TY - JOUR A1 - Aguinaga, José Guillermo De T1 - Error in prediction due to data type availability in a coupled hydro-mechanical model JF - Electronic Journal of Geotechnical Engineering N2 - Different types of data provide different type of information. The present research analyzes the error on prediction obtained under different data type availability for calibration. The contribution of different measurement types to model calibration and prognosis are evaluated. A coupled 2D hydro-mechanical model of a water retaining dam is taken as an example. Here, the mean effective stress in the porous skeleton is reduced due to an increase in pore water pressure under drawdown conditions. Relevant model parameters are identified by scaled sensitivities. Then, Particle Swarm Optimization is applied to determine the optimal parameter values and finally, the error in prognosis is determined. We compare the predictions of the optimized models with results from a forward run of the reference model to obtain the actual prediction errors. The analyses presented here were performed calibrating the hydro-mechanical model to 31 data sets of 100 observations of varying data types. The prognosis results improve when using diversified information for calibration. However, when using several types of information, the number of observations has to be increased to be able to cover a representative part of the model domain. For an analysis with constant number of observations, a compromise between data type availability and domain coverage proves to be the best solution. Which type of calibration information contributes to the best prognoses could not be determined in advance. The error in model prognosis does not depend on the error in calibration, but on the parameter error, which unfortunately cannot be determined in inverse problems since we do not know its real value. The best prognoses were obtained independent of calibration fit. However, excellent calibration fits led to an increase in prognosis error variation. In the case of excellent fits; parameters' values came near the limits of reasonable physical values more often. To improve the prognoses reliability, the expected value of the parameters should be considered as prior information on the optimization algorithm. KW - Sensitivitätsanalyse KW - Damm KW - Embankment, sensitivity analysis, parameter identification, Particle Swarm Optimization KW - Fehlerabschätzung Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170413-31170 UR - https://www.scopus.com/inward/record.uri?eid=2-s2.0-84868020397&partnerID=40&md5=72c87bb112839303c1ef9a4afa8c6421 SP - 2459 EP - 2471 ER - TY - JOUR A1 - Scheuermann, Alexander A1 - Huebner, Christof A1 - Schlaeger, Stefan A1 - Wagner, Norman A1 - Becker, Rolf A1 - Bieberstein, Andreas T1 - Spatial time domain reflectometry and its application for the measurement of water content distributions along flat ribbon cables in a full-scale levee model JF - Water Resources Research N2 - Spatial time domain reflectometry (spatial TDR) is a new measurement method for determining water content profiles along elongated probes (transmission lines). The method is based on the inverse modeling of TDR reflectograms using an optimization algorithm. By means of using flat ribbon cables it is possible to take two independent TDRmeasurements from both ends of the probe, which are used to improve the spatial information content of the optimization results and to consider effects caused by electrical conductivity. The method has been used for monitoring water content distributions on a full-scale levee model made of well-graded clean sand. Flood simulation tests, irrigation tests, and long-term observations were carried out on the model. The results show that spatial TDR is able to determine water content distributions with an accuracy of the spatial resolution of about ±3 cm compared to pore pressure measurements and an average deviation of ±2 vol % compared to measurements made using another independent TDR measurement system. KW - Damm KW - Infiltration KW - Bodenfeuchte KW - Transient and time domain; Dams; Infiltration; Soil moisture; calibration; levee model; soil moisture measurement; spatial time domain reflectometry Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170425-31601 ER -