TY - JOUR A1 - Staubach, Patrick A1 - Machacek, Jan A1 - Skowronek, Josefine A1 - Wichtmann, Torsten T1 - Vibratory pile driving in water-saturated sand: Back-analysis of model tests using a hydro-mechanically coupled CEL method JF - Soils and Foundations N2 - The development of a hydro-mechanically coupled Coupled-Eulerian–Lagrangian (CEL) method and its application to the back-analysisof vibratory pile driving model tests in water-saturated sand is presented. The predicted pile penetration using this approachis in good agreement with the results of the model tests as well as with fully Lagrangian simulations. In terms of pore water pressure, however, the results of the CEL simulation show a slightly worse accordance with the model tests compared to the Lagrangian simulation. Some shortcomings of the hydro-mechanically coupled CEL method in case of frictional contact problems and pore fluids with high bulk modulus are discussed. Lastly, the CEL method is applied to the simulation of vibratory driving of open-profile piles under partially drained conditions to study installation-induced changes in the soil state. It is concluded that the proposed method is capable of realistically reproducing the most important mechanisms in the soil during the driving process despite its addressed shortcomings. KW - Plastische Deformation KW - Vibratory pile driving KW - Coupled-Eulerian–Lagrangian KW - Hydro-mechanically coupled KW - Hypoplasticity KW - Relative acceleration KW - Large deformation KW - Deformationsverhalten KW - Plastizität KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210203-43571 UR - https://www.sciencedirect.com/science/article/pii/S0038080620337586?via%3Dihub VL - 2021 IS - Volume 61, Issue 1 SP - 144 EP - 159 PB - Elsevier, Science Direct CY - Amsterdam ER - TY - THES A1 - Krtschil, Anna T1 - Vergleich verschiedener Indikatoren in Bezug auf die Ökobilanz von Gebäuden N2 - Im Rahmen der Bachelorarbeit werden zwei Indikatoren zur Auswertung einer Ökobilanz gegenübergestellt. Die Umweltbelastungspunkte der Schweiz werden mit dem niederländischen ReCiPe verglichen. KW - Umweltbilanz KW - Ökobilanz KW - Umweltbelastungspunkte KW - ReCiPe KW - GaBi Software Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20150716-24340 ER - TY - THES A1 - Bendalla, Abdulmagid Sedig Khalafallah T1 - Nonlinear Numerical Modelling of Cable Elements in Bridges for Dynamic Analysis N2 - Identifying cable force with vibration-based methods has become widely used in engineering practice due to simplicity of application. The string taut theory provides a simple definition of the relationship between natural frequencies and the tension force of a cable. However, this theory assumes a perfectly flexible non-sagging cable pinned at its ends. These assumptions do not reflect all cases, especially when the cable is short, under low tension forces or the supports are partially flexible. Extradosed bridges, which are distinguished from cable-stayed bridges by their low pylon height, have shorter cables. Therefore the application of the conventional string taut theory to identify cable forces on extradosed bridge cables might be inadequate to identify cable forces. In this work, numerical modelling of an extradosed bridge cable saddled on a circular deviator at pylon is conducted. The model is validated with the catenary analytical solution and its static and dynamic behaviours are studied. The effect of a saddle support is found to positively affect the cable stiffness by geometric means; longer saddle radius increases the cable stiffness by suppressing the deformations near the saddle. Further, accounting the effects of bending stiffness in the numerical model by using beam elements show considerable deviation from models with truss elements (i.e. zero bending stiffness). This deviation is manifested when comparing the static and dynamic properties. This motivates a more thorough study of bending stiffness effects on short cables. Bending stiffness effects are studied using two rods connected with several springs along their length. Under bending moments, the springs resist the rods' relative axial displacement by the springs' transverse component. This concept is used to identify bending stiffness values by utilizing the parallel axis theorem to quantify ratios of the second moment of area. These ratios are calculated based on the setup of the springs (e.g. number of springs per unit length, transverse stiffness, etc...). The numerical model based on this concept agrees well with the theoretical values computed using upper and lower bounds of the parallel axis theorem. The proposed concept of quantifying ratios of the second moment of area using springs as connection between cable rods is applied on an actual extradosed bridge geometry. The model is examined by comparison to the previously validated global numerical model. The two models showed good correlation under various changing parameters. This allowed further study of the effects of stick/slip behaviour between cable rods on an actual bridge geometry. KW - Kabel KW - Nonlinear Cable Analysis KW - Bending Stiffness of cable elements KW - Biegesteifigkeit Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20191007-39940 ER -