TY - JOUR A1 - Alemu, Yohannes L. A1 - Habte, Bedilu A1 - Lahmer, Tom A1 - Urgessa, Girum T1 - Topologically preoptimized ground structure (TPOGS) for the optimization of 3D RC buildings JF - Asian Journal of Civil Engineering N2 - As an optimization that starts from a randomly selected structure generally does not guarantee reasonable optimality, the use of a systemic approach, named the ground structure, is widely accepted in steel-made truss and frame structural design. However, in the case of reinforced concrete (RC) structural optimization, because of the orthogonal orientation of structural members, randomly chosen or architect-sketched framing is used. Such a one-time fixed layout trend, in addition to its lack of a systemic approach, does not necessarily guarantee optimality. In this study, an approach for generating a candidate ground structure to be used for cost or weight minimization of 3D RC building structures with included slabs is developed. A multiobjective function at the floor optimization stage and a single objective function at the frame optimization stage are considered. A particle swarm optimization (PSO) method is employed for selecting the optimal ground structure. This method enables generating a simple, yet potential, real-world representation of topologically preoptimized ground structure while both structural and main architectural requirements are considered. This is supported by a case study for different floor domain sizes. KW - Bodenmechanik KW - Strukturanalyse KW - Optimierung KW - Stahlbetonkonstruktion KW - Dreidimensionales Modell KW - ground structure KW - TPOGS KW - topology optimization KW - 3D reinforced concrete buildings Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230517-63677 UR - https://link.springer.com/article/10.1007/s42107-023-00640-2 VL - 2023 SP - 1 EP - 11 PB - Springer International Publishing CY - Cham ER - TY - JOUR A1 - Lahmer, Tom A1 - Nguyen-Tuan, Long A1 - Könke, Carsten A1 - Bettzieche, Volker T1 - Thermo-hydro-mechanische 3-D-Simulation von Staumauern‐Modellierung und Validierung JF - WASSERWIRTSCHAFT N2 - Thermo-hydro-mechanische 3-D-Simulation von Staumauern‐Modellierung und Validierung KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2016 SP - 27 EP - 30 ER - TY - JOUR A1 - Zhang, Chao A1 - Hao, Xiao-Li A1 - Wang, Cuixia A1 - Wei, Ning A1 - Rabczuk, Timon T1 - Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation JF - Scientific Reports N2 - Tensile strain and compress strain can greatly affect the thermal conductivity of graphene nanoribbons (GNRs). However, the effect of GNRs under shear strain, which is also one of the main strain effect, has not been studied systematically yet. In this work, we employ reverse nonequilibrium molecular dynamics (RNEMD) to the systematical study of the thermal conductivity of GNRs (with model size of 4 nm × 15 nm) under the shear strain. Our studies show that the thermal conductivity of GNRs is not sensitive to the shear strain, and the thermal conductivity decreases only 12–16% before the pristine structure is broken. Furthermore, the phonon frequency and the change of the micro-structure of GNRs, such as band angel and bond length, are analyzed to explore the tendency of thermal conductivity. The results show that the main influence of shear strain is on the in-plane phonon density of states (PDOS), whose G band (higher frequency peaks) moved to the low frequency, thus the thermal conductivity is decreased. The unique thermal properties of GNRs under shear strains suggest their great potentials for graphene nanodevices and great potentials in the thermal managements and thermoelectric applications. KW - Wärmeleitfähigkeit KW - Graphen KW - Schubspannung Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170428-31718 ER - TY - JOUR A1 - Zhao, Jiyun A1 - Lu, Lixin A1 - Rabczuk, Timon T1 - The tensile and shear failure behavior dependence on chain length and temperature in amorphous polymers JF - Computational Materials Science N2 - The tensile and shear failure behavior dependence on chain length and temperature in amorphous polymers KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 567 EP - 572 ER - TY - JOUR A1 - Ben, S. A1 - Zhao, Jun-Hua A1 - Zhang, Yancheng A1 - Rabczuk, Timon T1 - The interface strength and debonding for composite structures: review and recent developments JF - Composite Structures N2 - The interface strength and debonding for composite structures: review and recent developments KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 ER - TY - JOUR A1 - Areias, Pedro A1 - Rabczuk, Timon A1 - Barbosa, J.I. T1 - The extended unsymmetric frontal solution for multiple-point constraints JF - Engineering Computations N2 - The extended unsymmetric frontal solution for multiple-point constraints KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 ER - TY - JOUR A1 - Işık, Ercan A1 - Büyüksaraç, Aydın A1 - Levent Ekinci, Yunus A1 - Aydın, Mehmet Cihan A1 - Harirchian, Ehsan T1 - The Effect of Site-Specific Design Spectrum on Earthquake-Building Parameters: A Case Study from the Marmara Region (NW Turkey) JF - Applied Sciences N2 - The Marmara Region (NW Turkey) has experienced significant earthquakes (M > 7.0) to date. A destructive earthquake is also expected in the region. To determine the effect of the specific design spectrum, eleven provinces located in the region were chosen according to the Turkey Earthquake Building Code updated in 2019. Additionally, the differences between the previous and updated regulations of the country were investigated. Peak Ground Acceleration (PGA) and Peak Ground Velocity (PGV) were obtained for each province by using earthquake ground motion levels with 2%, 10%, 50%, and 68% probability of exceedance in 50-year periods. The PGA values in the region range from 0.16 to 0.7 g for earthquakes with a return period of 475 years. For each province, a sample of a reinforced-concrete building having two different numbers of stories with the same ground and structural characteristics was chosen. Static adaptive pushover analyses were performed for the sample reinforced-concrete building using each province’s design spectrum. The variations in the earthquake and structural parameters were investigated according to different geographical locations. It was determined that the site-specific design spectrum significantly influences target displacements for performance-based assessments of buildings due to seismicity characteristics of the studied geographic location. KW - Erdbeben KW - earthquake KW - site-specific spectrum KW - Marmara Region KW - seismic hazard analysis KW - adaptive pushover KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20201022-42758 UR - https://www.mdpi.com/2076-3417/10/20/7247 VL - 2020 IS - Volume 10, issue 20, article 7247 PB - MDPI CY - Basel ER - TY - JOUR A1 - Zerbst, U. A1 - Vormwald, Michael A1 - Andersch, C. A1 - Mädler, K. A1 - Pfuff, M. T1 - The development of a damage tolerance concept for railway components and its demonstration for a railway axle JF - Engineering Fracture Mechanics N2 - The development of a damage tolerance concept for railway components and its demonstration for a railway axle KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2005 SP - 209 EP - 239 ER - TY - JOUR A1 - Zhao, Jun-Hua A1 - Kou, Liangzhi A1 - Jiang, Jin-Wu A1 - Rabczuk, Timon T1 - Tension-induced phase transition of single-layer molybdenum disulphide (MoS2) at low temperatures JF - Nanotechnology N2 - Tension-induced phase transition of single-layer molybdenum disulphide (MoS2) at low temperatures KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 U6 - http://dx.doi.org/10.1088/0957-4484/25/29/295701 ER - TY - JOUR A1 - Ghorashi, Seyed Shahram A1 - Valizadeh, Navid A1 - Mohammadi, S. A1 - Rabczuk, Timon T1 - T-spline based XIGA for Fracture Analysis of Orthotropic Media JF - Computers & Structures N2 - T-spline based XIGA for Fracture Analysis of Orthotropic Media KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 138 EP - 146 ER -