@article{AbdelnourZabel, author = {Abdelnour, Mena and Zabel, Volkmar}, title = {Modal identification of structures with a dynamic behaviour characterised by global and local modes at close frequencies}, series = {Acta Mechanica}, volume = {2023}, journal = {Acta Mechanica}, publisher = {Springer}, address = {Wien}, doi = {10.1007/s00707-023-03598-z}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230525-63822}, pages = {1 -- 21}, abstract = {Identification of modal parameters of a space frame structure is a complex assignment due to a large number of degrees of freedom, close natural frequencies, and different vibrating mechanisms. Research has been carried out on the modal identification of rather simple truss structures. So far, less attention has been given to complex three-dimensional truss structures. This work develops a vibration-based methodology for determining modal information of three-dimensional space truss structures. The method uses a relatively complex space truss structure for its verification. Numerical modelling of the system gives modal information about the expected vibration behaviour. The identification process involves closely spaced modes that are characterised by local and global vibration mechanisms. To distinguish between local and global vibrations of the system, modal strain energies are used as an indicator. The experimental validation, which incorporated a modal analysis employing the stochastic subspace identification method, has confirmed that considering relatively high model orders is required to identify specific mode shapes. Especially in the case of the determination of local deformation modes of space truss members, higher model orders have to be taken into account than in the modal identification of most other types of structures.}, subject = {Fachwerkbau}, language = {en} } @inproceedings{AbrahamczykSchwarz, author = {Abrahamczyk, Lars and Schwarz, Jochen}, title = {Forecast Engineering: From Past Design to Future Decision 2017}, doi = {10.25643/bauhaus-universitaet.4034}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20191122-40344}, pages = {221}, abstract = {The design of engineering structures takes place today and in the past on the basis of static calculations. The consideration of uncertainties in the model quality becomes more and more important with the development of new construction methods and design requirements. In addition to the traditional forced-based approaches, experiences and observations about the deformation behavior of components and the overall structure under different exposure conditions allow the introduction of novel detection and evaluation criteria. The proceedings at hand are the result from the Bauhaus Summer School Course: Forecast Engineering held at the Bauhaus-Universit{\"a}t Weimar, 2017. It summarizes the results of the conducted project work, provides the abstracts of the contributions by the participants, as well as impressions from the accompanying programme and organized cultural activities. The special character of this course is in the combination of basic disciplines of structural engineering with applied research projects in the areas of steel and reinforced concrete structures, earthquake and wind engineering as well as informatics and linking them to mathematical methods and modern tools of visualization. Its innovative character results from the ambitious engineering tasks and advanced modeling demands.}, subject = {Proceedings}, language = {en} } @inproceedings{AbrahamczykSchwarz, author = {Abrahamczyk, Lars and Schwarz, Jochen}, title = {Forecast Engineering: From Past Design to Future Decision 2018}, doi = {10.25643/bauhaus-universitaet.4036}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20191126-40364}, pages = {112}, abstract = {Institute of Structural Engineering, Institute of Structural Mechanics, as well as Institute for Computing, Mathematics and Physics in Civil Engineering at the faculty of civil engineering at the Bauhaus-Universit{\"a}t Weimar presented special topics of structural engineering to highlight the broad spectrum of civil engineering in the field of modeling and simulation. The summer course sought to impart knowledge and to combine research with a practical context, through a challenging and demanding series of lectures, seminars and project work. Participating students were enabled to deal with advanced methods and its practical application. The extraordinary format of the interdisciplinary summer school offers the opportunity to study advanced developments of numerical methods and sophisticated modelling techniques in different disciplines of civil engineering for foreign and domestic students, which go far beyond traditional graduate courses. The proceedings at hand are the result from the Bauhaus Summer School course: Forecast Engineering held at the Bauhaus-Universit{\"a}t Weimar, 2018. It summarizes the results of the conducted project work, provides the abstracts/papers of the contributions by the participants, as well as impressions from the accompanying programme and organized cultural activities.}, subject = {Proceedings}, language = {en} } @article{AbrahamczykUzair, author = {Abrahamczyk, Lars and Uzair, Aanis}, title = {On the use of climate models for estimating the non-stationary characteristic values of climatic actions in civil engineering practice}, series = {Frontiers in Built Environment}, volume = {2023}, journal = {Frontiers in Built Environment}, number = {volume 9, article 1108328}, publisher = {Frontier Media}, address = {Lausanne}, doi = {10.3389/fbuil.2023.1108328}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230524-63751}, pages = {1 -- 9}, abstract = {The characteristic values of climatic actions in current structural design codes are based on a specified probability of exceedance during the design working life of a structure. These values are traditionally determined from the past observation data under a stationary climate assumption. However, this assumption becomes invalid in the context of climate change, where the frequency and intensity of climatic extremes varies with respect to time. This paper presents a methodology to calculate the non-stationary characteristic values using state of the art climate model projections. The non-stationary characteristic values are calculated in compliance with the requirements of structural design codes by forming quasi-stationary windows of the entire bias-corrected climate model data. Three approaches for the calculation of non-stationary characteristic values considering the design working life of a structure are compared and their consequences on exceedance probability are discussed.}, subject = {Klima{\"a}nderung}, language = {en} } @article{AchenbachLahmerMorgenthal, author = {Achenbach, Marcus and Lahmer, Tom and Morgenthal, Guido}, title = {Global Sensitivity Analysis of Reinforced Concrete Walls Subjected to Standard Fire - A Comparison of Methods}, series = {14th International Probabilistic Workshop}, journal = {14th International Probabilistic Workshop}, pages = {97 -- 106}, abstract = {Global Sensitivity Analysis of Reinforced Concrete Walls Subjected to Standard Fire—A Comparison of Methods}, subject = {Angewandte Mathematik}, language = {en} } @article{AchenbachLahmerMorgenthal, author = {Achenbach, Marcus and Lahmer, Tom and Morgenthal, Guido}, title = {Identification of the thermal properties of concrete for the temperature calculation of concrete slabs and columns subjected to a standard fire—Methodology and proposal for simplified formulations}, series = {Fire Safety Journal 87}, journal = {Fire Safety Journal 87}, doi = {10.1016/j.firesaf.2016.12.003}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170331-30929}, pages = {80 -- 86}, abstract = {The fire resistance of concrete members is controlled by the temperature distribution of the considered cross section. The thermal analysis can be performed with the advanced temperature dependent physical properties provided by 5EN6 1992-1-2. But the recalculation of laboratory tests on columns from 5TU6 Braunschweig shows, that there are deviations between the calculated and measured temperatures. Therefore it can be assumed, that the mathematical formulation of these thermal properties could be improved. A sensitivity analysis is performed to identify the governing parameters of the temperature calculation and a nonlinear optimization method is used to enhance the formulation of the thermal properties. The proposed simplified properties are partly validated by the recalculation of measured temperatures of concrete columns. These first results show, that the scatter of the differences from the calculated to the measured temperatures can be reduced by the proposed simple model for the thermal analysis of concrete.}, subject = {Sensitivit{\"a}tsanalyse}, language = {en} } @article{Aguinaga, author = {Aguinaga, Jos{\´e} Guillermo De}, title = {Error in prediction due to data type availability in a coupled hydro-mechanical model}, series = {Electronic Journal of Geotechnical Engineering}, journal = {Electronic Journal of Geotechnical Engineering}, doi = {10.25643/bauhaus-universitaet.3117}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170413-31170}, pages = {2459 -- 2471}, abstract = {Different types of data provide different type of information. The present research analyzes the error on prediction obtained under different data type availability for calibration. The contribution of different measurement types to model calibration and prognosis are evaluated. A coupled 2D hydro-mechanical model of a water retaining dam is taken as an example. Here, the mean effective stress in the porous skeleton is reduced due to an increase in pore water pressure under drawdown conditions. Relevant model parameters are identified by scaled sensitivities. Then, Particle Swarm Optimization is applied to determine the optimal parameter values and finally, the error in prognosis is determined. We compare the predictions of the optimized models with results from a forward run of the reference model to obtain the actual prediction errors. The analyses presented here were performed calibrating the hydro-mechanical model to 31 data sets of 100 observations of varying data types. The prognosis results improve when using diversified information for calibration. However, when using several types of information, the number of observations has to be increased to be able to cover a representative part of the model domain. For an analysis with constant number of observations, a compromise between data type availability and domain coverage proves to be the best solution. Which type of calibration information contributes to the best prognoses could not be determined in advance. The error in model prognosis does not depend on the error in calibration, but on the parameter error, which unfortunately cannot be determined in inverse problems since we do not know its real value. The best prognoses were obtained independent of calibration fit. However, excellent calibration fits led to an increase in prognosis error variation. In the case of excellent fits; parameters' values came near the limits of reasonable physical values more often. To improve the prognoses reliability, the expected value of the parameters should be considered as prior information on the optimization algorithm.}, subject = {Sensitivit{\"a}tsanalyse}, language = {en} } @article{AlaladeNguyenTuanWuttkeetal., author = {Alalade, Muyiwa and Nguyen-Tuan, Long and Wuttke, Frank and Lahmer, Tom}, title = {Damage identification in gravity dams using dynamic coupled hydro-mechanical XFEM}, series = {International Journal of Mechanics and Materials in Design}, journal = {International Journal of Mechanics and Materials in Design}, doi = {10.25643/bauhaus-universitaet.3596}, pages = {1 -- 19}, abstract = {Damage identification in gravity dams using dynamic coupled hydro-mechanical XFEM.}, subject = {Angewandte Mathematik}, language = {en} } @article{AlemuHabteLahmeretal., author = {Alemu, Yohannes L. and Habte, Bedilu and Lahmer, Tom and Urgessa, Girum}, title = {Topologically preoptimized ground structure (TPOGS) for the optimization of 3D RC buildings}, series = {Asian Journal of Civil Engineering}, volume = {2023}, journal = {Asian Journal of Civil Engineering}, publisher = {Springer International Publishing}, address = {Cham}, doi = {10.1007/s42107-023-00640-2}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230517-63677}, pages = {1 -- 11}, abstract = {As an optimization that starts from a randomly selected structure generally does not guarantee reasonable optimality, the use of a systemic approach, named the ground structure, is widely accepted in steel-made truss and frame structural design. However, in the case of reinforced concrete (RC) structural optimization, because of the orthogonal orientation of structural members, randomly chosen or architect-sketched framing is used. Such a one-time fixed layout trend, in addition to its lack of a systemic approach, does not necessarily guarantee optimality. In this study, an approach for generating a candidate ground structure to be used for cost or weight minimization of 3D RC building structures with included slabs is developed. A multiobjective function at the floor optimization stage and a single objective function at the frame optimization stage are considered. A particle swarm optimization (PSO) method is employed for selecting the optimal ground structure. This method enables generating a simple, yet potential, real-world representation of topologically preoptimized ground structure while both structural and main architectural requirements are considered. This is supported by a case study for different floor domain sizes.}, subject = {Bodenmechanik}, language = {en} } @phdthesis{Alexander, author = {Alexander, Anne}, title = {Quantitative Erfassung von Risiken und Simulation ihrer Auswirkungen auf den Verlauf eines Bauprojektes}, doi = {10.25643/bauhaus-universitaet.2051}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20130927-20514}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {171}, abstract = {Das Bauwesen hat sich in den letzten Jahren durch die Globalisierung des Marktes verbunden mit einer verst{\"a}rkten Nutzung moderner Technologien stark gewandelt. Die Planung und die Durchf{\"u}hrung von Bauvorhaben werden zunehmend komplexer und sind mit erh{\"o}hten Risiken verbunden. Geld- und Zeitressourcen werden bei einem immer h{\"a}rter werdenden Konkurrenzkampf knapper. Das Projektmanagement stellt L{\"o}sungsans{\"a}tze bereit, um Bauvorhaben auch unter erschwerten Bedingungen und erh{\"o}hten Risiken erfolgreich zum Abschluss zu bringen. Dabei hat ein systematisches Risikomanagement beginnend bei der Projektentwicklung bis zum Projektabschluss eine f{\"u}r den Projekterfolg entscheidende Bedeutung. Ziel der Arbeit ist es, eine quantitative Risikoerfassung f{\"u}r Projektmanager als professionelle Bauherrenvertretung und die Simulation der Risikoauswirkungen auf den Verlauf eines Projektes w{\"a}hrend der Planungs- und Bauphase zu erm{\"o}glichen. Mit Hilfe eines abstrakten Modells soll eine differenzierte, praxisnahe Simulation durchf{\"u}hrbar sein, die die verschiedenen Arten der Leistungs- und Kostenentstehung widerspiegelt. Parallel dazu soll die Beschreibung von Risiken so abstrahiert werden, dass beliebige Risiken quantitativ erfassbar und anschließend ihre Auswirkungen inklusive m{\"o}gliche Gegenmaßnahmen in das Modell integrierbar sind. Anhand zweier Beispiele werden die unterschiedlichen Einsatzm{\"o}glichkeiten der quantitativen Erfassung von Projektrisiken und der anschließenden Simulation ihrer Auswirkungen aufgezeigt. Bei dem ersten Beispiel, einem realen, bereits abgeschlossenen Schieneninfrastrukturprojekt, wird die Wirksamkeit einer vorbeugenden Maßnahme gegen ein Projektrisiko untersucht. Im zweiten Beispiel wird ein Planspielansatz zur praxisnahen Aus- und Weiterbildung von Projektmanagern entwickelt. Inhalt des Planspiels ist die Planung und Errichtung eines privatfinanzierten, {\"o}ffentlichen Repr{\"a}sentationsbaus mit teilweiser Fremdnutzung.}, subject = {Risiko}, language = {de} }