@phdthesis{Lehmkuhl2004, author = {Lehmkuhl, Hansj{\"o}rg}, title = {Zur praktischen Anwendung numerischer Analysemethoden f{\"u}r Stabilit{\"a}tsprobleme}, doi = {10.25643/bauhaus-universitaet.676}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20051013-7102}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2004}, abstract = {In der t{\"a}glichen Ingenieurpraxis werden in zunehmenden Maße numerische Analysen im Rahmen der Finite-Elemente-Methode auch zur Untersuchung stabilit{\"a}tsgef{\"a}hrdeter Strukturen eingesetzt. F{\"u}r die aktuelle Praxis, insbesondere im konstruktiven Stahlbau, ist jedoch festzustellen, dass zwischen der fortgeschrittenen Theorie und dem Niveau der praktischen Anwendung numerischer Stabilit{\"a}tsanalysen eine große Kluft besteht. Aus praktischer Sicht erscheint es unumg{\"a}nglich, die weiter wachsende Diskrepanz zwischen den umfangreichen theoretischen M{\"o}glichkeiten und der gegenw{\"a}rtigen Praxis abzubauen. Damit steht der praktisch t{\"a}tige Ingenieur vor der Aufgabe, sein Wissen auf dem Gebiet numerischer Stabilit{\"a}tsanalysen zu vertiefen und bereits vorhandene FE-Programme um Berechnungsalgorithmen f{\"u}r umfassende numerische Stabilit{\"a}tsanalysen zu erweitern. Daf{\"u}r werden in der Arbeit die Grundlagen einer FEM- orientierten modernen Stabilit{\"a}tstheorie einheitlich und aus Sicht einer praktischen Anwendung aufbereitet. Die Darstellung von realisierten programmtechnischen Umsetzungen f{\"u}r erweiterte Analysenmethoden wie Nachbeulanalysen, Pfadwechsel und Approximationen imperfekter Pfade erm{\"o}glicht eine Erweiterung des Methodenvorrates. Die innerhalb der Arbeit untersuchten Beispiele zeigen, dass durch die Anwendung der behandelten Verfahren das Tragverhalten einer stabilit{\"a}tsgef{\"a}hrdeten Struktur wesentlich besser eingesch{\"a}tzt werden kann als bei Beschr{\"a}nkung auf die herk{\"o}mmlichen Analysemethoden.}, subject = {Nichtlineare Stabilit{\"a}tstheorie}, language = {de} } @phdthesis{Schorling1997, author = {Schorling, York}, title = {Beitrag zur Stabilit{\"a}tsuntersuchung von Strukturen mit r{\"a}umlich korrelierten geometrischen Imperfektionen}, doi = {10.25643/bauhaus-universitaet.29}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20040216-317}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {1997}, abstract = {F{\"u}r geometrisch imperfekte Strukturen wird die Versagenswahrscheinlichkeit bez{\"u}glich Stabilit{\"a}tskriterien bestimmt. Eine probabilistische Beschreibung der geometrischen Imperfektionen erfolgt mit skalaren ortsdiskretisierten Zufallsfeldern. Die Stabilit{\"a}tsberechnungen werden mit der Finite Elemente Methode durchgef{\"u}hrt. Ausgangspunkt der Berechnung ist eine systematische Formulierung probabilistisch gewichteter Imperfektionsformen durch eine Eigenwertzerlegung der Kovarianzmatrix. Wenn mit einer strukturmechanisch orientierten Sensitivit{\"a}tsanalyse ein Unterraum zur n{\"a}herungsweisen Beschreibung des probabilistischen Strukturverhaltens gefunden wird, kann die Versagenswahrscheinlichkeit numerisch sehr effizient durch ein Interaktionsmodell bestimmt werden. Es zeigte sich, daß dies genau dann m{\"o}glich ist, wenn die Beulform merklich im Imperfektionsfeld enthalten ist. Die Imperfektionsform am Bemessungspunkt entspricht dann, unabh{\"a}ngig vom Lastniveau, gerade der Beulform. Wenn die Beulform im Imperfektionsfeld einen untergeordneten Beitrag liefert, erscheint eine Reduktion des stochastischen Problems auf wenige Zufallsvariablen dagegen nicht m{\"o}glich.}, subject = {Tragwerk}, language = {de} } @phdthesis{Roos2001, author = {Roos, Dirk}, title = {Approximation und Interpolation von Grenzzustandsfunktionen zur Sicherheitsbewertung nichtlinearer Finite-Elemente-Strukturen}, doi = {10.25643/bauhaus-universitaet.71}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20040311-745}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2001}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit der Berechnung der Sicherheit von Strukturen mit sowohl geometrisch als auch physikalisch nichtlinearem Verhalten. Die Berechnung der Versagenswahrscheinlichkeit einer Struktur mit Hilfe von Monte-Carlo-Simulationsmethoden erfordert, dass die Funktion der Strukturantwort implizit berechnet wird, zum Beispiel durch nichtlineare Strukturanalysen f{\"u}r jede Realisation der Zufallsvariablen. Die Strukturanalysen bilden jedoch den Hauptanteil am Berechnungsaufwand der Zuverl{\"a}ssigkeitsanalyse, so dass die Analyse von realistischen Strukturen mit nichtlinearem Verhalten durch die begrenzten Computer-Ressourcen stark eingeschr{\"a}nkt ist. Die klassischen Antwortfl{\"a}chenverfahren approximieren die Funktion der Strukturantwort oder aber die Grenzzustandsfunktion durch Polynome niedriger Ordnung. Dadurch ist f{\"u}r die Auswertung des Versagens-Kriteriums nur noch von Interesse, ob eine Realisation der Basisvariablen innerhalb oder außerhalb des von der Antwortfl{\"a}chenfunktion gebildeten Raumes liegt - die Strukturanalyse kann dann entfallen. Bei stark nichtlinearen Grenzzustandsfunktionen versagt die polynomiale Approximation. Das directional sampling neigt bei Problemen mit vielen Zufallsvariablen zu einem systematischen Fehler. Das adaptive importance directional sampling dagegen beseitigt diesen Fehler, verschenkt jedoch Informationen {\"u}ber den Verlauf der Grenzzustandsfunktion, da die aufgefundenen St{\"u}tzstellen aus den vorangegangenen Simulationsl{\"a}ufen nicht ber{\"u}cksichtigt werden k{\"o}nnen. Aus diesem Grund erscheint eine Kombination beider Simulationsverfahren und eine Interpolation mittels einer Antwortfl{\"a}che geeignet, diese Probleme zu l{\"o}sen. Dies war die Motivation f{\"u}r die Entwicklung eines Verfahren der adaptiven Simulation der Einheitsvektoren und anschließender Interpolation der Grenzzustandsfunktion durch eine Antwortfl{\"a}chenfunktion. Dieses Vorgehen stellt besondere Anforderungen an die Antwortfl{\"a}chenfunktion. Diese muss flexibel genug sein, um stark nichtlineare Grenzzustandsfunktionen beliebig genau ann{\"a}hern zu k{\"o}nnen. Außerdem sollte die Anzahl der verarbeitbaren St{\"u}tzstellen nicht begrenzt sein. Auch ist zu ber{\"u}cksichtigen, dass die Ermittlung der St{\"u}tzstellen auf der Grenzzustandsfunktion nicht regelm{\"a}ßig erfolgt. Die in dieser Arbeit entwickelten Methoden der lokalen Interpolation der Grenzzustandsfunktion durch Normalen-Hyperebenen bzw. sekantialen Hyperebenen und der sowohl lokalen als auch globalen Interpolation durch gewichtete Radien erf{\"u}llen diese Anforderungen. ungen. dieser Arbeit entwickelten Methoden der lokalen Interpolation der Grenzzustandsfunktion durch Normalen-Hyperebenen bzw. sekantialen Hyperebenen und der sowohl lokalen als auch globalen Interpolation durch gewichtete Radien erf{\"u}llen diese Anforderungen.}, subject = {Tragwerk}, language = {de} } @phdthesis{Eckardt2009, author = {Eckardt, Stefan}, title = {Adaptive heterogeneous multiscale models for the nonlinear simulation of concrete}, doi = {10.25643/bauhaus-universitaet.1416}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20100317-15023}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2009}, abstract = {The nonlinear behavior of concrete can be attributed to the propagation of microcracks within the heterogeneous internal material structure. In this thesis, a mesoscale model is developed which allows for the explicit simulation of these microcracks. Consequently, the actual physical phenomena causing the complex nonlinear macroscopic behavior of concrete can be represented using rather simple material formulations. On the mesoscale, the numerical model explicitly resolves the components of the internal material structure. For concrete, a three-phase model consisting of aggregates, mortar matrix and interfacial transition zone is proposed. Based on prescribed grading curves, an efficient algorithm for the generation of three-dimensional aggregate distributions using ellipsoids is presented. In the numerical model, tensile failure of the mortar matrix is described using a continuum damage approach. In order to reduce spurious mesh sensitivities, introduced by the softening behavior of the matrix material, nonlocal integral-type material formulations are applied. The propagation of cracks at the interface between aggregates and mortar matrix is represented in a discrete way using a cohesive crack approach. The iterative solution procedure is stabilized using a new path following constraint within the framework of load-displacement-constraint methods which allows for an efficient representation of snap-back phenomena. In several examples, the influence of the randomly generated heterogeneous material structure on the stochastic scatter of the results is analyzed. Furthermore, the ability of mesoscale models to represent size effects is investigated. Mesoscale simulations require the discretization of the internal material structure. Compared to simulations on the macroscale, the numerical effort and the memory demand increases dramatically. Due to the complexity of the numerical model, mesoscale simulations are, in general, limited to small specimens. In this thesis, an adaptive heterogeneous multiscale approach is presented which allows for the incorporation of mesoscale models within nonlinear simulations of concrete structures. In heterogeneous multiscale models, only critical regions, i.e. regions in which damage develops, are resolved on the mesoscale, whereas undamaged or sparsely damage regions are modeled on the macroscale. A crucial point in simulations with heterogeneous multiscale models is the coupling of sub-domains discretized on different length scales. The sub-domains differ not only in the size of the finite elements but also in the constitutive description. In this thesis, different methods for the coupling of non-matching discretizations - constraint equations, the mortar method and the arlequin method - are investigated and the application to heterogeneous multiscale models is presented. Another important point is the detection of critical regions. An adaptive solution procedure allowing the transfer of macroscale sub-domains to the mesoscale is proposed. In this context, several indicators which trigger the model adaptation are introduced. Finally, the application of the proposed adaptive heterogeneous multiscale approach in nonlinear simulations of concrete structures is presented.}, subject = {Beton}, language = {en} } @phdthesis{Will1999, author = {Will, Johannes}, title = {Beitrag zur Standsicherheitsberechnung im gekl{\"u}fteten Fels in der Kontinuums- und Diskontinuumsmechanik unter Verwendung impliziter und expliziter Berechnungsstrategien}, doi = {10.25643/bauhaus-universitaet.58}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20040310-613}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {1999}, subject = {Staumauer}, language = {de} } @phdthesis{Haefner2006, author = {H{\"a}fner, Stefan}, title = {Grid-based procedures for the mechanical analysis of heterogeneous solids}, doi = {10.25643/bauhaus-universitaet.858}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20070830-9185}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2006}, abstract = {The importance of modern simulation methods in the mechanical analysis of heterogeneous solids is presented in detail. Thereby the problem is noted that even for small bodies the required high-resolution analysis reaches the limits of today's computational power, in terms of memory demand as well as acceptable computational effort. A further problem is that frequently the accuracy of geometrical modelling of heterogeneous bodies is inadequate. The present work introduces a systematic combination and adaption of grid-based methods for achieving an essentially higher resolution in the numerical analysis of heterogeneous solids. Grid-based methods are as well primely suited for developing efficient and numerically stable algorithms for flexible geometrical modeling. A key aspect is the uniform data management for a grid, which can be utilized to reduce the effort and complexity of almost all concerned methods. A new finite element program, called Mulgrido, was just developed to realize this concept consistently and to test the proposed methods. Several disadvantages which generally result from grid discretizations are selectively corrected by modified methods. The present work is structured into a geometrical model, a mechanical model and a numerical model. The geometrical model includes digital image-based modeling and in particular several methods for the theory-based generation of inclusion-matrix models. Essential contributions refer to variable shape, size distribution, separation checks and placement procedures of inclusions. The mechanical model prepares the fundamentals of continuum mechanics, homogenization and damage modeling for the following numerical methods. The first topic of the numerical model introduces to a special version of B-spline finite elements. These finite elements are entirely variable in the order k of B-splines. For homogeneous bodies this means that the approximation quality can arbitrarily be scaled. In addition, the multiphase finite element concept in combination with transition zones along material interfaces yields a valuable solution for heterogeneous bodies. As the formulation is element-based, the storage of a global stiffness matrix is superseded such that the memory demand can essentially be reduced. This is possible in combination with iterative solver methods which represent the second topic of the numerical model. Here, the focus lies on multigrid methods where the number of required operations to solve a linear equation system only increases linearly with problem size. Moreover, for badly conditioned problems quite an essential improvement is achieved by preconditioning. The third part of the numerical model discusses certain aspects of damage simulation which are closely related to the proposed grid discretization. The strong efficiency of the linear analysis can be maintained for damage simulation. This is achieved by a damage-controlled sequentially linear iteration scheme. Finally a study on the effective material behavior of heterogeneous bodies is presented. Especially the influence of inclusion shapes is examined. By means of altogether more than one hundred thousand random geometrical arrangements, the effective material behavior is statistically analyzed and assessed.}, subject = {B-Spline}, language = {en} } @phdthesis{Schwedler, author = {Schwedler, Michael}, title = {Integrated structural analysis using isogeometric finite element methods}, doi = {10.25643/bauhaus-universitaet.2737}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170130-27372}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {209}, abstract = {The gradual digitization in the architecture, engineering, and construction industry over the past fifty years led to an extremely heterogeneous software environment, which today is embodied by the multitude of different digital tools and proprietary data formats used by the many specialists contributing to the design process in a construction project. Though these projects become increasingly complex, the demands on financial efficiency and the completion within a tight schedule grow at the same time. The digital collaboration of project partners has been identified as one key issue in successfully dealing with these challenges. Yet currently, the numerous software applications and their respective individual views on the design process severely impede that collaboration. An approach to establish a unified basis for the digital collaboration, regardless of the existing software heterogeneity, is a comprehensive digital building model contributed to by all projects partners. This type of data management known as building information modeling (BIM) has many benefits, yet its adoption is associated with many difficulties and thus, proceeds only slowly. One aspect in the field of conflicting requirements on such a digital model is the cooperation of architects and structural engineers. Traditionally, these two disciplines use different abstractions of reality for their models that in consequence lead to incompatible digital representations thereof. The onset of isogeometric analysis (IGA) promised to ease the discrepancy in design and analysis model representations. Yet, that initial focus quickly shifted towards using these methods as a more powerful basis for numerical simulations. Furthermore, the isogeometric representation alone is not capable of solving the model abstraction problem. It is thus the intention of this work to contribute to an improved digital collaboration of architects and engineers by exploring an integrated analysis approach on the basis of an unified digital model and solid geometry expressed by splines. In the course of this work, an analysis framework is developed that utilizes such models to automatically conduct numerical simulations commonly required in construction projects. In essence, this allows to retrieve structural analysis results from BIM models in a fast and simple manner, thereby facilitating rapid design iterations and profound design feedback. The BIM implementation Industry Foundation Classes (IFC) is reviewed with regard to its capabilities of representing the unified model. The current IFC schema strongly supports the use of redundant model data, a major pitfall in digital collaboration. Additionally, it does not allow to describe the geometry by volumetric splines. As the pursued approach builds upon a unique model for both, architectural and structural design, and furthermore requires solid geometry, necessary schema modifications are suggested. Structural entities are modeled by volumetric NURBS patches, each of which constitutes an individual subdomain that, with regard to the analysis, is incompatible with the remaining full model. The resulting consequences for numerical simulation are elaborated in this work. The individual subdomains have to be weakly coupled, for which the mortar method is used. Different approaches to discretize the interface traction fields are implemented and their respective impact on the analysis results is evaluated. All necessary coupling conditions are automatically derived from the related geometry model. The weak coupling procedure leads to a linear system of equations in saddle point form, which, owed to the volumetric modeling, is large in size and, the associated coefficient matrix has, due to the use of higher degree basis functions, a high bandwidth. The peculiarities of the system require adapted solution methods that generally cause higher numerical costs than the standard procedures for symmetric, positive-definite systems do. Different methods to solve the specific system are investigated and an efficient parallel algorithm is finally proposed. When the structural analysis model is derived from the unified model in the BIM data, it does in general initially not meet the requirements on the discretization that are necessary to obtain sufficiently accurate analysis results. The consequently necessary patch refinements must be controlled automatically to allowfor an entirely automatic analysis procedure. For that purpose, an empirical refinement scheme based on the geometrical and possibly mechanical properties of the specific entities is proposed. The level of refinement may be selectively manipulated by the structural engineer in charge. Furthermore, a Zienkiewicz-Zhu type error estimator is adapted for the use with isogeometric analysis results. It is shown that also this estimator can be used to steer an adaptive refinement procedure.}, subject = {Finite-Elemente-Methode}, language = {en} } @phdthesis{Msekh, author = {Msekh, Mohammed Abdulrazzak}, title = {Phase Field Modeling for Fracture with Applications to Homogeneous and Heterogeneous Materials}, doi = {10.25643/bauhaus-universitaet.3229}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170615-32291}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {190}, abstract = {The thesis presents an implementation including different applications of a variational-based approach for gradient type standard dissipative solids. Phase field model for brittle fracture is an application of the variational-based framework for gradient type solids. This model allows the prediction of different crack topologies and states. Of significant concern is the application of theoretical and numerical formulation of the phase field modeling into the commercial finite element software Abaqus in 2D and 3D. The fully coupled incremental variational formulation of phase field method is implemented by using the UEL and UMAT subroutines of Abaqus. The phase field method considerably reduces the implementation complexity of fracture problems as it removes the need for numerical tracking of discontinuities in the displacement field that are characteristic of discrete crack methods. This is accomplished by replacing the sharp discontinuities with a scalar damage phase field representing the diffuse crack topology wherein the amount of diffusion is controlled by a regularization parameter. The nonlinear coupled system consisting of the linear momentum equation and a diffusion type equation governing the phase field evolution is solved simultaneously via a Newton- Raphson approach. Post-processing of simulation results to be used as visualization module is performed via an additional UMAT subroutine implemented in the standard Abaqus viewer. In the same context, we propose a simple yet effective algorithm to initiate and propagate cracks in 2D geometries which is independent of both particular constitutive laws and specific element technology and dimension. It consists of a localization limiter in the form of the screened Poisson equation with, optionally, local mesh refinement. A staggered scheme for standard equilibrium and screened Cauchy equations is used. The remeshing part of the algorithm consists of a sequence of mesh subdivision and element erosion steps. Element subdivision is based on edge split operations using a given constitutive quantity (either damage or void fraction). Mesh smoothing makes use of edge contraction as function of a given constitutive quantity such as the principal stress or void fraction. To assess the robustness and accuracy of this algorithm, we use both quasi-brittle benchmarks and ductile tests. Furthermore, we introduce a computational approach regarding mechanical loading in microscale on an inelastically deforming composite material. The nanocomposites material of fully exfoliated clay/epoxy is shaped to predict macroscopic elastic and fracture related material parameters based on their fine-scale features. Two different configurations of polymer nanocomposites material (PNCs) have been studied. These configurations are fully bonded PNCs and PNCs with an interphase zone formation between the matrix and the clay reinforcement. The representative volume element of PNCs specimens with different clay weight contents, different aspect ratios, and different interphase zone thicknesses are generated by adopting Python scripting. Different constitutive models are employed for the matrix, the clay platelets, and the interphase zones. The brittle fracture behavior of the epoxy matrix and the interphase zones material are modeled using the phase field approach, whereas the stiff silicate clay platelets of the composite are designated as a linear elastic material. The comprehensive study investigates the elastic and fracture behavior of PNCs composites, in addition to predict Young's modulus, tensile strength, fracture toughness, surface energy dissipation, and cracks surface area in the composite for different material parameters, geometry, and interphase zones properties and thicknesses.}, subject = {Finite-Elemente-Methode}, language = {en} }