1.

5.5 SETTING OF COST FACTORS

Before we can finally start with our numerical examples, we still have to discuss
how to set the basic cost factors in the cost-benefit analysis. Thus, let us start with
the social discount rate γ. As already mentioned in Sec. 3.4, the choice between
the two competing approaches of opportunity cost and time preference for setting
the discount rate is primarily a matter of regulatory policy (Morrison, 1998; Arrow
et al., 1996). What is more interesting, however, is which value is normally uti-
lized by agencies. In the past, most discount rates for long-term regulations ranged
between values of γ = 0.02 to 0.10 per year, however, these rates are trending
to get revised downward (Boardman et al., 2006; Morrison, 1998). In fact, re-
calculations of these discount rates—based on the respective theories employed by
these agencies—give, in general, smaller values between γ = 0.01 to 0.05 per year
(Boardman et al., 2006; U. S. Federal Emergency Management Agency, 1994b).
This is also reflected in some more recent recommendations. For example, the
British Treasury Board recommends a discount rate of γ = 0.035 per year for a
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time horizon of 30 years, time-declining discount rates beyond 30 years, and a min-
imum discount rate of γ = 0.01 per year for more than 300 years (Great Britain
H. M. Treasury, 2003). Or, the Federal Ministry of Transport, Building and Hous-
ing of the Federal Republic of Germany (2005) utilizes a constant discount rate of
γ = 0.03 per year for transport infrastructure planning. Such values also correspond
to a recent study on societal discount rates of most more developed countries, sug-
gesting an intermediate compromise value of γ = 0.03 per year (Rackwitz, 2006).
Thus, in the following we adopt for all our calculations a constant discount rate of
γ = 0.03 per year.

Now, let us discuss the setting of the initial cost c0, the failure cost L, and the
benefit rate Ḃ, respectively. Although these cost factors will not be taken from a
specific case, they are, nevertheless, consistent with realistic values. We set all cost
factors in relation to the initial construction cost c0 (Kanda, 1996; Kanda and Shah,
1997), whose value is chosen, just for convenience, as c0 = 10 monetary units
(m.u.). Assuming, for the moment, that there are no structural failures, losses or
maintenance costs, then, based on purely economical grounds, for a structure to be
build the minimum requirement is, that for a given service life the expected benefits
outweigh the initial cost c0. Taking, for example, the typically anticipated average
lifetime of bridges of ta = 50 years (Federal Ministry of Transport, Building and
Housing of the Federal Republic of Germany, 2005), the normalized benefit rate
has to be at least Ḃ/c0 ≥ γ/[1 − exp(−γta)] ≈ 0.039 per year. The equality sign
corresponds thereby to a benefit-(initial) cost ratio of b(ta, 0)/c0 = 1.

Benefits are defined as all of the effects of a project on its users or society at
large. For example, in transport infrastructure planning the benefits commonly con-
sidered are from reduction of travel time or transportation costs, increased traffic
safety, environmental relief, impacts from induced traffic, and, sometimes also, eco-
nomic effects (Sugimoto et al., 2002; Federal Ministry of Transport, Building and
Housing of the Federal Republic of Germany, 2005). Different analyses show, that
in actual project evaluations these benefits are of similar magnitude (that is, equal
or a little bit higher) than the corresponding costs (Sugimoto et al., 2002; Rackwitz,
2002). Hence, we set the normalized benefit rate to a value of Ḃ/c0 = 0.07 per
year. With this value, the benefit-(initial) cost ratio has a value of b(ta, 0)/c0 ≈ 1.81

for a lifetime of ta = 50. Taking into account the losses from structural failure,
as is done in the following examples, the net benefit-(initial) cost ratio is indeed
[b(T ∗, 0) − l(T ∗, 0)]/c0 ≈ 1.67 for the optimal lifetime of T ∗ = 46.1 years (see
Sec. 5.6.1). This corresponds to an internal rate of return of 0.067 per year. This is
in conformance with the funding of public projects, which should not be expected to
have excessive returns on investments, otherwise the private sector would be always
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able to finance these projects. It should also be mentioned, that in public projects
benefits get quite regularly overestimated (Flyvbjerg et al., 2005)—and costs get
quite regularly underestimated (Flyvbjerg et al., 2002).

With respect to the failure cost or loss L we normally differentiate between di-
rect and indirect losses (Ang and Lee, 2001). The direct loss includes, for example,
costs for replacement of property and non-structural components, costs for avoid-
ing injuries, or life saving costs (Ang and Lee, 2001; Kanda, 1996; Kanda and
Shah, 1997). The costs for life saving and injury avoidance can be determined from
the relations between structural collapse rates and fatality or injury rates (Ang and
Lee, 2001), the expected number of persons affected (Ang and Lee, 2001; Rack-
witz, 2004), and appropriate economic estimates of the value of statistical injury
and statistical life (Kniesner and Leeth, 1991; Viscusi, 1993; Viscusi and Aldy,
2003; Adler and Posner, 2000; Adler, 2006). The indirect loss is described by
the economic effects caused by structural failure, so-called ripple effects (Ang and
Lee, 2001; Broder, 1990). As already mentioned in Sec. 2.4.1, such effects can
have quite substantial and sustained impact. Variations in the indirect losses are
explained by the seriousness of the respective failure and the a priori riskiness as-
signed to it (Broder, 1990). A typical example along this line, that is, tremendous
indirect costs, is certainly the Silver Bridge collapse (see Lichtenstein, 1993).

Although, there have been some attempts to quantify such direct and indirect
losses (Ang and Lee, 2001; Rackwitz, 2004), we choose herein a different approach.
The advantage of a cost-benefit analysis actually is, that it discloses the relation
between cost factors and safety issues. Thus, setting the normalized failure cost
herein to a value of L/c0 = 200, gives an acceptable failure rate of ha(t) = 3.5 ·

10−4, which compares quite favorably to a proposed medium consequence failure
rate (Rackwitz, 2000) of h(t) = 3.7 · 10−4, or a failure rate averaged over some
reference period as set in International Standard ISO 2394 (1998).

Beside the above discussed basic cost factors, there are also costs related to
maintenance interventions. Whereas in practical applications there may exist a
quite refined breakdown of maintenance costs, we identify herein only two main
components (Thoft-Christensen and Sørensen, 1987; Mori and Ellingwood, 1994b;
Frangopol et al., 1997): inspection costs I and rehabilitation costs Rk. Data from
damaged buildings suggests that the rehabilitation costs are dependent on the overall
damage state (Ang and Lee, 2001; U. S. Federal Emergency Management Agency,
1994a; Kang, 2001), that is, the more overall damage is present in a structure, the
higher are the rehabilitation costs for restoring the structure to the ‘as new’ state
X(t) = 1. The dependency on the damage state X(t) = k is modeled, in most
cases, either as a linear function with a limit of repairable damage (Ang and Lee,
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2001; U. S. Federal Emergency Management Agency, 1994a), or as a non-linearly
increasing function of damage (Mori and Ellingwood, 1994b). We follow herein
the latter approach by setting the rehabilitation costs Rk as

Rk =
c0

m + 1 − k
(5.33)

with k = 2, 3, . . . , m−1, that is, the rehabilitation costs Rk are non-linear dependent
on the amount of damage X(t) = k to be removed. But it should go without
saying, that any type of cost model could be utilized in the following examples.
The same holds for the inspection and assessment cost I , which we set to a value
of I = 0.2c0. This may be a quite high value, but we are interested in showing,
that even when maintenance interventions require substantial monetary investments,
such investments may nevertheless pay off. A summary of the common cost factors
for the following examples is given in Table 5.1.

Table 5.1: Common cost factors for optimization.

Description Variable Numerical value
Initial cost c0 10 [m.u.]
Loss L 2000 [m.u.]
Inspection cost I 2 [m.u.]
Discount rate γ 0.03 [per year]

5.6 NUMERICAL EXAMPLES

5.6.1 Constant Benefit Rate

The first three examples investigate the effect of different benefit rates (constant,
state-dependent or time-dependent) on optimum maintenance planning. The fourth
example studies the effect of a time-variant system matrix A(t). All four examples
assume perfect inspection and rehabilitation. The last two examples investigate the
effect of imperfect inspection and rehabilitation. The deteriorating structure inves-
tigated is described by m = 21 states, that is, it has one intact or non-deteriorated
state, nineteen deterioration states, and one failure state. This is quite a large num-
ber of states as compared to bridge management systems which utilize normally
only five to seven condition states (Hawk and Small, 1998; Roelfstra et al., 2004;
Scherer and Glagola, 1994; Söderqvist and Veijola, 1998; Thompson et al., 1998).
However, we want to achieve in our examples a sufficient ‘fine-graininess’ with
respect to possible maintenance policies. Nevertheless, we can always lump our
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m = 21 states to a smaller number of, say, seven states. Thus, utilizing m = 21

states is in no ways restrictive. In fact, such lumping is also done in some bridge
management systems with even more refined scales (Miyamoto et al., 2001).

As a first example, let us assume that the benefit rates are state- and time-
independent with Ḃk = 0.7 m.u. per year (k = 1, 2, . . . , m − 1). This is the general
assumption made in life-cycle cost-based maintenance planning (Frangopol et al.,
1997; Mori and Ellingwood, 1994b). The structure is subjected to random shocks
following a homogeneous Poisson counting process such the system matrix is

A = λ











−p 0 · · · 0 0

p −p · · · 0 0

0 p
. . . ...

...
...

... . . . −p 0

0 0 · · · p 0











(5.34)

with a state transition rate of λp = 0.2 per year. We get such a description of the
matrix A, for example, when utilizing a probabilistic linear damage accumulation
law equivalent to Miner’s rule (Bogdanoff, 1978). Initially the structure is entirely
intact, that is, π1(t0 = 0) = 1.0. Without any further maintenance interventions the
structure reaches its optimal lifetime at T ∗ = 46.1 years. This is the time when the
expected net present benefit reaches its maximum of g∗(T ∗) = 6.698 m.u. as can be
seen in Fig. 5.3. The probability of failure is πm(T ∗) = 1.4 · 10−3 (see Fig. 5.4).
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Figure 5.3: Expected net present benefit g(t) for constant benefit rate under optimal maintenance
interventions (n = 3, solid line). Dashed lines indicate net present benefit evolution without further
maintenance interventions.
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Figure 5.4: Probability of failure for constant benefit rate under optimal maintenance interventions
(n = 3, solid line). Dashed lines indicate probability of failure evolution without further maintenance
interventions.

In the following we want to extend the lifetime through maintenance interven-
tions. Hence, for a given number n of maintenance interventions we determine the
optimal lifetime T ∗ as well as the optimal sequence of maintenance times t∗ and
minimum repair levels ∆

∗ by maximizing the expected net present benefit rate ġ(t)

according to eqs. (5.28) to (5.30). The results up to n = 4 are displayed in Ta-
ble 5.2. As can be seen, the expected net present benefit g∗(T ∗) increases with time.

Table 5.2: Optimal maintenance interventions for constant benefit rate.

n 0 1 2 3 4

T ∗ [year] 46.1 88.1 128.0 167.1 206.0

g∗(T ∗) [m.u.] 6.698 10.351 11.419 11.744 11.846

t∗1 [year] – 41.9 39.9 39.1 38.9

t∗2 [year] – – 81.9 79.1 78.0

t∗3 [year] – – – 121.0 117.9

t∗4 [year] – – – – 159.8

∆∗
1 – 2 3 3 3

∆∗
2 – – 2 3 3

∆∗
3 – – – 2 3

∆∗
4 – – – – 2

Indeed, in the present case the expected net present benefit increases monotonically,
although the absolute increase diminishes due to discounting (see also Fig. 5.3). In
other words, proper maintenance allows to extend the economically reasonable life-
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time of the structure ‘infinitely’. Such a result is not surprising since neither our
preference with respect to the structure (in terms of cost factors) nor the system de-
scription (in form of matrix A) is changing with time. Hence, under the condition
that the structure has survived until a certain time, maintenance expenditures spent
are always justified by the profitability of further structural operation.

That such lifetime extension by no means compromises safety issues can be
seen from Figs. 5.5 and 5.6. In Fig. 5.5 the expected net benefit rate ġn(t) for n = 3
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Figure 5.5: Expected net benefit rate ġn(t) for constant benefit rate under optimal maintenance inter-
ventions (n = 3, solid line).
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Figure 5.6: Comparison of failure rate h(t) for constant benefit rate under optimal maintenance
interventions (n = 3, solid line) with acceptable failure rate ha(t) (dotted line).
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optimal maintenance interventions is displayed. Due to structural deterioration also
the profitability of structural operation deteriorates. During maintenance interven-
tions all defects about a certain minimum level are rehabilitated, thereby recovering
the initial expected benefit rate almost completely. Moreover, the maintenance in-
terventions ensure that the expected net benefit rate remains positive. The dashed
lines in Fig. 5.5 correspond to the case that no further maintenance interventions are
performed. The points of zero expected net benefit rate are also shown in Fig. 5.6
as dotted line. As can be seen, structural deterioration results in an increase in the
failure rate h(t) which would exceed the acceptable failure rate ha(t) = 3.5 · 10−4

per year without maintenance interventions. Thus maintenance interventions not
only assure profitability, but also guarantee a certain safety level.

As mentioned above, the problem formulation of eq. (5.28) constraints the opti-
mum solution to a zero expected net benefit rate at the end of the lifetime T ∗. This
can be clearly observed, for example, from the solution for n = 3 in Fig. 5.5. That
such a constraint does not necessarily maximize the expected net present benefit
for time T ∗ can be seen when we solve the maximization problem of eqs. (5.31) to
(5.32). The results for the fixed lifetime T = 167.1 years are given in Table 5.3.

Table 5.3: Optimal maintenance interventions for constant benefit rate (fixed lifetime).

n 3 4 5

T [year] 167.1 167.1 167.1

g∗(T ) [m.u.] 11.744 11.756 11.743

t∗1 [year] 39.1 38.7 38.7

t∗2 [year] 79.1 77.4 77.4

t∗3 [year] 121.0 115.9 115.9

t∗4 [year] – 153.7 153.7

t∗5 [year] – – 167.1

∆∗
1 3 3 3

∆∗
2 3 3 3

∆∗
3 2 3 3

∆∗
4 – 12 12

∆∗
5 – – (no repair)

For n∗ = 4 maintenance interventions the expected net present benefit at time T be-
comes a maximum. The result differs mainly from the previous solution for a free
terminal time by an additional maintenance intervention at t4 = 153.7 years just
before reaching the designated lifetime. Consequently, only deterioration levels
greater or equal than ∆4 = 12 are rehabilitated. Further maintenance interventions,
however, are not effective. For n ≥ 5 all further maintenance interventions would
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consist of no rehabilitation and would be executed at the end of lifetime T at cost
I exp(−γT ).

In Figs. 5.7 and 5.8 the expected net benefit rate and the failure rate, respectively,
are shown for n∗ = 4 (fixed terminal time). The expected net benefit rate and the
failure rate at time of inspection or the end of lifetime are almost constant, whereas
for the formulation with a free terminal time (Figs. 5.5 and 5.6) the values approach
evermore closely the zero expected net benefit rate or the acceptable failure rate
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Figure 5.7: Expected net benefit rate ġn(t) for constant benefit rate under optimal maintenance inter-
ventions (n∗ = 4, solid line) for fixed lifetime T = 167.1 years.
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Figure 5.8: Comparison of failure rate h(t) for constant benefit rate under optimal maintenance
interventions (n∗ = 4, solid line) with acceptable failure rate ha(t) (dotted line) for fixed lifetime T
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from maintenance time to maintenance time. Nevertheless, both cases clearly show
that an optimal maintenance policy requires to take actions before reaching the ac-
ceptable failure rate or the zero expected net benefit rate level, respectively.

5.6.2 State-Dependent Benefit Rate

For the second example we assume that the benefit rates decrease linearly with the
deterioration state k, that is,

Ḃk = 0.8 ×
m − k

m − 1
m.u. per year (k = 1, 2, . . . , m − 1) (5.35)

All other quantities remain the same, that is, the cost factors are given again by Ta-
ble 5.1 and the system matrix A by eq. (5.34). Without maintenance interventions,
the optimal life time is reached at T ∗ = 44.1 years. The corresponding failure rate
is h(T ∗) = 2.2 · 10−4 per year.

The optimal maintenance interventions for state-dependent benefit rates and dif-
ferent number n of inspections are given in Table 5.4. As in the previous example,

Table 5.4: Optimal maintenance interventions for state-dependent benefit rates.

n 0 1 2 3 4 5

T ∗ [year] 44.1 82.2 115.8 146.4 175.6 204.0

g∗(T ∗) [m.u.] 5.683 9.366 10.611 11.086 11.280 11.361

t∗1 [year] – 38.1 33.5 30.6 29.2 28.6

t∗2 [year] – – 71.7 64.1 59.8 57.8

t∗3 [year] – – – 102.3 93.3 88.3

t∗4 [year] – – – – 131.5 121.8

t∗5 [year] – – – – – 159.9

∆∗
1 – 2 2 2 2 2

∆∗
2 – – 2 2 2 2

∆∗
3 – – – 2 2 2

∆∗
4 – – – – 2 2

∆∗
5 – – – – – 2

the expected net present benefit g∗(T ∗) increases monotonically with time. As can
be seen from Figs. 5.9 and 5.10 the qualitative behavior of the optimal solution
is like the one for constant benefit rates (Figs. 5.5 and 5.6). The main difference,
however, is that more economic pressure is present to keep the structure in a non-
deteriorating state since the benefit rates decrease linearly with the states. This
results in more often maintenance interventions than in the first example. Note that
only the benefit rates are different in the present example, whereas the state descrip-
tion is identical. Thus performing maintenance interventions more regularly is not
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Figure 5.9: Expected net benefit rate ġn(t) for state-dependent benefit rate under optimal mainte-
nance interventions (n = 4, solid line).
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Figure 5.10: Comparison of failure rate h(t) for state-dependent benefit rate under optimal mainte-
nance interventions (n = 4, solid line) with acceptable failure rate ha(t) (dotted line).

due to safety issues as can be seen by inspecting Fig. 5.10, which shows that the
structure is rehabilitated way before the acceptable failure rate of ha(t) ≈ 2.2 · 10−4

per year is reached, but due to economic reasons expressed by the different benefit
rates.

5.6.3 Time-Dependent Benefit Rate

In our third example we assume that the benefit rates are constant in the states, but
decrease with time, that is,
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Ḃk(t) = 1.0 × exp(−0.015 t) m.u. per year (k = 1, 2, . . . , m − 1) (5.36)

This can be interpreted as a changing attitude towards the structure. All other quan-
tities are the same as in the previous two examples. The optimal solutions for dif-
ferent numbers n of inspections are presented in Table 5.5. In contrast to the two

Table 5.5: Optimal maintenance interventions for time-dependent benefit rates.

n 0 1 2 3 4

T ∗ [year] 44.7 82.3 118.2 154.1 190.2

g∗(T ∗) [m.u.] 8.682 10.565 10.794 10.801 10.791

t∗1 [year] – 40.0 38.9 38.7 38.7

t∗2 [year] – – 78.0 77.4 77.4

t∗3 [year] – – – 115.8 115.9

t∗4 [year] – – – – 153.9

∆∗
1 – 3 3 3 3

∆∗
2 – – 3 3 3

∆∗
3 – – – 3 3

∆∗
4 – – – – 4

previous examples, there is an optimal number n∗ = 3 of maintenance interventions
giving a maximum value of the expected net present benefit of g∗(T ∗) = 10.801 m.u.
for the lifetime T ∗ = 154.1 years. The corresponding expected net benefit rate is
shown in Fig. 5.11 and the corresponding failure rate in Fig. 5.12.
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Figure 5.11: Expected net benefit rate ġn(t) for time-dependent benefit rate under optimal mainte-
nance interventions (n∗ = 3, solid line).
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Figure 5.12: Comparison of failure rate h(t) for time-dependent benefit rate under optimal mainte-
nance interventions (n∗ = 3, solid line) with acceptable failure rate ha(t) (dotted line).

As getting evident, due to the benefit rates decreasing with time, the repair of
states no longer results in a complete recovery of the initial expected net benefit
rate. In fact, Fig. 5.11 shows a qualitative similar behavior of the expected net
benefit rate as in Fig. 5.5, only modulated by the exponential function given in
eq. (5.36). Comparing Tables 5.2, 5.3 and 5.5, there are only slight differences in the
optimal maintenance times although in the latter the benefit rates decrease by one
order of magnitude throughout lifetime. Thus, obviously, the optimal maintenance
actions are quite insensitive to the absolute values of the benefit rates, however quite
sensitive to its relative (state-dependent) values as can be seen by comparison with
Table 5.4.

Nevertheless, the above mentioned (modulated) decrease in the expected net
benefit rate has two consequences. First, since the expected net present benefit be-
tween maintenance times is determined by an integration of the net present benefit
rate over the respective time interval, this net benefit decreases with time such that
for n ≥ 4 the maintenance expenditures exceed the future benefit, that is, the struc-
ture becomes obsolete at T ∗ = 154.1 years. And second, since the benefit rates
are part of the description of preferences towards the structure, also the acceptable
failure rate ha(t) decreases with time.

5.6.4 Inhomogeneous Poisson Process

Next, let us assume that the benefit rate is constant with Ḃk = 0.7 m.u. per year, but
the system is subjected to an inhomogeneous Poisson process with time-dependent



Sec. 5.6 • Numerical Examples 93

intensity λ(t) = 0.01t2 per year. The system matrix is defined as

A(t) = λ(t)











−p 0 · · · 0 0

p −2p · · · 0 0

0 2p
. . . ...

...
...

... . . . −(m − 1)p 0

0 0 · · · (m − 1)p 0











(5.37)

with p = 0.01. The optimal solutions for different numbers n of maintenance
interventions are given in Table 5.6.

Table 5.6: Optimal maintenance interventions for inhomogeneous Poisson process.

n 0 1 2 3 4

T ∗ [year] 32.2 39.9 45.2 49.5 53.1

g∗(T ∗) [m.u.] 4.181 5.088 5.405 5.504 5.498

t∗1 [year] – 31.6 31.3 31.2 31.1

t∗2 [year] – – 39.4 39.3 39.2

t∗3 [year] – – – 44.9 44.8

t∗4 [year] – – – – 49.3

∆∗
1 – 2 2 2 2

∆∗
2 – – 2 2 2

∆∗
3 – – – 2 2

∆∗
4 – – – – 2

The optimal number of maintenance interventions is n∗ = 3, the maximum value
of the expected net present benefit is g∗(T ∗) = 5.504 m.u. and the optimal lifetime
is T ∗ = 49.5 years. As can be seen from the corresponding expected net bene-
fit rate in Fig. 5.13 and the failure rate in Fig. 5.14, the inhomogeneous Poisson
process results in an accelerated deterioration of the structure leading to a consid-
erable shortening of the time intervals between maintenance interventions. Conse-
quentially, the expected net present benefit accumulated between the maintenance
interventions decreases until for n ≥ 4 it no longer outweighs the maintenance ex-
penditures, that is, the structure becomes again obsolete.

5.6.5 Imperfect Inspections and Rehabilitations

In the next two examples, we investigate the effect of imperfect inspection methods
and imperfect rehabilitation actions on optimal maintenance planning. Thus, the
quality of the inspection method is described for all n interventions by the parameter

αj = 5.0 (j = 1, 2, . . . , n) (5.38)
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Figure 5.13: Expected net benefit rate ġn(t) for inhomogeneous Poisson process under optimal main-
tenance interventions (n∗ = 3, solid line).
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Figure 5.14: Comparison of failure rate h(t) for inhomogeneous Poisson process under optimal
maintenance interventions (n∗ = 3, solid line) with acceptable failure rate ha(t) (dotted line).

in Dj, whereas the (imperfect) rehabilitation matrix Q is defined by

qk,k = −q1,k = −0.97 (k = 2, 3, . . . , m − 1) (5.39)

All other elements equal zero. The system matrix A, the initial probability distri-
bution π(t0) and all cost factors are the same like in the first example (Sec. 5.6.1).
Again, we maximize the net benefit rate throughout lifetime for a given number n

of maintenance interventions. The optimal solutions are listed in Table 5.7.
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Table 5.7: Optimal solution for maintenance interventions in case of imperfect inspection and repair.

n 1 2 3 4 5 6 7

T ∗ [year] 71.0 96.6 120.5 143.7 166.1 188.9 210.9

g∗(T ∗) [m.u.] 8.705 10.084 10.607 10.907 11.043 11.117 11.153

t∗1 [year] 39.7 39.8 38.8 38.7 38.5 38.5 38.4

t∗2 [year] – 60.7 59.0 56.5 55.7 55.1 54.8

t∗3 [year] – – 87.3 85.1 82.6 81.9 81.4

t∗4 [year] – – – 108.6 105.4 102.4 101.4

t∗5 [year] – – – – 132.3 129.6 126.7

t∗6 [year] – – – – – 154.0 150.6

t∗7 [year] – – – – – – 176.9

∆∗
1 5 3 5 5 5 5 5

∆∗
2 – 4 3 4 5 5 5

∆∗
3 – – 5 3 5 5 5

∆∗
4 – – – 4 3 4 5

∆∗
5 – – – – 5 3 5

∆∗
6 – – – – – 4 3

∆∗
7 – – – – – – 5

As before, the expected net present benefit increases with the number of n in-
spections, that is, also in case of imperfect rehabilitation, the lifetime of the structure
can be extended, in principle, infinitely. However, maintenance interventions have
to be performed more often, resulting in a smaller total value of the expected net
present benefit as compared with the case of perfect rehabilitation. A consequence
of performing maintenance interventions more often is, that the optimal rehabili-
tation levels ∆∗

j increase, because there are now more possibilities to detect and
rehabilitate deteriorated states.

In Figs. 5.15 and 5.16 the evolution of the expected net benefit rate and the
failure rate, respectively, are displayed exemplary for n = 6 maintenance inter-
ventions. As can be seen, the first maintenance intervention is closely followed
by a second maintenance intervention. Due to imperfect rehabilitation, the struc-
ture can only be partially rehabilitated. Hence, not only the expected net benefit
rate is not completely recovered after each rehabilitation, but also the failure rate
decreases always only by approximately two orders of magnitude. The remaining
severe structural defects are then the cause of untimely additional inspection and
rehabilitation efforts. Nevertheless, with an increasing number of maintenance in-
terventions a more and more periodic maintenance pattern evolves, which is only
perturbed in Fig. 5.15, Fig. 5.16 and Table 5.7 by the effects of reaching the ter-
minal time T ∗. When comparing Fig. 5.6 and Fig. 5.16, we can recognize, that in
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Figure 5.15: Expected net benefit rate ġn(t) in case of imperfect inspection and rehabilitation (n = 6,
solid line).

ha(t)

−10

−8

−6

−4

−2

0

F
ai

lu
re

ra
te

lg
(h

sy
s
(t

))
[l
g
(1

/
y

ea
r)

]

0 50 100 150 200

Time t [year]

.........
..........

.........
...........

.............
...........

.........
...........

.........
.........

.........
........... .......... ........... ..........

.........
...........

..........
............

...........
.......... ........... ........... ........... ........... .......... ........

.........
............

.........
.........

..........
........... .......... .......... ............ ........... ............ ......... .......... .........

..........
............

.............
...........

............
..........

........... .......... .......... ........... .......... .......... ............ .......... ......... ......... ........

..........
..........

..........
..........

..........
........... .......... ........... .......... ........... ............ ........... .......... ............. ......... ......... .......... .......... ............

•⋄ •⋄ •⋄ •⋄ •⋄ •⋄ •⋄

Figure 5.16: Failure rate h(t) in case of imperfect inspection and rehabilitation (n = 6, solid line).

both cases the optimal maintenance interventions are performed at times tj when
reaching a failure rate h(t−j ) < ha(t

−
j ) of similar magnitude.

5.6.6 Inspection Quality

Finally, let us optimize the maintenance interventions not only with respect to the
sequences of maintenance times t∗ = {t∗1, t

∗
2, . . . , t

∗
n} and rehabilitation levels ∆

∗ =

{∆∗
1, ∆∗

2, . . . , ∆∗
n}, but also with respect to the inspection qualities α∗ = {α∗

1, α∗
2,



Sec. 5.6 • Numerical Examples 97

. . . , α∗
n}. The cost for inspection is now given as

I(αj) =
1 + αj

3
m.u. (αj ≥ 0) (5.40)

Moreover, we assume again that the benefit rates are state- and time-dependent:

Ḃk(t) =
m − k

m − 1
exp(−0.015t) m.u. per year (5.41)

with k = 1, 2, . . . , m − 1. The remaining cost factors are the same as before, as are
the system matrix A and the initial probability distribution π(t0). The (imperfect)
repair matrix Q is described by eq. (5.39).

In Table 5.8 the optimal solutions are given for 1 ≤ n ≤ 6 number of main-
tenance interventions. The expected net present benefit reaches its maximum at
n∗ = 5 maintenance interventions. Hence, the structure becomes obsolete at time
T ∗ = 116.8 years (Fig. 5.17). It should be noted from Table 5.8, that by optimiz-
ing not only the maintenance times, but also the rehabilitation levels and inspection
qualities, the time of obsolescence is put further back by increasing the minimum

Table 5.8: Optimal solution for maintenance interventions in case of state- and time-dependent ben-
efit rates.

n 1 2 3 4 5 6

T ∗ [year] 60.3 78.8 92.2 105.1 116.8 127.7

g∗ [m.u.] 6.76 7.18 7.29 7.32 7.33 7.32

t∗1 [year] 34.2 34.0 33.2 32.8 32.8 32.7

t∗2 [year] – 52.6 51.0 50.1 49.8 49.7

t∗3 [year] – – 69.2 67.5 66.5 66.2

t∗4 [year] – – – 84.8 83.3 82.7

t∗5 [year] – – – – 98.6 97.8

t∗6 [year] – – – – – 112.2

∆∗
1 3 3 3 3 3 3

∆∗
2 – 3 3 3 3 3

∆∗
3 – – 4 3 3 3

∆∗
4 – – – 4 4 4

∆∗
5 – – – – 6 4

∆∗
6 – – – – – 8

α∗
1 4.7 4.4 4.1 4.0 3.9 3.9

α∗
2 – 4.0 3.6 3.4 3.3 3.3

α∗
3 – – 3.7 3.5 3.3 3.2

α∗
4 – – – 3.3 3.2 3.1

α∗
5 – – – – 2.9 2.9

α∗
6 – – – – – 2.6
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Figure 5.17: Expected net benefit rate ġn(t) for optimal inspection qualities (n∗ = 5, solid line).

rehabilitation levels and lowering inspection qualities, that is, by decreasing main-
tenance costs. That such procedure is not compromising safety issues at all can be
seen from the failure rate in Fig. 5.18.
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Figure 5.18: Failure rate h(t) for optimal inspection qualities (n∗ = 5, solid line).

Like in the previous examples, the optimal maintenance interventions are per-
formed at times tj when the failure rate reaches a value of almost similar magni-
tude. Since due to the decreasing benefit rate, however, also the acceptable failure
rate ha(t) decreases according to eq. (3.40) with time, the lifetime of the structure
can not be extended infinitely, but reaches its optimal value at T ∗ = 116.8 years.
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5.7 APPLICATION TO BRIDGE MANAGEMENT

5.7.1 Bridge Management Systems

In order to rationalize decisions with respect to maintenance or rehabilitation, bridge
management systems have been developed and implemented in North America, Eu-
rope and Japan (Hawk and Small, 1998; Thompson et al., 1998; De Brito et al.,
1997; Söderqvist and Veijola, 1998; Roelfstra et al., 2004; Miyamoto et al., 2001).
The generic components of these management systems can be coarsely summarized
as: (a) assessment of bridge conditions, (b) forecasting of further bridge deteriora-
tion, and (c) identification and prioritization of maintenance needs and their corre-
sponding financial requirements. However, these systems have been repeatedly crit-
icized for mainly two reasons. The first point of criticism is, that the assessment of
bridge conditions is done commonly by so called condition ratings (verbal descrip-
tors) on structural element level made during routine visual inspections. Therefore,
these condition ratings mostly indicate the relative health of structural elements
only, but they do not identify the physical or chemical processes that cause the dete-
rioration, nor are they directly related to structural behavior, that is, structural safety
and serviceability (Roelfstra et al., 2004; Hearn, 1998a). Structural safety is only
indirectly mentioned in the description of the most severe condition state as ‘need
for immediate intervention’.

Whereas more objective and accurate structural condition assessments can be
performed by utilizing concepts of structural identification (Aktan et al., 1996), the
complex of problems related to structural safety can only be addressed by struc-
tural reliability theory. Thus, what is required is a consistent description of the
time-variant condition of a structure in terms of both deterioration and ultimate
failure states, as done, for example, in (Mori and Ellingwood, 1994a; Mori and
Ellingwood, 1994b; Pandey, 1998; Stewart, 2001; Thoft-Christensen and Sørensen,
1987; Val, 2005). A structural state description in terms of only ‘failure’ or ‘no
failure’, as proposed, among others, in (Frangopol et al., 2001), via so called re-
liability profiles, is not sufficient for optimal maintenance planning, since it does
not allow to relate (directly or indirectly) observable deterioration states to specific
performance conditions—including its effect on the load carrying capacity and the
remaining lifetime—as well as rehabilitation actions to be performed, as is manda-
tory for effective bridge maintenance systems (Hearn, 1998a; Das, 1998). The addi-
tion of a separate condition profile in (Neves and Frangopol, 2005) tries to remedy
this shortcoming, although it remains unclear why condition and safety should be
treated as separate entities. Moreover, the reliability and condition profiles in (Fran-
gopol et al., 2001; Neves and Frangopol, 2005) are not calculated with the help of
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structural reliability theory, but are either directly determined by so called experts,
or estimated from statistical data. However, as shown in (Czarnecki and Nowak,
2008), time-variant reliability profiles depend on a multitude of factors (structural
design, loads, environmental conditions, deterioration mechanisms, etc.) which will
be hardly reflected in its entirety in expert knowledge, nor does it seem to be overly
realistic to assume, that there will be ever enough data available to directly estimate
reliability profiles, that is, without recursion to a physical or chemical model.

Thus, to summarize the first point of criticism, when addressing the problem of
optimal maintenance planning for bridges, a consistent probabilistic description of
the condition of a structure—including not only deterioration states, but also struc-
tural collapse—is indispensable. This requires the explicit modeling of structures,
deterioration processes, condition assessments and maintenance interventions. For
practical applicability, condition states in the probabilistic analysis should be se-
lected compliant with experimental condition assessment techniques. This allows
not only to utilize inspection data for modeling purposes, but also to define opti-
mal maintenance actions in terms of experimentally observable—whether directly
or indirectly—indicators of structural deterioration. We will show this in the fol-
lowing exemplarely for a truss-type bridge under fatigue loading, where the overall
structural damage state is determined with the help of static load tests.

The second set of criticism of existing bridge management systems is centered
around the models utilized for deterioration forecasting. Commonly, discrete-time
Markov chains, with time-homogeneous transition probabilities, are employed as a
statistical model, based on the above mentioned visual inspection data (Hawk and
Small, 1998; Thompson et al., 1998; De Brito et al., 1997; Söderqvist and Veijola,
1998; Roelfstra et al., 2004; Miyamoto et al., 2001). Due to their sole reliance on
inspection data, these Markov chains, evidently, inherit also the above mentioned
shortcomings of the subjective nature of condition ratings and their lack of informa-
tion on structural behavior. But also the data itself is problematic, since most often
it does not make reference to differences in the structural characteristics of bridges,
environmental conditions, past rehabilitation efforts or even time intervals between
inspections, thereby compromising the accuracy of its estimates. Also there is the-
oretical as well as experimental evidence available that the transition probabilities
are, in general, time-inhomogeneous, that is, that age—the time since construction
or rehabilitation—has a significant impact on the deterioration rate (Jiang et al.,
1989; Madanat et al., 1995; Kallen and van Noortwijk, 2006). However, it should
be also mentioned, that we do not follow the general rejection of Markov processes
as being not able to model such behavior at all, as has been done in (Frangopol et al.,
2001; Neves and Frangopol, 2005). Utilizing continuous-time Markov chains, with
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time-inhomogeneous transition probability rates, indeed allows to model age depen-
dency (Kallen and van Noortwijk, 2006), as well as maintenance effects like delays
in deterioration or changes in deterioration rates. For this purpose we propose in the
following to utilize the time distributions of reaching defined damage or deteriora-
tion states—as determined from a probabilistic analysis—to build up the transition
matrix. It should go again without saying, that this requires an explicit modeling
of the deterioration process and respective maintenance interventions, that is, it can
not be done by solely utilizing inspection data or expert knowledge.

5.7.2 Determining Transition Rates from Time Distributions

We want to describe the probability evolution of the discrete deterioration states by
a continuous-time Markov chain with time-inhomogeneous (age-dependent) tran-
sition rates. Hence, the probability distribution vector π(t, t0) is governed by the
differential equation

π̇(t, t0) = A(t, t0)π(t, t0) , π(t0, t0) = p(t0) (5.42)

where A(t, t0) is the matrix of time-inhomogeneous transition probability rates and
p(t0) is the initial probability vector of the structure being in one of the m states at
time t0. A simplified version of eq. (5.42) with only two states, that is, ‘no failure’
(state 1) and ‘failure’ (state 2) underlies the deterioration modeling in (Frangopol
et al., 2001; Neves and Frangopol, 2005). Therein, the probability evolution for a
structure, without re-building after failure, is assumed to be

π̇(t, t0) =

[
−Φ(−β(t, t0)) 0

Φ(−β(t, t0)) 0

]

π(t, t0) , p(t0) =

[
1

0

]

(5.43)

where Φ(−β(t, t0)) denotes the failure rate, Φ(·) is the standard normal distribution
function, and β(t, t0) is a piecewise linear, monotonically decreasing function in
time t.

As repeatedly mentioned, since it is quite unlikely, that there will be enough data
available to directly estimate all transition rates al,k(t, t0) of A(t, t0), a probabilistic
analysis has to be performed. Thus, let us assume that the deterioration process
starts in state 1 at time t0 with probability one, that is, Pr(X(t0) = 1) = 1. The
time distribution functions until certain deterioration states are reached or failure,
that is, structural collapse, occurs are

Fk(t, t0) = Pr(X(t) > k|X(t0) = 1) , k = 1, 2, . . . , m − 1 (5.44)
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Hence, the probability of the deterioration process {X(t), t ≥ t0} being in state k

is

πk(t, t0) = Pr(X(t) = k|X(t0) = 1)

=







1 − F1(t, t0) , k = 1

Fk−1(t, t0) − Fk(t, t0) , 1 < k < m

Fm−1(t, t0) , k = m

(5.45)

Utilizing the (non-negative) rate function

hk(t, t0) =
fk(t, t0)

1 − Fk(t, t0)
(5.46)

with fk(t, t0) being the probability density function of the time until X(t) ≥ k, the
distribution functions can be re-written as

Fk(t, t0) = 1 − exp

[

−

∫ t

t0

hk(τ, t0) dτ

]

(5.47)

Differentiating eq. (5.45) with respect to time t, we get the elements al,k(t, t0) of
matrix A(t, t0) in terms of the rate functions hk(t, t0) after some re-arrangement as

al,k(t, t0) =







−hk(t, t0) , l = k 6= m

0 , l = k = m

hl−1(t, t0) − hl(t, t0) , l 6= m, k < l

hm−1(t, t0) , l = m, k < m

(5.48)

5.7.3 Truss-Type Bridge Structure under Fatigue Loading

Let us exemplify the above procedure for the truss-type bridge structure shown in
Fig. 5.19. The pin-jointed truss has dimensions l = 8 m, s1 = 5 m and s2 = 2 m.
All structural elements have cross sectional areas of 0.04 m2—with the exception of
elements (a) and (b) having 0.06 m2. The elastic modulus is E = 2.1 · 1011 N/m2.
The structure is subjected to the external loads V1(t) and V2(t). The loads V1(t) and
V2(t) are assumed to form an independent and identically distributed random load
sequence with a mean occurrence rate of 20,000 per year. Both load amplitudes
are Rayleigh distributed with mean 500 kN, standard deviation 100 kN and a mutual
correlation of 0.3.

Fatigue damage accumulation in structural elements is determined in the follow-
ing by a continuous damage mechanics approach (Simo and Ju, 1987; Chaboche,
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Figure 5.19: Truss-type bridge under random load processes V1(t) and V2(t).

1988; Lemaitre and Chaboche, 1990). The damage growth δD per load cycle δn is
modeled as

δD = C(1 − D)−p(∆σ)q δn (5.49)

where 0 ≤ D ≤ 1 denotes damage, ∆σ is the stress amplitude, C is the damage
growth rate, and p and q are coefficients, chosen herein as p = 0.5 and q = 2,
respectively. The damage growth rate is assumed to be lognormally distributed
with mean 5 · 10−9 MPa−2 and standard deviation 1 · 10−9 MPa−2.

Eq. (5.49) describes the damage evolution on a local level, that is, in our case
on the level of structural elements. When we assume that the deformation behavior
of the material is only affected by the damage in the form of effective stresses, then
the uniaxial elastic damage law is

σ = E(1 − D)εe (5.50)

where E is the elastic modulus of the undamaged material and εe is the elastic strain.
To combine the damages on structural member level to form an indicator of overall
structural damage Dsys we utilize the elastic strain energy. Hence, overall structural
damage is defined as (Lemaitre and Chaboche, 1990; Hanganu et al., 2002)

Dsys = 1 −
W

W0

(5.51)

where W is the actual elastic strain energy and W0 is the fictitious elastic strain en-
ergy of the undamaged structure due to the actual strains. For determining the strain
energies we subject the structure to a static load test. As reference load case the most
likely load configuration (V ∗

1 , V ∗
2 ) is utilized. A detailed discussion on the effect of

reference loads for determining global damage indices is given in (Hanganu et al.,
2002).
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In analogy to current condition rating procedures, we select five damage levels:
d1 = 0.2, d2 = 0.4, d3 = 0.6, d4 = 0.8 and d5 = 1.0, the latter denoting structural
collapse. Fig. 5.20 shows the determined time distributions of the truss-type bridge

Fk(t, 0) = Pr(Dsys(t) ≥ dk) , k = 1, 2, . . . , 5 (5.52)

for exceeding the different overall damage levels dk. The corresponding non-diago-
nal terms of A(t, 0) are displayed in Fig. 5.21. It should be noted, that the quantity
a6,k(t, 0) is nothing else than the hazard or failure rate of the structure without any
maintenance.
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Figure 5.20: Time distributions Fk(t, 0) for k = 1, 2, . . . , 5.
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5.7.4 Modeling of Maintenance Interventions

Since the matrix A is now time-inhomogeneous, the maintenance modeling given in
Sec. 5.3 needs some minor modification. As before, the probability evolution until
the first maintenance intervention at time t1 is

π̇(t, t0) = A(t, t0)π(t, t0) , t0 ≤ t < t1 (5.53)

with initial condition π(t0, t0) = p(t0). At time t1 a decision is made with re-
spect to the amount of rehabilitation work to be done. In general, the structure is
inspected, its condition is assessed and a minimum level of rehabilitation ∆1 is se-
lected such that all deterioration states k ≥ ∆1 are restored. Since matrix A(t, ·) is
time-dependent, we have to split the probability vector π(t−1 , t0) in two vectors:

π(t+1 , t0) = π(t−1 , t0) − C1π(t−1 , t0) = π(t−1 , t0) − δπ(t1, t0) (5.54)

containing the probabilities of the non-rehabilitated states, whose evolution for t1 <

t < t2 is continued to be governed by the matrix A(t, t0), and

π(t1, t1) = QC1π(t−1 , t0) (5.55)

the probabilities of the rehabilitated states, which can be interpreted as the initial
conditions π(t1, t1) = p(t1) of a new structure, whose evolution is governed by a,
so to say, restarted matrix A(t, t1), as will be shown below.

The above scheme can be continued, such that for n maintenance interventions
at times t1 < t2 < . . . < tn the governing equations are given as (s = 0, 1, . . . , n;
r = 1, 2, . . . , n; r > s)

π̇(t, ts) = A(t, ts)π(t, ts) , t ≥ ts, t 6= tr (5.56)
δπ(t, ts) = −Crπ(t, ts) , t = tr (5.57)

with initial conditions

p(ts) =







p(t0) , s = 0

QCs

s−1∑

j=0

π(t−s , tj) , s > 0
(5.58)

The probabilities of the structure being in one of the m states at time t, and the
corresponding derivatives with respect to time are

[Pr(X(t) = 1), Pr(X(t) = 2), . . . , Pr(X(t) = m)]T =
∑

s: t>ts

π(t, ts) (5.59)
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and

d

dt
[Pr(X(t) = 1), Pr(X(t) = 2), . . . , Pr(X(t) = m)]T =

∑

s: t>ts

π̇(t, ts) (5.60)

respectively. The failure rate hsys(t) of the structure is given as

hsys(t) =
dPr(X(t) = m)/dt

1 − Pr(X(t) = m)
(5.61)

It should be mentioned, that the above modeling implicitly assumes that if rehabili-
tation is performed it is perfect, that is, the rehabilitated structure is ‘as new’.

5.7.5 Optimization of Bridge Management Strategies

Analogous to Sec. 5.6, we will optimize the maintenance strategies for the above
described truss-type bridge for different benefit rates. The basic cost factors are
set to the same values as in Sec. 5.5, that is, initial cost, loss, inspection cost and
discount rate are given, respectively, as c0 = 10 m.u., L = 2000 m.u., I = 2 m.u.
and γ = 0.03 per year. The rehabilitation costs are assumed to be Rk = c0/(7 − k)

with k = 1, 2, . . . , 5. At time t0 = 0 the structure is free of deterioration, that is,
Dsys(t0) = 0.

As a first example, let us assume a constant benefit rate of Ḃk = 0.7 m.u. per
year. Without inspection and rehabilitation, the bridge reaches its optimal lifetime at
T ∗ = 38.1 years. At this time the expected net present benefit attains its maximum
value of g∗(T ∗) = 5.370 m.u. (see Table 5.9). The corresponding probability of
failure up to this time is Pr(X(T ∗) = m) = 7.7 · 10−4.

Table 5.9: Optimal solutions for bridge maintenance in case of state-independent benefit rate.

n 0 1 2 3 4

T ∗ [year] 38.1 74.4 109.8 144.9 179.8

g∗(T ∗) [m.u.] 5.370 9.038 10.287 10.721 10.873

t∗1 [year] – 36.3 35.4 35.1 35.0

t∗2 [year] – – 71.7 70.5 70.1

t∗3 [year] – – – 106.8 105.5

t∗4 [year] – – – – 141.8

∆∗
1 – 1 1 1 1

∆∗
2 – – 1 1 1

∆∗
3 – – – 1 1

∆∗
4 – – – – 1
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To extend the lifetime of the bridge beyond its 38.1 years, we maximize the
expected net present benefit rate by optimizing the maintenance times t

∗ and the
rehabilitation levels ∆

∗ for a given number n of maintenance interventions. The
results are listed in Table 5.9 and shown exemplarily for n = 3 in Figs. 5.22 and
5.23. As in previous examples with a time-homogeneous matrix A, the optimal
strategy requires to perform rehabilitation efforts at almost periodic intervals, and
before reaching the acceptable failure rate of ha(t) = 3.5 · 10−4. Due to the small
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Figure 5.22: Expected net benefit rate ġn(t) for bridge management problem in case of state-
independent benefit rate (n = 3, solid line).
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number of condition states (m = 6) there is no variation in the optimal rehabilitation
level ∆∗

j present, that is, at maintenance time tj all structures with a condition state
2 or higher get rehabilitated to an ‘as new’ state.

Next we assume that the benefit rates decrease linearly with the deterioration
state k as

Ḃk = 1.0 ×
m − k

m − 1
m.u. per year (k = 1, . . . , 5) (5.62)

All other quantities remain the same as in the previous example. The optimal main-
tenance interventions for state-dependent benefit rates and different number n of
interventions are given in Table 5.10. As before, the expected net present benefit

Table 5.10: Optimal solutions for bridge management problem in case of state-dependent benefit
rates.

n 1 2 3 4

T ∗ [year] 73.7 107.4 139.7 171.5

g∗(T ∗) [m.u.] 16.546 18.504 19.230 19.508

t∗1 [year] 35.5 33.6 32.4 31.7

t∗2 [year] – 69.2 66.0 64.1

t∗3 [year] – – 101.5 97.7

t∗4 [year] – – – 133.3

∆∗
1 1 1 1 1

∆∗
2 – 1 1 1

∆∗
3 – – 1 1

∆∗
4 – – – 1

g∗(T ∗) increases monotonically with time. Also, the qualitative behavior of the op-
timal solution is like the one for constant benefit rates, although, the times between
maintenance interventions got shortened somehow due to the state-dependency of
the benefit rates. In fact, the discussion from Sec. 5.6.2 could be reiterated here in
its entirety.

The same also holds when the benefit rate is modeled as being state- and time-
dependent:

Ḃk(t) = 1.0 ×
m − k

m − 1
exp(−0.015t) m.u. per year (k = 1, . . . , 5) (5.63)

In Table 5.11 the optimal solutions are given for 1 ≤ n ≤ 4 number of main-
tenance interventions. As can be seen, the expected net present benefit reaches
its maximum at n∗ = 2 maintenance interventions. Hence, the optimal lifetime
is T ∗ = 102.0 years. From the display of the expected net benefit rate ġn(t) in
Fig. 5.24, small dents at around 25 years after, respectively, construction or rehabil-
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Table 5.11: Optimal solutions for bridge management problem in case of state- and time-dependent
benefit rates.

n 1 2 3 4

T ∗ [year] 69.9 102.0 134.7 168.0

g∗(T ∗) [m.u.] 8.961 9.201 9.179 9.146

t∗1 [year] 34.1 33.1 33.0 33.0

t∗2 [year] – 67.1 66.8 66.9

t∗3 [year] – – 100.8 101.0

t∗4 [year] – – – 134.9

∆∗
1 1 1 1 1

∆∗
2 – 1 1 1

∆∗
3 – – 1 1

∆∗
4 – – – 1
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Figure 5.24: Expected net benefit rate ġn(t) for bridge management problem in case of state- and
time-dependent benefit rates (n∗ = 2, solid line).

itation can be noted. At this time the most likely damage state is state 2. And due to
the ‘coarseness’ of the damage states and the corresponding benefit rates this tran-
sition from state 1 to state 2 can be seen in Fig. 5.24. Or, in the similar example of
Sec. 5.6.3 such dents were not visible doe to the higher number of condition states
and the more smooth transitions in the corresponding benefit rates.

Finally, let us investigate the influence of different discount rates γ on the op-
timal solution of n = 2 maintenance interventions from the previous example. In
Table 5.12 the solutions for γ = 0.00, 0.01, . . . , 0.06 per year are listed. As can be
seen, the effect of different discount rates have a tremendous effect on the value of



110 Optimizing Maintenance Interventions • Ch. 5

Table 5.12: Optimal solutions for bridge management problem in case of state- and time-dependent
benefit rates (with n = 2) for different discount rates γ.

γ [per year] 0.00 0.01 0.02 0.03 0.04 0.05 0.06

T ∗ [year] 102.6 101.7 101.5 102.0 102.7 103.5 104.2

g∗(T ∗) [m.u.] 31.07 20.10 13.49 9.20 6.24 4.08 2.43

t∗1 [year] 33.5 32.8 32.7 33.1 33.6 34.1 34.5

t∗2 [year] 67.7 66.8 66.6 67.1 67.8 68.6 69.4

∆∗
1 1 1 1 1 1 1 1

∆∗
2 1 1 1 1 1 1 1

the net present benefit g∗(T ∗), as should be expected when discounting on a time
horizon of more than one hundred years. However, the maintenance times and the
lifetimes differ only by an almost negligible amount. Also, there is no general—
even minor—trend visible like, for example, that higher discount rates would shift
all maintenance interventions to later points in time.



6
Conclusions

Although there has been in recent years an increasing interest in the lifetime exten-
sion of existing structures, the offered solutions so far have been of purely technical
nature. That is, rehabilitation methods have been developed which allow to extend
the structural lifetime by improving, say, its reliability and durability, but the ques-
tion whether these efforts are also justified in economic terms has been basically not
answered. This is all the more astonishing, since it have been originally monetary
reasons—the realization that a growing percentage of civil infrastructure and build-
ings is threatened by obsolescence, and that it is no longer economically feasible
to counter this by re-building everything anew—that have been the cause for the
interest in lifetime extensions.

The problem gets further aggravated by the fact that maintenance or rehabilita-
tion planning requires forecasts into the future with respect to, for example, max-
imum loads or the evolution of the load carrying capacity in case of deterioration,
which are all inherently random processes. Hence, for a consistent treatment of
these uncertainties structural reliability methods are indispensable. However, struc-
tural reliability methods traditionally focus on the probability of failure as a measure
of safety, which is specified for its lifetime of, say, fifty years. This criterion is also
quite unanimously utilized for maintenance planning, although, strictly speaking, it
is the failure rate which characterizes at each point in time the hazardousness of a
(deteriorating) structure.

As has been shown in this work, both problems—the economic justification of
rehabilitation efforts and the consistent selection of acceptable safety criteria—are
closely related. For this purpose the maintenance optimization problem has been
formulated in the framework of cost-benefit analysis. The utilization of cost-benefit
analysis as a decision-aiding rationale allows us not only to disclose all cost and
benefit streams, but also provides us with rational criteria for, on the one hand,
decisions on investments and, on the other hand, determining optimal structural
lifetimes and acceptable failure rates—the latter when used in combination with
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structural reliability theory. For achieving this, all significant life-cycle costs—such
as construction, failure, inspection and rehabilitation costs—as well as time- and
state-dependent benefit rates have to be taken into account.

The optimization of the maintenance interventions is performed herein by maxi-
mizing the net benefit rate throughout the lifetime of the structure. Design variables
are maintenance times, rehabilitation levels, inspection qualities, the structural life-
time and the number of maintenance interventions. In this way a maintenance policy
which is quite straight forward to implement can be determined in terms of directly
or indirectly observable indicators of structural deterioration. Since the resulting
optimization problem for maintenance planning is a mixed-discrete one, we utilize
an evolutionary algorithm for its solution. Such algorithms can be interpreted—
without any recursion to biological terminology—as adaptively-directed random
search methods. It is also shown, that there is no need to utilize binary represen-
tations, since operators for recombination and mutation can be analogously con-
structed for integer or real-valued representations of design variables.

For being able to describe consistently the time-variant condition of a structure
in terms of both performance and ultimate failure states, we explicitly model the de-
terioration process and the respective maintenance interventions, since it can not be
done by solely utilizing inspection data or so called expert knowledge. To achieve
a certain compatibility with existing condition rating procedures of existing infras-
tructure or building management systems, we describe the structural condition by
a finite number of states. The probability evolution between maintenance interven-
tions is governed by a continuous-time Markov chain. The time-homogeneous or
time-inhomogeneous transition matrices are derived, respectively, from Markovian
deterioration models or, more generally, from time distributions of reaching defined
deterioration states. The maintenance interventions at certain points in the lifetime
then act like pulses ‘pushing back’ the structural condition to lower deterioration or
‘as new’ states.

The numerical examples demonstrate the importance of defining benefit rates
explicitly. As has been shown, state-dependent benefit rates result in markedly
different optimal maintenance times as compared to benefit rates which are state-
independent, whereas only slight differences in optimal maintenance times can be
observed between time-dependent and time-independent benefit rates, respectively.
Also, imperfect inspection or rehabilitation results in performing maintenance in-
terventions more often than in the case of perfect inspection and rehabilitation. If
the preference towards the structure as expressed in terms of benefit rates and costs
is not changing with time, maintenance interventions allow, in principle, to extend
the lifetime of a structure infinitely. This does not mean that there is no failure at
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all, but that the failure rate—the probability of failure per, say, year, under the con-
dition, that the structure has not failed so far—is always less than the acceptable
failure rate.

If, however, benefit rates, costs or the system matrix are time-variant, then it
may happen that at a certain time the expenditures spent on maintenance no longer
outweigh the expected future net benefit, that is, the structure becomes obsolete.
Nevertheless, in all these cases the optimal solution to maintenance interventions re-
quires to take action before reaching the acceptable failure rate or the zero expected
net benefit rate level. This is also an interesting finding, since so far reliability-based
optimization procedures quite often implicitly assume that an optimal maintenance
solution is one where the maintenance actions are executed when the failure rate
reaches the acceptable level. In general we have to say, that deferring decisions with
respect to maintenance not only results in higher economic losses, but also compro-
mises safety issues, that is, non-action leads to potentially hazardous structures.
Thus, to summarize, the approach for cost-benefit based maintenance optimization
presented herein allows to determine consistently maintenance policies which are at
the same time economically optimal and ‘safe enough’. And, as is equally impor-
tant for decision-making, it discloses the interaction between economic decisions
concerning further investments (in the form of inspection and rehabilitation expen-
ditures), the benefits that can be gained, and the implied risks to society.

Nevertheless, there still remain some topics which warrant further investigation.
Most closely related to the work herein is the need for efficient methods for calculat-
ing first-passage densities or failure rates. A first attempt in this direction has been
made in (Joanni and Rackwitz, 2005), where it was shown that not only different
approximation methods, but also Monte Carlo sampling can in principle be utilized
to solve the required multi-variate normal integrals. But this needs certainly further
investigation, especially with respect to somehow more complex problems as given
in (Joanni and Rackwitz, 2005). Also, to optimize jointly initial structural design
and maintenance interventions remains an interesting issue to explore.

With respect to the cost parameters, more clarification is needed with respect
to failure costs and how to determine benefits. Whereas, for example, benefit fore-
casts in public road transportation projects are on the average quite reasonable, in
rail transportation projects benefits get systematically and strongly overestimated
(Flyvbjerg et al., 2005). A solution to such problems is certainly not to dismiss
benefit forecasts at all, since in road planning they are more or less working, but
to use mechanisms of transparency and accountability to mitigate such systematic
misrepresentations. In case of failure costs the question remains whether indirect
costs should be included or not. This is closely related to the determination of ac-
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ceptable failure rates. In this work we have chosen the failure costs such that they
correspond approximately to a failure rate as specified in International Standard
ISO 2394 (1998). But this results in comparatively high failure costs, so seem-
ingly indicating that indirect costs should indeed be included—at least as long as
the current acceptable failure rates are not getting revised.
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Zusammenfassung in Deutsch

EINFÜHRUNG

Die Entscheidung ein Tragwerk beziehungsweise eine bauliche Anlage zu errich-
ten, instand zu halten oder umzunutzen basiert im Wesentlichen darauf, dass man
sich davon einen zukünftig Nutzen erwartet, der die möglicherweise anfallenden
Kosten aufwiegt oder übersteigt. Ein rationales Verfahren zur Unterstützung derar-
tiger Entscheidungsfindungen ist die Kosten-Nutzen-Analyse, die, wie auch andere
normative Entscheidungstheorien, Kriterien bestimmt, nach denen mögliche Alter-
nativen zu vergleichen und hinsichtlich ihrer Konsequenzen zu bewerten sind, um
die optimale Lösung zu einer Problemstellung zu finden. Obwohl Kostenbetrach-
tungen im Lebenszyklus-Management von Bauwerken zunehmend an Interesse ge-
winnen, wurden bisher Kosten-Nutzen-Betrachtungen zur optimalen Planung von
Instandhaltungsmaßnahmen praktisch nicht eingesetzt.

Das Ziel der vorliegenden Arbeit ist es daher konsistent Kosten-Nutzen-
Kriterien bei der Planung von Instandhaltungsmaßnahmen beziehungsweise der
Verlängerung der Nutzungsdauer anzuwenden. Dabei werden sowohl die Unsi-
cherheiten bezüglich zukünftiger Lasten und sich verändernder Tragfähigkeiten
berücksichtigt, als auch der im Allgemeinen von der Gebrauchsfähigkeit abhängige
Nutzen, die vom Tragwerkszustand abhängigen Kosten der Instandhaltung und die
Kosten möglichen Tragwerkversagens. Dieses Vorgehen erlaubt auch die Festle-
gung von optimalen Nutzungsdauern und zulässigen Versagens- oder Ausfallraten,
und macht somit die miteinander in Beziehung stehenden Anforderungen an die
Wirtschaftlichkeit, Gebrauchsfähigkeit und Sicherheit von Tragwerken transparent.

ZUVERLÄSSIGKEITSORIENTIERTE OPTIMIERUNG

Optimierungsprobleme in der Strukturmechanik bestehen im Allgemeinen aus der
Minimierung oder Maximierung einer Zielfunktion wie Gewicht oder Kosten,
wobei die möglichen Lösungen in der Form von Nebenbedingungen bezüglich
der auftretenden Spannungen, Verformungen, Schwingungszahlen, etc. restrin-
giert sein können. Sind Unsicherheiten vorhanden, so treten in der Zielfunktion
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oder den Nebenbedingungen zusätzlich probabilistische Maße wie Erstversagens-
wahrscheinlichkeiten oder Versagensraten auf. Stand der Technik in der zuver-
lässigkeitsorientierten Strukturoptimierung ist es, für eine vorgegebene Nutzungs-
dauer den Erwartungswert aus Errichtungs- und Versagenskosten zu minimieren—
meist unter der Nebenbedingung, das eine zulässiges Sicherheitsniveau eingehal-
ten wird. Dabei wird bei der Formulierung der Zielfunktion zwischen den bei-
den Fällen der Aufgabe eines Tragwerks nach dem Versagen und des systema-
tischen Wiederaufbaus unterschieden. Für den letzteren Fall kommen neuerdings
auch Kosten-Nutzen-Kriterien zum Einsatz. Allerdings sind diese eben nur für un-
beschränkte Zeithorizonte formuliert, erlauben also nicht die Bestimmung von Rest-
nutzungsdauern und die Planung von Instandhaltungsmaßnahmen einzelner beste-
hender Bauwerke, sondern liefern nur Aussagen bezüglich der mittleren Nutzungs-
dauer und der mittleren Zeitdauer zwischen zwei Instandhaltungen. Auch werden
nicht verschiedene Bauwerkszustände unterschieden, so dass nur die prophylakti-
sche Erneuerung als Instandhaltungsmaßnahme möglich ist.

Auf dem Gebiet der zuverlässigkeitsorientierten Optimierung von Instandhal-
tungsplänen von Tragwerken werden zwar meist verschiedene Tragwerkszustände
und die davon abhängigen Kosten der Inspektion und Instandsetzung unterschieden,
aber es wird nicht der ebenfalls davon abhängige Nutzen berücksichtigt, weshalb in
dieser Formulierung eine Nebenbedingung in Form eines zulässigen Sicherheitsni-
veaus erforderlich ist. Dies hat zur Folge, dass zwar die Kosten der Instandhaltungs-
maßnahme minimiert werden, aber ob die Maßnahme selbst wirtschaftlich sinnvoll
ist kann nicht festgestellt werden. Zudem wird das zulässige Sicherheitsniveau in
den Nebenbedingungen einmütig mittels der Erstversagenswahrscheinlichkeit an-
gegeben, was bei alternden Bauwerken und veränderlichen Zeitintervallen zu In-
konsistenzen führt. Es besteht also ein erheblicher Bedarf bei der Optimierung von
Instandhaltungsplänen den jeweiligen Nutzen—gerade auch in Abhängigkeit von
der Gebrauchsfähigkeit—zu berücksichtigen, sowie die Ausfallrate als zulässiges
Sicherheitsmaß zu verwenden. Auch Aussagen zur (wirtschaftlich) optimalen Nut-
zungsdauer sind zu treffen.

GRUNDLAGEN DER KOSTEN-NUTZEN-ANALYSE

Bei der Entscheidungsfindung ist aus einer Menge möglicher Alternativen dieje-
nige auszuwählen, deren Auswirkungen am ‘besten’ den jeweiligen Präferenzen
entsprechen. Bei Entscheidungen unter Unsicherheiten sind auch die Auswirkun-
gen unsicher, das heißt zufällig. Erfüllen jedoch die erwähnten Präferenzen die
Axiome der Rationalität, so kann das Entscheidungsproblem auf die Maximierung
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des Erwartungswerts der Nutzenfunktion reduziert werden. In der Kosten-Nutzen-
Analyse wird diese Nutzenfunktion in einen Kosten- und einen Nutzenanteil aufge-
spaltet, ist eine lineare Funktion dieser Anteile und wird in Geldeinheiten gemessen.
Die Kosten-Nutzen-Analyse ist ein Instrument der Entscheidungsunterstützung, das
heißt überwiegt für ein Vorhaben der zu erwartende Nutzen die zu erwartenden
Kosten, ist also ein Nutzenüberschuss vorhanden, so sollte aus wohlfahrtstheoreti-
schen Gründen das Vorhaben realisiert werden. Da dieser Ansatz normativ ist, kann
der Entscheidungsträger jedoch von dieser Vorgabe abweichen. Kosten-Nutzen-
Analysen werden in den Industriestaaten in zunehmenden Maße bei öffentlichen
Vorhaben einer gewissen wirtschaftlichen Größenordnung eingesetzt und erlauben
es den Entscheidungsprozess nachprüfbar zu gestalten.

Der Erwartungswert des Nutzens eines Bauwerks je Zeiteinheit bestimmt sich
aus der Verfügbarkeit, das heißt der Wahrscheinlichkeit, dass das Bauwerk zum
herausgegriffenen Zeitpunkt im gebrauchsfähigen Zustand ist, und dem Nutzen je
Zeiteinheit, der aus der Existenz des Bauwerks gezogen wird. Die Höhe des Nut-
zens ist im Allgemeinen nicht nur vom technischen Zustand, sondern auch von den
an ein Bauwerk gestellten Anforderungen abhängig, die sich im Laufe der Zeit
ändern können. Der Erwartungswert der Versagenskosten je Zeiteinheit bestimmt
sich aus der Versagensrate, der Wahrscheinlichkeit des Nichtversagens bis zum her-
ausgegriffenen Zeitpunkt und den direkten und indirekten Kosten im Versagens-
fall. Die Kosten für Instandhaltungsmaßnahmen setzen sich zusammen aus den Ko-
sten zur Schadensbestimmung und den Kosten zur Schadensbeseitigung. Die Höhe
der Kosten sind dabei von den eingesetzten Verfahren und der Größe des Scha-
dens abhängig. Dabei ist allerdings zu beachten, dass aufgrund der Unsicherheiten
der Verfahren zur Zustandserfassung von Bauwerken nicht notwendigerweise alle
Schäden erfasst und somit möglicherweise beseitigt werden, und dass es ein opti-
maler Instandhaltungsplan unter Umständen gar nicht zwingend erfordert jedweden
Schaden zu beseitigen. In Übereinstimmung mit existierenden Managementsyste-
men für Bauwerke wird der Bauwerkszustand in diskreten Stufen dargestellt.

Der während des gesamten Lebenszyklus zu erwartende Nutzen als auch alle zu
erwartenden Kosten werden kontinuierlich abgezinst und zum Nettonutzen zusam-
mengefasst. Das Prinzip der Kosten-Nutzen-Analyse fordert, dass der Nettonutzen
immer positiv ist. Eine optimale Lösung ist gegeben, wenn der Nettonutzen maxi-
mal wird. Dies ist idealerweise für jedes beliebige Zeitintervall zu gewährleisten.
Daraus folgt, dass in der Tat der Nettonutzen je Zeiteinheit zu maximieren ist. Das
Ende der optimalen Nutzungsdauer eines Bauwerks ist erreicht, wenn der Nettonut-
zen je Zeiteinheit nicht länger positiv ist. Dieses Kriterium des Verschwindens des
Nettonutzens je Zeiteinheit definiert auch die zu jedem Zeitpunkt zulässige Versa-
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gensrate. Zur Kosten-Nutzen orientierten Optimierung von Instandhaltungsstrategi-
en ist somit der Nettonutzen für die optimalen Nutzungsdauer zu maximieren, un-
ter den Nebenbedingungen eines positiven Nettonutzens für die gesamte optimale
Nutzungsdauer und eines die Instandhaltungskosten jeweils aufwiegenden Netto-
nutzens zwischen zwei Instandhaltungsmaßnahmen. Die Variablen der Zielfunkti-
on sind die Anzahl der Instandhaltungsmaßnahmen und die Zeitintervalle zwischen
diesen, die Nutzungsdauer, das jeweilige Mindestschadensniveau, das einer Instand-
setzung bedarf, und der jeweilige Umfang beziehungsweise die jeweilige Qualität
der Bauwerkszustandserfassung.

EVOLUTIONÄRE ALGORITHMEN

Da das beschriebene gemischt-ganzzahlige Optimierungsproblem nicht ohne weite-
res durch kontinuierliche Hilfsprobleme angenähert werden kann, wird zur Lösung
ein evolutionärer Algorithmus eingesetzt. Evolutionäre Algorithmen sind stochasti-
sche Suchverfahren, deren Suchrichtungen jedoch adaptiv angepasst werden. Der
hier verwendete Algorithmus basiert auf einer natürlichen Repräsentation der Va-
riablen. Entsprechend wird der stochastischen Operator zur Mutation als Irrfahrt
modelliert und der zur Rekombination als Resampling-Verfahren mit einer an Hand
eines gegebenen Stichprobenpaars parametrisierten Wahrscheinlichkeitsverteilung.
Die Bewertung der einzelnen Lösungsvektoren erfolgt rangbasiert, deren Auswahl
zur Rekombination und Mutation aus der Menge der möglichen Lösungsvektoren
geschieht zufällig mittels einer varianzmindernden Stichprobenerhebung. Die Men-
ge der Lösungsvektoren für den nächsten Zyklus wird mittels Plusselektion be-
stimmt, das heißt die Auswahl ist streng elitär.

OPTIMIERUNG VON INSTANDHALTUNGSMASSNAHMEN

Die Beschreibung der Entwicklung der Zustandswahrscheinlichkeiten des Bau-
werks erfolgt mittels eines Markovschen Prozesses mit endlich vielen Zuständen,
das heißt einer zeit-kontinuierlichen Markovschen Kette. Die Übergangsintensitäten
für die verschiedenen Bauwerkszustände werden entweder mit Hilfe Markovscher
Alterungsmodelle bestimmt oder aus den Verteilungsfunktionen der Zeit bis zum
erreichen definierter Schadenszustände. Die Übergangsintensitäten sind im Allge-
meinen zeitvariant. Innerhalb dieser Beschreibung können die Instandhaltungsstra-
tegien als einfache Matrix-Vektor-Operationen dargestellt werden.

An Hand von Rechenbeispielen wird der Einfluss des zustands- oder
zeitabhängigen Nutzens eines Bauwerks auf die Bestimmung optimaler Instand-



Zusammenfassung in Deutsch 131

haltungspläne untersucht. Es zeigt sich, dass im Falle des zustandsabhängigen Nut-
zens bei sonst gleichbleibenden Bedingungen die Zeitpunkte der Instandhaltung
wesentlich kürzer sind als im Falle eines zustandsunabhängigen Nutzens. Hingegen
hat die Zeitabhängigkeit des Nutzens auf die Instandhaltungsintervalle keinen deut-
lichen Einfluss. Allerdings erfolgt in letzterem Fall auch eine zeitliche Abnahme
der zulässigen Versagensrate, so dass die Instandhaltungsstrategien es nicht erlau-
ben das Bauwerk endlos zu nutzen. Ab einem gewissen Zeitpunkt ist das Bauwerk
veraltet. Eine Veraltung erfolgt auch, wenn das Bauwerk zeitlich wachsenden An-
forderungen ausgesetzt wird. In allen anderen Fällen hingegen erlaubt es der wie-
derholte Einsatz von Instandhaltungsmaßnahmen mit wirtschaftlichen Gewinn die
Nutzungsdauer der Bauwerke beliebig zu verlängern.

Obige Aussagen gelten auch, wenn die Unsicherheiten in der Zustandserfas-
sung und in der Schadensbeseitigung berücksichtigt werden. In beiden Fällen
führen die Unsicherheiten jedoch zu frühzeitigen Wiederholungen der Instandhal-
tungsmaßnahmen. Auch zeigt sich, dass in diesen Fällen die Anforderung an die
zerstörungsfreien Prüfverfahren bezüglich der Erkennung kleinster Schäden ge-
ringer sind, da wesentlich öfter Instandhaltungsmaßnahmen durchgeführt werden
müssen. Dessen ungeachtet ist auch hier ein fortwährender Gebrauch des Bauwerks
wirtschaftlich sinnvoll. Die Wahl des Zinsfußes hat keinen merklichen Einfluß auf
die Ausgestaltung der optimalen Instandhaltungsstrategie.

SCHLUSSFOLGERUNGEN

Kosten-Nutzen-Kriterien erlauben gleichzeitig die Optimierung von Instandhal-
tungsstrategien und die Bestimmung zulässiger Versagensraten und optimaler Nut-
zungsdauern. Wie gezeigt wurde, stehen dabei Wirtschaftlichkeit, Gebrauchs-
fähigkeit und Sicherheit in enger Beziehung zueinander. Das entscheidende proba-
bilistische Maß zur Beurteilung der Sicherheit von Bauwerken ist die Versagensrate.
Die Nutzungsdauer der Bauwerke kann mit dem Einsatz von Instandhaltungsmaß-
nahmen im Prinzip beliebig verlängert werden, so lange sich nicht die Anforderun-
gen an das Bauwerk mit der Zeit erhöhen. Optimale Instandhaltungsstrategien erfor-
dern es dabei vor Erreichen der zulässigen Versagensrate aktiv zu werden. Ein Auf-
schieben von Instandhaltungsmaßnahmen führt nicht nur zu unzulässig gefährlichen
Bauwerken, sondern ist auch wirtschaftlich nachteilig.
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